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Abstract

Background: Several DNA microarray based expression signatures for the different clinically relevant thyroid tumor
entities have been described over the past few years. However, reproducibility of these signatures is generally low,
mainly due to study biases, small sample sizes and the highly multivariate nature of microarrays. While there are
new technologies available for a more accurate high throughput expression analysis, we show that there is still a
lot of information to be gained from data deposited in public microarray databases. In this study we were aiming
(1) to identify potential markers for papillary thyroid carcinomas through meta analysis of public microarray data
and (2) to confirm these markers in an independent dataset using an independent technology.

Methods: We adopted a meta analysis approach for four publicly available microarray datasets on papillary thyroid
carcinoma (PTC) nodules versus nodular goitre (NG) from N2-frozen tissue. The methodology included merging of
datasets, bias removal using distance weighted discrimination (DWD), feature selection/inference statistics,
classification/crossvalidation and gene set enrichment analysis (GSEA). External Validation was performed on an
independent dataset using an independent technology, quantitative RT-PCR (RT-qPCR) in our laboratory.

Results: From meta analysis we identified one gene (SERPINA1) which identifies papillary thyroid carcinoma
against benign nodules with 99% accuracy (n = 99, sensitivity = 0.98, specificity = 1, PPV = 1, NPV = 0.98). In the
independent validation data, which included not only PTC and NG, but all major histological thyroid entities plus a
few variants, SERPINA1 was again markedly up regulated (36-fold, p = 1:3*10-10) in PTC and identification of
papillary carcinoma was possible with 93% accuracy (n = 82, sensitivity = 1, specificity = 0.90, PPV = 0.76, NPV = 1).
We also show that the extracellular matrix pathway is strongly activated in the meta analysis data, suggesting an
important role of tumor-stroma interaction in the carcinogenesis of papillary thyroid carcinoma.

Conclusions: We show that valuable new information can be gained from meta analysis of existing microarray
data deposited in public repositories. While single microarray studies rarely exhibit a sample number which allows
robust feature selection, this can be achieved by combining published data using DWD. This approach is not only
efficient, but also very cost-effective. Independent validation shows the validity of the results from this meta
analysis and confirms SERPINA1 as a potent mRNA marker for PTC in a total (meta analysis plus validation) of 181
samples.
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Background
Thyroid nodules are endemic in iodine deficient areas,
like Europes alpine regions, where they have a preva-
lence of 10-20%. They are classified by their histology
into five main classes: the benign types Nodular Goiter
(NG) and Follicular Thyroid Adenoma (FTA), and the
malignant entities Follicular Thyroid Carcinoma (FTC),
Papillary Thyroid Carcinoma (PTC), Medullary Thyroid
Carcinoma (MTC) and Anaplastic Thyroid Carcinoma
(ATC). Only approximately 5% - 10% of thyroid nodules
are malignant [1], the majority of which are papillary
carcinomas. Conventionally, discrimination between
benign and malignant thyroid nodules is attempted by
fine needle aspiration biopsy (FNAB) followed by cytolo-
gical assessment. Despite many advances in the diagno-
sis and treatment of thyroid nodules and thyroid cancer,
these methods have a well known low specificity [2],
resulting in an ‘indeterminate’ or ‘suspicious’ diagnosis
in 10% - 20% of cases. These patients usually undergo
surgery, although in only 20% of these cases the nodules
are actually malignant [3,4]. This leads to a number of
patients unnecessarily treated for malignant disease.
In other types of cancer it has been shown that gene

expression profiling can add substantial value to the dis-
crimination of the different clinically relevant tumor-
entities [5,6]. To date, many studies have tried to classify
the different entities of thyroid carcinoma on the basis
of their gene expression profiles. Each study has pub-
lished a gene list which they believe discriminates
between benign and malignant thyroid nodules or
between different tumor entities. However, the lists have
no or very few genes in common and applying a classi-
fier from one study to the data from another study gen-
erally yields poor classification results. A notable
exception to this are the studies from Jarzab et al. and
Eszlinger et al. [7,8] who established a 20-gene signature
for PTC which they were able to apply to another study
and classify all samples correctly.
Here we focus on Papillary Thyroid Carcinoma (PTC),

