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Abstract

Background: Alterations in gene expression in peripheral blood cells have been shown to be sensitive to the
presence and extent of coronary artery disease (CAD). A non-invasive blood test that could reliably assess
obstructive CAD likelihood would have diagnostic utility.

Results: Microarray analysis of RNA samples from a 195 patient Duke CATHGEN registry case:control cohort yielded
2438 genes with significant CAD association (p < 0.05), and identified the clinical/demographic factors with the largest
effects on gene expression as age, sex, and diabetic status. RT-PCR analysis of 88 CAD classifier genes confirmed that
diabetic status was the largest clinical factor affecting CAD associated gene expression changes. A second microarray
cohort analysis limited to non-diabetics from the multi-center PREDICT study (198 patients; 99 case: control pairs
matched for age and sex) evaluated gene expression, clinical, and cell population predictors of CAD and yielded 5,935
CAD genes (p < 0.05) with an intersection of 655 genes with the CATHGEN results. Biological pathway (gene ontology
and literature) and statistical analyses (hierarchical clustering and logistic regression) were used in combination to select
113 genes for RT-PCR analysis including CAD classifiers, cell-type specific markers, and normalization genes.

RT-PCR analysis of these 113 genes in a PREDICT cohort of 640 non-diabetic subject samples was used for
algorithm development. Gene expression correlations identified clusters of CAD classifier genes which were
reduced to meta-genes using LASSO. The final classifier for assessment of obstructive CAD was derived by Ridge
Regression and contained sex-specific age functions and 6 meta-gene terms, comprising 23 genes. This algorithm
showed a cross-validated estimated AUC = 0.77 (95% Cl 0.73-0.81) in ROC analysis.

Conclusions: We have developed a whole blood classifier based on gene expression, age and sex for the
assessment of obstructive CAD in non-diabetic patients from a combination of microarray and RT-PCR data derived
from studies of patients clinically indicated for invasive angiography.

Clinical trial registration information: PREDICT, Personalized Risk Evaluation and Diagnosis in the Coronary Tree,
http//www.clinicaltrials.gov, NCT00500617

Background

The promise of genomics to improve diagnosis and
prognosis of significant diseases is dependent on a num-
ber of factors including appropriate use of technology,
identification of clinical issues of significant unmet need,
and the rigorous statistical derivation and testing of
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genomic classifiers [1]. Multigene expression classifiers
have been developed and have become incorporated
into clinical guidelines in both breast cancer recurrence
prognosis and heart transplant rejection monitoring
[2,3]. A guideline for the metrics such classifiers should
meet, including independent validation, and adding to
current clinical factor algorithms has been described [4]
and it has been suggested that peripheral blood cell
gene expression may reflect pathological conditions in a
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variety of cardiovascular disease states [5]. In this work
we describe the development of a validated whole blood
based classifier for the assessment of obstructive CAD
[6].

Mortality and morbidity from CAD and myocardial
infarction (MI) are a major global health burden. Major
determinants of current CAD likelihood are sex, age,
and chest-pain type [7,8]. Other risk factors such as dia-
betes, smoking, dyslipidemia, hypertension and family
history have been associated with future cardiovascular
event risk [9]. In addition, atherosclerosis has a systemic
inflammatory component including activation and
migration of immune cells into the vessel wall [10,11].
Prior work has shown that quantitative measurements
of circulating blood cell gene expression reflect the
extent of CAD [12,13]. These observations likely reflect
both changes in cell type distributions, which have prog-
nostic value for cardiovascular events [14] and gene
expression changes within a specific cell type or lineage.

The “gold standard” for detecting CAD is invasive cor-
onary angiography; however, this is costly, and can pose
risk to the patient. Prior to angiography, non-invasive
diagnostic modalities such as myocardial perfusion ima-
ging (MPI) and CT-angiography may be used, however
these only add moderately to obstructive CAD identifi-
cation [15]. We describe herein the development of an
algorithm for the assessment of obstructive CAD using
peripheral blood gene expression, age, and sex, which
was subsequently validated in an independent cohort

[6].

Methods

Patient selection and clinical methods

All patients were clinically referred for angiography and
angiograms were performed based on local, institutional
protocols. The first microarray cohort of 198 subjects
(88 cases and 110 controls) was derived from the Duke
University CATHGEN registry, a retrospective blood
repository, enrolled between August 2004 and Novem-
ber, 2005 [16]. For CATHGEN patients, clinical angio-
graphic interpretation defined cases as >75% maximum
stenosis in one major vessel or 250% in two vessels and
controls as <25% stenosis in all major vessels. Clinical
inclusion and exclusion criteria were described pre-
viously and included both diabetic and non-diabetic
patients [13]. All CATHGEN patients gave written
informed consent and the study protocol was approved
by the Duke University IRB.