which is the most common and therefore most exten-
sively studied form of thyroid cancer. We hypothesised,
that feature selection based on a larger sample cohort
will be more robust than using single studies, so we
decided for a meta analysis approach which allows us to
analyse all publicly avail-able datasets (99 samples) for
PTC with one common analysis approach. From this
dataset we were able to identify SERPINA1 as a single
gene which allows to discriminate between PTC and
benign nodules or healthy tissue with 99% accuracy (one
misclassification). To validate these findings and to
quantify the discriminatory power of SERPINA1 for the
detection of PTC, we performed RT-qPCR experiments
on an independent set of thyroid nodules (instantaneous

sections) measuring the mRNA levels of SERPINA1. In
contrast to the meta analysis data, we included not only
PTC and benign nodules but also all other histological
entities of thyroid nodules plus rare histological variants
(follicular variant and tall cell PTC). Despite the marked
overrepresentation of these difficult to diagnose histolo-
gical variants, the classification accuracy was still as high
as 93%.
Encouraged by the high classification accuracy in the

independent validation data, showing the validity of our
meta analysis approach, we went on to perform Gene
Set Enrichment Analysis (GSEA) on the meta-analysis
microarray data to elucidate some of the specific
mechanisms involved in papillary thyroid tumorigenesis.

Results
Data Integration
Data Integration was performed using Distance
Weighted Discrimination (DWD) [9]. Figure 1 shows
the effect of DWD integration on the first two principal
components (PC) and on hierarchical clustering. DWD
removes the dataset bias very efficiently while preserving
the biological information. Discretisation methods and
bayesian methods were not able to remove the cluster-
ing by dataset in PCA or hierarchical clustering (data
not shown).

Classification
First, and as a quality measure for each study, each dataset
was taken separately (before DWD-integration) and a
pamr classification and leave-one-out cross-validation
(loocv) was performed. The results of the cross-validations
are near perfect with single samples classifying wrongly.
However, with the exception of the classifier from the He
dataset, none of these classifiers can be applied to any of
the other datasets. Classification results are rarely ever
higher than expected by chance. If, however, one uses the
DWD-integrated data, the classifiers already fit much
better (see Table 1).
Then a pamr - classifier for the distinction of PTC ver-

sus various types of benign thyroid tissue was built for
the complete DWD-integrated dataset and validated in a
leave-one-out crossvalidation. This identified a one gene
classifier, which classifies 99% of samples correctly in
leave-one-out-crossvalidation (loocv). The discriminative
gene is SERPINA1. If one removes the SERPINA1-probe
from the analysis, pamr again finds a classifier with 99%
accuracy in loocv, this time using a 9-gene signature.
Removing these 9 genes yields another 9-gene classifier
with a similar performance (99% accuracy), and further
an 11-gene classifier with 99% accuracy. In all of these
cases, the same sample is misclassified. The expression
profile of these genes is visualised in the Figure 2.
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qPCR validation
Next, we used RT-qPCR to test the discriminative
power of SERPINA1 on an independent dataset gener-
ated in our own laboratories. Figure 3 shows the SER-
PINA1 gene expression and ROC analysis in the meta
analysis across different studies and in the RT-qPCR
data across the different entities. The upregulation of
SERPINA1 in the meta analysis data is 8-fold (p <2 *
10-16) and 36-fold (p = 1.3 * 10-10) in the qPCR data
(graphs are on a log2-scale). In the meta analysis data
SERPINA1 expression accurately distinguishes PTC

from benign nodules for 99% of the cases. Note that this
is the DWD-integrated data. In the independent valida-
tion RT-qPCR data, where we picked samples from all
histological entities, the papillary carcinomas again show
a distinctly elevated expression of SERPINA1 compared
to all other histological groups under investigation.
A threshold value of 1.08 (SERPINA1 expression, nor-
malised by DAD1-expression) was used as decision
boundary for the decision PTC vs nonPTC. At this
threshold, PTC can be detected with a sensitivity of 1
and a specificity of 0.905 (93% prediction accuracy). False
Positive were 2 MTCs, 1 ATC, 2 FTCs (1 recurrent) and
1 FTA (oxyphilic). The meta analysis data classified one
PTC falsely as benign, all others were correct.

Differential Expression Analysis and Gene Set Enrichment
Encouraged by the high reproducibility of the meta ana-
lysis results in the external validation data, we went on
to perform inference statistics on the meta analysis data.
Table 2 shows the 20 most significant differentially
expressed genes from inference statistics. SERPINA1 is
the most differentially expressed gene, but there are
many other genes which are also highly significant.
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Figure 1 DWD Integration. The effect of DWD on the first two principal components (PC) and hierarchical clustering of the data. DWD was
able to remove the separation between the datasets as indicated by the PC-plots and by the mixing of the branches in the dendrogram. The
PC plots show that biological information is preserved after DWD integration (Samples cluster by dataset before integration and by tumor entity
thereafter). Leaves in the dendrogram are colored by tumor entity and branches are colored by dataset.

Table 1 Classification Results before and after DWD
integration

before DWD after DWD

test ®
train ↓

he huang jarzab reyes he huang jarzab reyes

he 1.00 1.00 0.98 1.00 1.00 1.00 0.96 1.00

huang 0.50 1.00 0.55 0.50 0.50 1.00 0.90 0.71

jarzab 0.50 0.81 1.00 0.57 0.89 1.00 1.00 1.00

reyes 0.78 0.50 0.92 1.00 0.89 0.88 0.90 1.00

Classification results for PTC-data when applying classifiers from one study on
another study. Before (left) and after (right) DWD integration.
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Amongst the highly significant genes, most are upregu-
lated. With a log2-ratio of 3.3 (corresponds to a 10-fold
upregulation), SERPINA1 is not only the most signifi-
cant gene, but also the gene with the largest effect size.
We also used the results from inference statistics for
GSEA with the goal of finding enriched gene sets, i.e.
gene sets which have higher accumulated t-statistics
than expected by chance [10]. In the integrated dataset
there were four upregulated pathways (ECM-Receptor
Interaction, Cell Adhesion, Cell Communication and
p53 Signaling), three of which deal with extracellular
processes and six downregulated pathways, all of which
deal with metabolism and metabolite degradation. The
same results were found when doing GSEA on each of
the single studies separately.

Discussion
The present microarray meta analysis makes use of the
latest methods for microarray data integration and clas-
sification. Nevertheless, meta-analysis of microarray data
still poses a challenge, mainly because researchers ask at
least partly different questions and hence use different
experimental designs. Moreover, the number of thyroid
tumor microarray data available to researchers to date is

still comparably low (compared to breast cancer, e.g.).
Therefore, when doing meta analysis one is forced to
use all data available, even if the patient cohorts repre-
sent a rather heterogeneous and potentially biased popu-
lation. More specifically, it is difficult to obtain a
homogenous collection of control material (from healthy
patients). These are usually taken from patients who
were operated for other thyroid disease which is in turn
very likely to cause a change in gene expression as mea-
sured on microarrays. In other studies, healthy tissue
surrounding the nodule was takes as control material.
The generation of homogeneous patient cohorts is
further hampered by limited availability of patient data
like age, gender, genetic background, etc.
Nevertheless we believe to have shown that there still

is a great deal of information to be discovered in the
wealth of DNA microarray data deposited in databases
like ArrayExpress and GEO [11,12]. As shown in the
present and other papers [9,13], methods for harvesting
this information are available. Using approaches like
DWD for data integration followed by classification and
validation, it is possible to analyse a large number of
samples at minimal cost. For the discovery of mRNA-
based markers, a part of the scientific community has
already moved on to other, more accurate, even higher
parallel and even more expensive methods like mRNA
sequencing using next-generation sequencing technolo-
gies. We (see Table 1) and others [14] have shown that
feature selection in highly multivariate data like mircoar-
ray data is not very robust, due to high feature numbers
and low sample numbers. Applying these findings to
next-generation sequencing data, it is likely that the fea-
ture selection problems will be even more pronounced,
since feature numbers are even higher and even fewer
people will be able to afford the analysis of sample sizes
which account for the heterogeneous nature of clinical
samples. This is why we believe that low cost/high sam-
ple number techniques like the one utilised here can
provide valuable additional information.
This is also supported by another meta analysis on