The second microarray cohort of 210 subjects (105
case: control pairs, matched for age and sex) and the RT-
PCR algorithm development cohort (210 cases and 430
controls) were part of PREDICT, a multi-center US study
of patients referred for coronary angiography (http://
www.clinicaltrials.gov, NCT00500617). For PREDICT
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patients, core laboratory QCA reads (Cardiovascular
Research Foundation New York) were used for case: con-
trol classification. Cases had >50% stenosis in at least one
major coronary vessel and controls <50% stenosis in all
major vessels.

Subjects from PREDICT were eligible if they had a
history of chest pain, suspected anginal-equivalent
symptoms, or a high risk of CAD with no known prior
MI, revascularization, or CAD. Detailed inclusion/exclu-
sion criteria have been described [6]. Diabetic status was
defined by clinical identification, blood glucose (non-
fasting 2200 or fasting >126), rorhemoglobin Alc,
(26.5), or diabetic medication prescription. Complete
blood counts with differentials were obtained for all
patients. PREDICT patients gave written informed con-
sent, and the study protocol was approved by the Insti-
tutional Review Boards.

Blood collection, RNA purification and RT-PCR

Whole blood samples were collected in PAXgene® tubes
prior to coronary angiography, according to the manu-
facturer’s instructions, then frozen at -20°C. For the
CATHGEN samples RNA was purified as described
(PreAnalytix, Franklin Lakes, NJ), followed by quantita-
tive analysis (Ribogreen, Molecular Probes, Eugene, OR).
For the PREDICT samples an automated method using
the Agencourt RNAdvance system was employed.

Correlation between gene expression and cell type
distributions

Correlations with complete blood counts and database
gene expression analysis (SymAtlas, http://biogps.gnf.
org) were used to identify highly cell-type selective
genes. In addition, whole blood cell fractionation by
density centrifugation or through positive antibody
selection followed by RT-PCR was performed on specific
cell fractions (see Additional file 1).

Statistical methods
All statistical methods were performed using the R soft-
ware package.

Microarray methods

Microarray samples were labeled and hybridized to 41K
Human Whole Genome Arrays (Agilent, PN #G4112A)
using the manufacturer’s protocol. For PREDICT micro-
arrays all matched pairs were labeled and hybridized
together to minimize microarray batch effects. Microar-
ray data sets have been deposited in GEO (GSE 20686).

Normalization

Agilent processed signal values for array normalization
were scaled to a trimmed mean of 100 and then log2
transformed. Standard array QC metrics (percent
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present, pair-wise correlation, and signal intensity) were
used for quality assessment, resulting in 3 of 198
CATHGEN and 12 of 210 PREDICT samples being
excluded.

Array analysis

For the CATHGEN array, logistic regression (unadjusted
and sex/age adjusted) was used to assess gene expres-
sion association with case: control status. For the PRE-
DICT array, given the paired design, conditional logistic
regression was used. False discovery rates were used to
account for multiple comparisons. BINGO was used to
assess enrichment of gene ontology terms in the set of
655 genes [17]. A hyper-geometric test was used to
identify overrepresented terms; results were corrected
for multiple testing using Benjamini & Hochberg False
Discovery Rate (FDR) correction.

Gene selection

Genes for RT-PCR were selected based on statistical sig-
nificance, gene ontology pathway analysis, and literature
support. Hierarchical clustering based on gene: gene cor-
relations ensured that RT-PCR genes represented multiple
clusters. Normalization genes were selected based on low
variance, moderate to high expression, and no significant
association with case: control status, sex, age, or cell
counts. Cell-type genes were selected based on known lit-
erature or correlation to known cell-type specific markers.

PCR methods

Amplicon design, cDNA synthesis, and RT-PCR were per-
formed as previously described [6,13]. All PCR reactions
were run in triplicate and median values used for analysis.
Clinical/demographic factors were assessed for CAD asso-
ciation using univariate and multivariate logistic regres-
sion. Gene expression association with CAD and other
clinical/demographic factors was assessed by robust logis-
tic regression (unadjusted and sex/age adjusted) [13].

Algorithm development and validation

Hierarchical clustering was used to group genes using a
correlation cutoff. Clusters were reduced to meta-genes
[18] and normalization genes based on correlation struc-
ture, known biology, and cell count correlation. In gen-
eral, a meta-gene was a set of 1-4 genes from a specific
cluster, chosen to best represent the cluster center using
a parsimonious number of genes. Genes within meta-
genes were equally weighted with one exception (Addi-
tional File 1). For meta-gene pairs with high correlation
and opposite disease regulation, ratio terms (differences
on the log scale) were defined. Meta-genes indepen-
dently associated with outcome were selected by the
LASSO method, with sex by meta-gene interactions
allowed during variable selection [19].
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The final algorithm was fit using Ridge regression
[20], where the outcome variable was case: control sta-
tus and the predictors the LASSO-selected meta-genes
and sex-specific age terms. Sex was a binary predictor,
and age a linear predictor with separate slopes for men,
women >60, and women <60 (the slope for women age
< 60 was estimated to be approximately 0 and thus was
set to 0 in the final algorithm). The LASSO was fit
using the glmnet package in R and ridge regression was
fit using the Design package in R; in both cases the
shrinkage parameter lambda was estimated using 10-
fold cross validation. Model performance was estimated
using leave-one-out cross-validation.

Results

A schematic of the patient, gene, and logic flow for
gene discovery and algorithm development is shown in
Figure 1. Baseline demographic characteristics of the
CATHGEN registry and PREDICT study microarray
patient cohorts are summarized in Table 1. Significant
clinical and demographic factors for obstructive CAD
were age, male sex, systolic blood pressure, and dyslipi-
demia; increased neutrophil count and decreased lym-
phocyte count trended toward significance. In all cases
whole blood samples were obtained in PAXgene® tubes
and microarray analysis performed using the Agilent
41K platform.

A total of 2,438 genes showed significant CAD associa-
tion (p < 0.05) in the 195 subject case: control analysis
from the CATHGEN cohort (Figure 1). Analysis of the
effect of clinical factors on gene expression showed dia-
betes as the most significant (p = 0.0006, Additional
file 2). Based on statistical significance and biological rele-
vance, 88 genes (Additional file 2) were selected for
RT-PCR analysis on these same samples. CAD-gene
expression analysis in non-diabetic and diabetic subsets
(N = 124 and 71, respectively), showed 42 and 12 signifi-
cant genes, respectively (p < 0.05), with no intersection
(Figure 2). Further work was thus limited to non-diabetics.
Microarray CAD gene discovery on 210 PREDICT non-
diabetic patient samples used a paired case: control
experimental design, to reduce confounding effects of
age, sex and microarray batch processing. CAD analysis
on the 99 case: control pairs which passed quality
metrics yielded 5,935 significant genes (p < 0.05)
with 655 genes in common with the CATHGEN results
(Figure 3, Additional File 2). Gene Ontology (GO) analy-
sis of these 655 genes identified 55 significant, overre-
presented biological process terms (adjusted p < 0.05,
Figure 4, Additional File 2), largely reflecting inflamma-
tion, immune cell differentiation, cell death and apopto-
sis. The molecular and cellular ontologies showed
enrichment of 3 and 10 terms respectively, including
caspase activity and ribosomal function.
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CATHGEN - Diabetics PREDICT - Non-Diabetics

and Non-diabetics Second Microarray N=198
Microarray N=195 Paired design
2,438 genes p<0.05 5,935 genes, p<0.05

> 655 overlap with CATHGEN

l l

Gene Selection for RT-PCR Gene Selection for RT-PCR

Algorithm Development Set
N=640, RT-PCR 113 genes

RT-PCR 88 genes
42 p<.05 Non-Diabetic

12 p<.05 Diabetic Algorithm Derived and Locked
No overlap 23 genes, age, sex

Figure 1 Gene discovery and algorithm development patient and logic flow schematic. Initial gene discovery (CATHGEN repository)
included both diabetic and non-diabetic patients. Gene discovery from PREDICT involved non-diabetic patients in a paired microarray analysis,
that yielded 655 significant genes in common with those from the CATHGEN arrays. For RT-PCR 113 genes were selected and tested on 640
PREDICT patient samples, from which the final algorithm was derived and locked.