papillary thyroid carcinoma data which has been con-
ducted by Fujarewicz et al. [15]. They used 3 datasets,
two of which were used in our study as well (Jarzab
and He). They skipped data integration and used a
bootstrap strategy instead, which consisted of iterative
construction of Support Vector Machine (SVM) classi-
fiers (on features selected for each iteration) based on
randomly selected sets of specimen and testing the
classifiers on the remaining samples. Through this
sampling scheme, they select genes which exhibit little
study bias and good discrimination between tumor
subtypes. They achieved 98.5% classification accuracy
between PTC and benign nodules on a 20 gene classi-
fication rule.
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Figure 2 Heatmap and hierarchical clustering of meta analysis
data on further candidate marker genes. As shown in the
heatmap, there are a range of different genes with good
discriminatory power between PTC and benign nodules. Therefore,
removing SERPINA1 from the meta analysis dataset leads to a range
of possible expression signatures with 99% classification accuracy in
leave-one-out crossvalidation (see main text). In all cases, the same
one sample is misclassified (see discussion for details). Columns
correspond to samples and rows to genes, the red/green color bar
on top of the heatmap corresponds to the histological classification
(Red: benign, Green: PTC).
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When doing meta analysis of microarray data,
researchers have also based their approach on modeling
of inter-study variation [16] or on comparing gene lists
from published studies. A meta analysis and meta review
by Griffith et. al. [17] has summarised genes with a diag-
nostic potential in the context of thyroid disease. They
published lists of genes which appeared in more than
one high-throughput study (Microarray, SAGE) analys-
ing thyroid disease and applied a ranking system. In
their analysis SER-PINA1 scored the third highest. Six
of our top 20 most significant genes appear in the list of
Griffith et al. Their approach is very useful, as one can
include all studies in the analysis and is not limited to
the studies where raw data is available. However, the
studies generally follow very different analysis strategies,
some more rigorous than others. It is not under the
control of the meta-analyst how the authors arrived at
the gene lists. It is also not possible to assign a measure
of confidence at the gene level. However, given the over-
lap in the marker genes identified by these two methods,

they seem to complement each other well for in-silico
marker discovery. ANOVA-based approaches are very
useful for identifying differentially regulated genes but
to our knowledge there is no method to test these genes
in the meta analysis data for their discriminatory power.
Most of these lists were generated from microarray

analysis. However, even when comparing the genes in
the classifiers to gene lists generated with independent
technologies, like cDNA library generation as performed
by Kaserer et al. [18], there is substantial overlap. SER-
PINA1 appears in their lists as well as seven of our top
20 genes.
SERPINA1 has been reported before as a potential

diagnostic marker for papillary thyroid carcinoma in a
study investigating its protein expression in thyroid
biopsy tissue by Immunocytochemistry and Western
Blot [19]. In line with our results, they found SER-
PINA1 immunoreactivity in nine of ten papillary biop-
sies while the surrounding tissue showed no such
reaction.
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Figure 3 SERPINA1 expression. Expression values and receiver-operating-characteristics (ROC) analysis of the SERPINA1 gene in the meta
analysis data (left) and the RT-qPCR independent validation data (right). Classification thresholds were chosen from ROC analysis (shown as ‘X’ in
the ROC plots). Positive Predictive Values (PPV) were calculated as number of true positives/number of all positives, Negative Predictive Values
(NPV) as number of true negatives/number of all negatives, both at the chosen threshold.
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In GSEA, the most apparent feature of PTC is an upre-
gulation of extracellular activities, like cell communica-
tion and adhesion and extracellular matrix receptor
interactions. While the gene lists and the derived classifi-
cation rules of the 4 studies under investigation here
show little over-lap, we found the same pathways to be
overrepresented when each of the single studies is being
analysed separately. Upregulation of ECM microenviron-
ment genes have been described as an effect of BRAF
mutations through phospho-ERK1/2 signalling, which in
turn may be involved in the up-regulation of some ECM
remodeling genes like TSP-1 [20]. While ECM has been
seen as mere scaffolding for many years, recently its role
in tumor progression and invasion through ECM remo-
deling and stiffening of the tissue stroma became evident
[21]. Similar Pathways have been reported to be impli-
cated in the progression from simple ductal hyperplasia
to atypical ductal hyperplasia and further to ductal carci-
noma in situ in ER+ sporadic breast cancer by Emery et
al. [22]. Like us, they found, amongst other pathways,
overrepresentation of the ECM-receptor interaction, cell
communication and p53 signaling pathways, but none of
the downregulated metabolic pathways which we identi-
fied in papillary thyroid carcinoma. Their data also sug-
gests, that in breast cancer progression, dysregulation of
the ECM-epithelial cell interactions is an early event,

even before any evidence of invasion becomes visible.
Similarly, Birnie et al. [23] reported Cell Adhesion and
ECM receptor interactions pathway dysregulated when

comparing prostate cancer stem cells
(
CD 133+/α2β

high
1

)

to their normal and differentiated counterparts(
CD 133−/α2β

low
1

)
.