Table 1 CATHGEN and PREDICT microarray cohort clinical and demographic characteristics

CATHGEN Microarray Cohort PREDICT Paired Microarray Cohort
Controls Cases Controls Cases

Variable (N = 108) (N =87) p.value (N = 99) (N =99) p.value

Sex (%Male) 55 (50.9%) 58 (66.7%) 0.039 75(75.8%) 75 (75.8%) 0.868
Age (yrs) 55+ 11 63 + 10 <001 55+ 12 62 + 11 <001
Caucasian 56 (51.9%) 60 (69%) 0.023 85(85.9%) 92 (92.9%) 0.166
BMI 32+7 30+6 0.098 307 30+6 0.722
Current Smoker 41 (38%) 45 (51.7%) 0.075 14(14.1%) 25 (25.3%) 0.074
Systolic BP 144 + 22 153 + 25 0.007 132 +17 138 + 18 0.009
Diastolic BP 83+ 13 87 + 15 0.077 82+ 11 80 + 12 0.271
Hypertension 67 (62%) 65 (74.7%) 0.084 55(55.6%) 65 (65.7%) 0.191
Dyslipidemia 55 (50.9%) 58 (66.7%) 0.039 50(50.5%) 69 (69.7%) 0.009
Neutrophil Count 38+ 12 4+£13 0.392 39+£12 43+£15 0.037
Lymphocyte Count 1.8+07 19 +07 0.87 2+07 19+ 06 0.239

"Microarray cohort analyses are restricted to those whose arrays passed QC analysis (195/198 for CATHGEN and 198/210 for the PREDICT samples).
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Figure 2 RT-PCR analysis of diabetic status impact on significant genes from CATHGEN microarray analysis. Significance of individual
genes selected from the CATHGEN microarray cohort in non-diabetic (ND) and diabetic (D) patients is shown. The sex/age adjusted p values
from a CAD logistic regression analysis in each subset are plotted (log scale). Significant p values (<0.05) are indicated in red with gene symbols,
non-significant ones in black.

Gene selection

A total of 113 genes (Table 2) were selected by statistical
significance, biological relevance, and prior association
with CAD from RT-PCR gene expression measurements
in the 640 patient PREDICT algorithm development
cohort (Figure 1, Table 3). Known cell-type specific mar-
kers, those correlated with cell counts in PREDICT, and
candidate normalization genes, were also represented.

Analysis of algorithm development cohort: clinical and
gene expression factors

The most significant clinical/demographic factors for CAD
association were age, sex, chest pain type and neutrophil
count. Age and sex were independent risk factors for CAD
(Table 3) and showed significant gene expression correla-
tion. Chest pain type was also a significant independent
risk factor (p = 0.0004), especially in men, but was gene
expression independent. Neutrophil count was signifi-
cantly correlated (positively or negatively) to expression of
93 of 113 RT-PCR genes, and was significantly associated
with CAD in men (p = 0.049) but not women (p = 0.77).

Neutrophil-associated genes showed both up and
down regulation with CAD status, whereas lymphocyte-
associated genes were generally down-regulated. There
was significant gender-specific regulation of neutrophil
correlated genes (men 40/42 genes up-regulated, women,
41/42 down-regulated) whereas lymphocyte gene down-
regulation was gender independent.

Hierarchical clustering of the 113 PCR genes resulted
in 18 correlated clusters (Figure 5, Table 2), a significant
fraction of which could be mapped to cell-type specific
gene expression groups, with finer correlation substruc-
ture within the lymphocyte and neutrophil associated
genes. There were 3 lymphocyte subgroups representing
T-cells (clusters 1,2,3), B-cells (cluster 3) and NK cells
(cluster 12). Three neutrophil subgroups were also iden-
tified: previously described neutrophil genes (IL8RB,
S100A8, S100A12, TXN, BCL2A1; cluster 13, 16); newly
identified up-regulated neutrophil genes (CLECA4E,
CASP5, TNFAIP6; cluster 16) and down-regulated neu-
trophil genes (KCNE3, TLR4, TNFRSF10C; clusters 13,
14) [13]. Cluster 8 appears to be eosinophil specific.
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Figure 3 Venn diagram of microarray, RT-PCR, and algorithm gene sources. A total of 7718 genes were identified, 2438 and 5935,
respectively, from the CATHGEN and PREDICT microarray analyses, with an intersection of 655 genes. For the 113 RT-PCR genes, 52 were from
PREDICT, 22 from CATHGEN, and 29 from both; 10 were either normalization genes or from previous studies [13]. The final algorithm contained
20 informative genes: 10 from both microarray studies, 8 PREDICT alone, and 2 CATHGEN alone.

The 26 genes in clusters 4-7 and 9-11 did not have clear
cell-type association.

Algorithm derivation and performance

Based on gene expression correlation clustering and
cell-type analyses, 15 meta-genes and 3 normalization
genes were defined as inputs for model variable selec-
tion (Table 2, Figure 6). Selection by the LASSO method
and further weight penalization by Ridge regression
resulted in the final, locked algorithm, comprising 20
CAD-associated genes and 3 normalization genes in 6
meta-gene terms (Figure 6), where each term represents
a ratio of meta-genes or meta-gene to normalization
genes. The algorithm score is calculated as described
(Additional file 1) and was defined as the predicted
regression model value.