The power of the meta analysis approach adopted
here is demonstrated by a 99% loocvaccuracy (97.9%
weighted average accuracy in the study crossvalidation)
for the distinction between papillary thyroid carcinoma
and benign nodules. One sample was classified wrongly,
and although it is not possible to correctly map the
samples from this analysis to the original analysis [7],
the misclassified sample is from the same group (PTC,
validation group) as the sample which was wrongly clas-
sified in the original analysis. According to Jarzab et. al.
the sample was an outlier because it contained only ≈
20% tumor cells.
In the qPCR data we achieved a prediction accuracy

of 93%. We chose the threshold to allow for false posi-
tives rather than false negatives. For this threshold 6
samples were false positives and none false negative.
Three follicular nodules were false positive, one of
them was a recurrent FTC nodule and one was an oxy-
philic FTA nodule. The third was a classical FTC. Two

Table 2 Differential Expression Analysis

SYMBOL RefSeq logFC adj.P.Val Sens. Spec. KEGGID

SERPINA1 NM_000295, NM_001002235,
NM_001002236

3.30 7.81e-39 0.98 1.00 04610

PROS1 NM_000313 2.12 8.89e-34 0.98 1.00 04610

LRP4 NM_002334 2.80 8.89e-34 1.00 0.96 NA

NPC2 NM_006432 1.29 5.83e-33 1.00 0.94 04142

LAMB3 NM_000228, NM_001017402 2.46 5.11e-31 0.96 1.00 04510, 04512, 05200, 05222

DPP4 NM_001935 2.86 6.96e-31 0.98 0.98 NA

SDC4 NM_002999 1.68 5.50e-30 0.96 0.96 04512, 04514

IPCEF1 NM_015553 -2.10 2.88e-29 1.00 0.00 NA

QPCT NM_012413 2.09 3.00e-29 0.98 1.00 NA

MPPED2 NM_001584 -2.28 7.73e-29 1.00 0.00 NA

TIMP1 NM_003254 1.85 1.48e-27 0.96 0.94 NA

TFF3 NM_003226 -3.42 2.07e-27 1.00 0.00 NA

PRSS23 NM_007173 1.48 2.32e-27 0.98 0.98 NA

MET NM_000245 1.64 2.37e-27 0.94 0.98 04060, 04144, 04360, 04510, 04520, 05120, 05200, 05210,
05211, 05218

CDH3 NM_001793 2.72 3.45e-27 0.96 0.94 04514

GGCT NM_024051 1.21 2.74e-26 0.98 0.92 00480

PDLIM4 NM_003687 2.21 3.37e-26 0.96 0.98 NA

KRT19 NM_002276 2.33 3.40e-25 0.98 0.98 NA

CITED1 NM_004143 3.17 4.42e-25 0.94 0.96 NA

CHI3L1 NM_001276 3.50 4.42e-25 0.96 0.90 NA

The first 20 entries in the toptable of differential expression in meta analysis data, including log2 fold changes (logFC) and Benjamini-Hochberg adjusted p-values
(adj.P.Value) as calculated by the limma-software. Sensitivity and Specificity are given for the distinction of PTC vs NG at maximum accuracy. Annotational
information like gene symbols, consensus sequence identifiers (RefSeq) and KEGG Pathway IDs are shown.
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MTC and one ATC nodules were falsely positive. The
latter two entities are rather easy to distinguish by
alternative methods like cytology or serum calcitonin
testing (MTC). However, the raw, unnormalised data
(not shown) suggests, that the slightly elevated levels
in the MTC and ATC group may not be down to ele-
vated SER-PINA1 levels, but to a different cellular
turnover in these cells which leads to a problem in the
normalisation procedure. A more thorough search for
appropriate normalisation genes may circumvent this
problem.
Gerhard et al. [24] studied the intra- and inter-obser-

ver variability in the cytological assessment of fine nee-
dle aspirates from thyroid nodules. They found 24% (n
= 97) disagreement between two observers, both of
them experienced pathologists. While most of these dis-
agreements were between different follicular nodules,
there was still an inter-observer disagreement of 6.3%
for the PTC nodules. This highlights the need for objec-
tive diagnostic methods which include the possibility to
assign a measure of confidence in the final diagnosis.
While PTC shows the most distinct cytological features
and is therefore relatively easy to diagnose, a molecular
diagnostic test could also provide the possibility to
include molecular markers for tumor entities which are
harder to diagnose by cytology.