The estimated cross-validated algorithm AUC in ROC
analysis in the PREDICT development set was 0.77 (95%
CI 0.73 to 0.81) (Figure 7); prospective validation in an
independent PREDICT validation set of 526 patients
(192 cases, 334 controls) yielded an AUC of 0.70 (95%
CI = 0.65 to 0.75) [6].

Discussion

This study presents gene discovery from microarrays
and development from a large RT-PCR data set of a
whole blood derived RT-PCR based gene-expression
algorithm for assessment of obstructive CAD likelihood

in non-diabetic patients, which was subsequently vali-
dated in an independent patient set [6].

The limitation to non-diabetic patients was due to the
significant differences observed in PCR-based technical
replication of the initial microarray experiment from the
CATHGEN cohort, where both diabetic and non-diabetic
patients were included (Figure 2). This effect could be due
to differences in the pathophysiology of CAD in diabetics,
as has been observed at the plaque composition level, [21]
or due to diabetic medications, some of which modulate
gene expression and affect cardiovascular disease [22].

A number of methodological steps deserve highlight-
ing: first, we interrogated whole blood samples from
more than 1,000 patients; second, we developed and
used an automated and high reproducible RNA extrac-
tion process for the PREDICT samples; third, for the
PREDICT work we also used core laboratory determined
quantitative coronary angiography to define maximum
percent stenosis and case: control status and fourth, we
used ratios of correlated gene sets or meta-genes as
building blocks for algorithm development. These meth-
odological approaches enhanced the power of the PCR
algorithm development set to investigate the relationship
between CAD, clinical factors, and gene expression.

The relationships between age, sex, CAD, and gene
expression are complex. Increasing age and male sex are
well-known risk factors for CAD, which affect gene
expression in circulating cells [23,24]. The majority of
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genes measured by RT-PCR in this study correlated with
lymphocyte or neutrophil fraction. Lymphocyte-asso-
ciated gene expression decreases with CAD in a sex-
independent fashion, consistent with decreased lympho-
cyte counts being correlated with increased cardiovascu-
lar risk [14]. In contrast, neutrophil-associated genes
display significant sex-specific expression differences
with CAD: in men 95% of the neutrophil genes were
up-regulated whereas 98% were down-regulated in
women, consistent with increased granulocyte counts in
men being associated with higher CAD risk, with lesser
effects in women [25,26].

Biological significance of algorithm terms

The use of correlated meta-genes as building blocks for the
algorithm is significantly reflective of gene expression cell-
type specificity. The algorithm genes are expressed selec-
tively in multiple types of circulating cells including neu-
trophils, NK cells, B and T-lymphocytes, [27], supporting
roles for both adaptive and innate immune responses in
atherosclerosis [10].

A role for neutrophils in both the early and later stages
of atherogenesis has recently been suggested, especially
in connection with hyperlipidemia [28,29]. Algorithm
term 1 is a ratio of neutrophil expressed meta-genes that
are up and down regulated with CAD (Figure 6). This
term may particularly reflect neutrophil apoptosis, as
Caspase-5 is increased with CAD, whereas TNFRSF10C,
an anti-apoptotic decoy receptor of TRAIL, is decreased
[30]. Term 2 genes up-regulated with CAD are also
expressed largely by neutrophils and likely reflect both
innate immune activation, (S100A8 and S100A12), [31]
and a cellular necrosis response (CLEC4E) [32]. SI00A8
and S100A12 are up-regulated in chronic inflammatory
conditions, including asthma, rheumatoid, and inflamma-
tory arthritis, perhaps reflecting a more general patho-
physiological signal, consistent with increased CAD in
disorders such as rheumatoid arthritis [33,34].

Term 2 is highly correlated with the signature pre-
viously identified by us [13] and includes the most sig-
nificant gene from that work, S100A12. This term is
normalized in a sex-specific manner, perhaps reflecting
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Table 2 Genes evaluated by RT-PCR in the algorithm development cohort
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Gene Symbol MicroArray Evidence' Cell-Type? Cluster Metagene Term Algorithm Term®
DDX18 3 1.1
SSRP1 3 1.2
Cccr2 3 2 13
RPL28 N 2 14 Norm 2b
XIST 2 14,5 1.5
RASSF7 3 16
PKD1 3 1.7
AGPAT5 3 2,7 1.8
GLS 3 1.9
TMC8 3 1.10 1 3b4b
RPS4Y1 2 3 1.11
KLF12 3 4 112
LCK 23 348 1.13
CD3D 23 348 1.14 1 3b4b
AES 3 1.15
ZAP70 3 348 1.16
CD81 3 78 1.17
QDPR 3 25 1.18
FXN 2 2 1.19
CORO2A 3 1.20
TCEAT 3 7 1.21
KMO 3 57 2.1
TLR7 3 5 22
RHOC 3 23
CX3CR1 3 6,8 24
ILT1RA 12 34 3.1
IL7R 123 348 32 3
FAIM3 23 34,7 33
TCF7 23 3438 34 3
CD798B 23 7 35 2 4a
SPIB 23 257 36 2 4a
CD19 3 57 37
BLK 3 57 38
PI16 2 39
LRRN3 3 34 3.10 4
HNRNPF N 4.1 Norm 5b,6b
TFCP2 N 42 Norm 5b,6b
ACBD5 3 43
DIAPH1 3 44
CD37 3 7 45
PLAGL2 3 1 46
SRA1 3 5.1
CD300A 2 8 52
ELMO2 3 58 53
CD33 2 16 6.1
CSPG2 1.2 6.2
CAT 2 25 63
NOD2 13 1,6 6.4
KCNMB1 2 65 5
TCF7L2 3 1,68 6.6 5
PDK4 3 6.7 5
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TBC1D8 3 1,56 6.8
NR4A1 3 5 7.1
CDKN1C 3 6,8 7.2
(@) 2 7.3
CLC 2 12 8.1 6
OLIG2 2 82
ADORA3 2 83 6
MMD 123 7 9.1
HISTTH2AE 13 4,7 9.2 7
AMFR 2 10.1
CD34 N 2 10.2
A_24_P128361 (AF289562) 3 1.1 8 53
CD2438 23 4 1.2
KLRC4 2 4.8 121 9 3a
TARP 23 4.8 122
CCR5 2 45 123
CD8A 1 348 124
SLAMF7 2 58 125 9 3a
KLRC2 2 348 126
PRSS23 2 8 12.7
NCAM1 N 8 12.8
TNFRSF10C 3 13.1 M 1b
IL8RB 13 1,68 132 1 1b
TLR4 3 1,6 133 1 b
NAMPT 3 156 134
AQP9 3 16 135 10 2¢
ST00A8 123 1,56 13.6 12 2a
NCF4 23 16 13.7 10 2c
GLT1D1 123 138
TXN 23 2,5 139
GABARAPLI1 3 13.10
SIRPB2 13 13.11
TRPM6E 3 1312
CD93 123 156 13.13
ASPRV1 3 13.14
ALOX5AP 23 5 13.15
BCL2A1 123 1,68 13.16
F11R 3 14.1
PTAFR 3 1,6 14.2
H3F3B 3 7 143
TYROBP 23 1,68 144
NCF2 3 156 145
KCNE3 23 16 14.6 1M b
LAMP2 23 1 14.7
PLAUR 3 16 14.8
D14 1 156 149
HK3 1.2 1,68 14.10
IL18 1 14.11
RGS18 1,2 16 15.1
BMX 23 16.1
MMP9 23 16.2
ST00A12 123 156 163 12 23
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Table 2 Genes evaluated by RT-PCR in the algorithm development cohort (Continued)

CLEC4E 23
CLEC4D 23
CASP5 23
TNFAIP6 23
IL18RAP 13
ARGT 23

HP 1

CBS 23
AF161365 3
ALAS2 CN

164 12 2a
16 16.5
16.6 13 la
1 16.7 13 la
348 16.8 13 la
17.1 14
1,2 17.2
17.3 14
174 15 6a
18.1

‘Microarray Evidence: 1 = Wingrove et al, 2 = CATHGEN, 3 = PREDICT, CN = cell-type specific normalization gene, N = global normalization gene
2Cell Type: 1 = CD33+ (myeloid), 2 = CD34+(hematopoetic precursor), 3 = CD4+, (T cell) 4 = CD8+ (T cell), 5 = Dendritic, 6 = CD14+ (monocyte), 7 = CD19+ (B

cell), 8 = CD56+ (natural killer cell).

3For algorithm term identification, genes in the numerators are listed as Na whereas those in the denominators are Nb.

sex-specific differences in the significance of neutrophil
counts in CAD and MI [26]. In men normalization to
RPL28 which is strongly expressed in lymphocytes,
reflects the neutrophil to lymphocyte ratio, which is
prognostic for death or MI in a CAD population [14].
In women normalization to AQP9 and NCF4, two CAD
insensitive neutrophil genes, permits assessment of neu-
trophil up-regulation of the S100s and CLEC4E, inde-
pendent of neutrophil count.

Term 3 consists of 2 NK cell receptors, SLAMF7 and
KLRC4, normalized to T-cell specific genes (TMC8 and
CD3D). SLAMF7 may specifically activate NK cell func-
tion, while inhibiting B and T cells [35]. KLRC4 is also
likely involved in NK cell activation [36]. NK cells have
been associated with atherosclerosis in both mouse

Table 3 PREDICT algorithm development cohort clinical
and demographic characteristics’

Variable Controls (N = 410) Cases (N = 230) p.value
Sex (%Male) 193 (47.1%) 180 (78.3%) <001
Age (yrs) 57 +12 64 £ 11 <.001
Caucasian 347 (84.6%) 210 (91.3%) 0.022
BMI 31+£8 306 0.348
Current Smoker 87 (21.2%) 45 (19.6%) 0.693
Systolic BP 133 + 18 138 + 18 <001
Diastolic BP 80 + 12 80 + 11 0.944
Hypertension 248 (60.5%) 167 (72.6%) 0.003
Dyslipidemia 225 (54.9%) 170 (73.9%) <.001
Neutrophil Count 4+12 43+ 14 0.054
Lymphocyte Count 2+06 19+ 06 0.007
Chest Pain Category 0004
Asymptomatic 141 (35.4%) 90 (39.6%)
Atypical 56 (14.0%) 29 (12.8%)
Non-Anginal 137 (34.3%) 47 (20.7%)
Typical 65 (16.3%) 61 (26.9%)

'Clinical and demographic characteristics for the 640 PREDICT algorithm
development cohort are shown.

models and humans, and reduced lymphocyte counts
associated with cardiac events [14,37].

Term 4 is a gene expression based measure of the B/
T-cell ratio. The roles of both T and B cells in athero-
sclerosis development are complex; mouse models have
shown B cells to be both athero-protective and more
recently, atherogenic [38-40]. In this study apparent
upregulation of B-cell specific genes is correlated with
CAD, perhaps supporting the latter. The last two terms,
based on AF289562 (AF2) and TSPAN16 are genes of
unknown function that will require further work to clar-
ify their role in atherosclerosis.

Previous work by Sinnaeve and coworkers also exam-
ined peripheral blood gene expression in a coronary dis-
ease population [12]. As noted by these authors, there is
little overlap between their genes and the signatures
identified in our previous study [13] or this one. A num-
ber of significant differences in the study populations
(restricted age range, combining two sex specific
cohorts) in their study may have contributed to this. In
addition, there are differences in both RNA isolation
methodology and microarray platforms. Further work is
needed to resolve these issues.

Algorithm development

For algorithm development, as described above, we used
an approach that minimized the effect of any single
gene by using meta-genes as building blocks [18,41]
Penalized stepwise logistic regression (LASSO) selected
significant meta-genes from a 640 patient data set which
greatly exceeded the number of candidate variables (15
meta-genes), reducing the likelihood of over-fitting.
Further, in order to minimize over-weighting of indivi-
dual terms, meta-gene coefficients were penalized using
Ridge regression. An alternative approach would have
been to use a combined two-step shrinkage method
such as the elastic net [42]. Although correlations with
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of correlation is indicated by color as shown in the bar.
.

Figure 5 Heat-Map representation of Hierarchical Clustering Results on 113 RT-PCR Genes. Clusters were generated by hierarchical
clustering yielding 20 groups of correlated. Clusters were annotated as to cell type expression using BioGPS (http://www.biogps.gnf.org). Extent
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specific cell types was a key observation, recent meth-
odologies described for deconvoluting gene expression
data sets from complex cell mixtures might have led to
improved results [43].

The cross-validated model AUC was 0.77 (95% CI 0.73
to 0.81), suggesting that the algorithm score was a signifi-
cant CAD predictor. A decrease to an AUC of 0.70, with
overlapping confidence intervals (95% CI = 0.65 to 0.75),
was observed in the independent validation set [6]. This
decrease may reflect an over-optimistic cross-validation
estimate, as we did not re-select terms during each itera-
tion. Ultimately, the validation results provide the most
informative measure of a model’s prediction accuracy.

Limitations

Although this is one of the largest studies examining
gene expression in peripheral blood in CAD patients
and has yielded a specific algorithm for the assessment
of CAD status, it has several limitations.

From a clinical perspective, diabetics and patients with
known chronic inflammatory disorders were excluded.
The differences observed between diabetics and non-dia-
betics with CAD could be due to differences in the
molecular pathophysiology of the disease, medications,
or some combination of the two. In addition, although
race was not an independent risk factor after adjustment
for age and sex, the number of minority patients was
low, so conclusions with respect to them are signifi-
cantly underpowered. The use of a dichotomous angio-
graphic endpoint does not account for variations in
disease burden or external remodeling, and is not a
measure of ischemia. Finally, the contribution of athero-
sclerosis in other vascular beds is outside the scope of
this study, but may be important in asymptomatic high-
risk individuals.

From a cellular and gene expression perspective, the rela-
tive ease of obtaining peripheral blood cell RNA is counter-
balanced by not directly interrogating changes in the
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Males

Females

1)Neutrophil Activation - Apoptosis
Innate Immunity

0.755* (IL18RAP+TNFAIP6+CASP5) -
(ILBRB+TNFRSF10C+TLR4+KCNE3)

2)Neutrophil Activation/Lymphocytes
Innate Immunity/Cell Necrosis

0.308*(S100A8+S100A12+CLECA4E)
- RPL28

3)NK Activation/T cells
Innate Immunity

0.406*(SLAMF7+KLRC4) - (TMC8+CD3D)
4)B/T Ratio - Adaptive Immune Response

0.137*(0.33*SPIB+0.67*CD79B) -
(TMC8+CD3D)

5) 0.246* AF2 - (TFCP2+HNRPF)

6M) 0.408*TSPAN - (TFCP2+HNRPF)

1)Neutrophil Activation - Apoptosis
Innate Immunity

0.755* (IL18RAP+TNFAIP6+CASP5) -
(ILBRB+TNFRSF10C+TLR4+KCNE3)

2)Normalized Neutrophil Activation
Innate Immunity/Cell Necrosis

0.548*(S100A8+S100A12+CLECA4E)
- (NCF4+AQP9)

3)NK Activation/T cells
Innate Immunity

0.406*(SLAMF7+KLRC4) - (TMC8+CD3D)
4)B/T Ratio - Adaptive Immune Response

0.137*(0.33*SPIB+0.67*CD79B) -
(TMC8+CD3D)

5) 0.246* AF2 - (TFCP2+HNRPF)

Figure 6 Schematic of the final algorithm structure and genes. The algorithm consists of overlapping gene expression functions for men
and women with a sex-specific linear age function for the former and a non-linear age function for the latter. The genes in each term and their
weights are shown. For the gene expression components, 16/23 genes in 4 terms are gender independent: Term 1 - neutrophil activation and
apoptosis, Term 3 - NK cell activation to T cell ratio, Term 4, B to T cell ratio, and Term 5 -AF289562 expression normalized to TFCP2 and HNRPF.
In addition, Term 2 consists of 3 sex-independent neutrophil/innate immunity genes (ST00A8, ST00A12, CLEC4E) normalized to overall neutrophil
gene expression (AQP9, NCF4) for women and to RPL28 (lymphocytes) for men. The final male specific term is the normalized expression of
TSPANT16. Algorithm score is calculated as described (Additional file 1).
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Figure 7 ROC analysis of final algorithm. The cross-validated ROC

curve for the final algorithm in the algorithm development cohort is
shown. The AUC is 0.77 + 0.04.

diseased vascular wall. Another complementary approach
could be to examine secreted proteins in the blood that
might reflect endothelial or vascular dysfunction. Finally,
given the chronic nature of atherosclerotic disease, it is
likely the gene expression signature observed reflects a
response to disease rather than the underlying cause.

Conclusions

Using a series of microarray and RT-PCR data sets,
comprising more than 1,000 patients, we have derived
an algorithm, consisting of the expression levels of 23
genes, sex, and age, which can assess the likelihood of
obstructive CAD in non-diabetic patients.

Additional material

Additional file 1: Algorithm Score Calculation and Transformation.
Cell fractionation and cell specific gene expression analysis.

Additional file 2: Data Tables. Table S1 - Significance of Clinical

Variables in CATHGEN gene discovery cohort. Table S2 - Significance of
RT-PCR results for the 88 genes tested in the CATHGEN discovery cohort,
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in the non-diabetic and diabetic subsets. Table S3 - The 655 genes
identified in both the CATHGEN and PREDICT discovery microarray
experiments. Table S4 - The significant biological process, cellular
compartment and molecular function ontologies from GO analysis of the
655 genes.
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