Conclusions
These results are very encouraging, however, more stu-
dies need to be carried out in order to be able to trans-
fer these findings into clinical applications for routine
diagnostics. Firstly, markers with sufficient sensitivity
and specificity for the other histological subtypes need
to be found. There are few studies reporting molecular
classifiers for follicular thyroid disease [25,26], and these
classifiers cannot be applied to data from other studies
(data not shown). To date, microarray studies for
medullary and anaplastic thyroid carcinoma are largely
missing. Secondly, in all of these studies, frozen thyroid
nodules e.g. from instantaneous section pathology have
been used. However, molecular markers for thyroid car-
cinomas will only be useful for routine diagnostics, if
they exhibit the same discriminative power in fine nee-
dle aspiration biopsy (FNAB) samples. Microarray data
from a study on thyroid FN-ABs [27] and a study on
FNABs of various different tumor types [28] show good
correlation between the aspirate and the tissue, but
more detailed data is needed.

Methods
Datasets
Datasets were downloaded either from websites or from
public repositories (GEO, ArrayExpress, see Table 3).

Gene Mapping
The first step in any meta analysis of microarray data is
to find the set of genes which is shared by all microar-
ray platforms used in the analysis. Traditionally, overlap
is assessed by finding common Entrez-Gene or UniGene
(National Center for Biotechnology Information, http://
www.ncbi.nlm.nih.gov/) identifiers. This, however, disre-
gards all possible splice variations in the genes under
investigation. For example, if a gene had 2 splice var-
iants, one of which was Differentially expressed in the
experiment and the other not and if one platform would
contain an oligo specific only to the Differentially
expressed variant and the other platform only an oligo
to the other variant, then a matching based on UniGene
would merge probes which measure different things.
To overcome this problem, the approach adopted here

merges only probes which annotate to the same set of
RefSeq identifiers. To this end all matching RefSeqs
were downloaded for each probe(set) via the Bioconduc-
tor annotation packages (hgu133a, hgu95a and hgu133-
plus2; available at http://www.bioconductor.org). Probes
which annotate to the same set of RefSeq identifiers
were deemed to be similar. The median value was used,
if one set of RefSeqs was represented by multiple probes
on the array. 5707 different sets of RefSeqs were present
on all arrays.

Preprocessing and Data Integration
First each dataset was background-corrected and nor-
malised separately, as recommended for each platform
[29,30], then they were merged and quantile normalised
collectively. Despite all preprocessing, it has been shown
that data generated in different labs or on different
microarray platforms or on different generations of the
same platform may not be comparable due to platform
or lab specific biases [8]. This is also evident from prin-
cipal component analysis and hierarchical clustering of
the merged data as shown in Figure 1. In order to cor-
rect for these biases, methods have been developed for
integration of microarray data. One of these methods is
Distance Weighted Discrimination (DWD) which is
described in detail elsewhere [9]. Briefly, DWD projects

Table 3 Datasets used for meta analysis

Published PTC o.d. c.lat Platform Size

He PNAS 2005 9 0 9 Affy U133plus 54k

Huang PNAS 2001 8 0 8 Affy U95A 12k

Jarzab Cancer Res 2005 23 11 17 Affy U133A 22k

Reyes not published 7 0 7 Affy U133A 22k

Microarray Data used for meta analysis. The studies used 2 types of benign
samples: samples from patients that were operated for other thyroid disease
(o.d) and samples from the contralateral lobe (c.lat). Data was obtained from
GEO http://www.ncbi.nlm.nih.gov/geo/ or institutional websites.
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data points onto the normal vector of a class (dataset) -
separating hyperplane as calculated by a modified Sup-
port Vector Machine (SVM) and sub-tracts the class
(dataset) means. Therefore, for a multi-class problem
(more than 2 datasets to merge), the datasets need to be
merged sequentially. For 4 datasets this leads to 24 dif-
ferent possibilities for merging, not including tree struc-
tured approaches, e.g instead of (((1 + 2) + 3) + 4),
consider ((1 + 2) + (3 + 4)). The merging orders applied
here were chosen on the general idea that similar and
larger datasets should be merged first and more dispa-
rate ones later (personal communication). It is also
worth noting, that adding a sample to a DWD merged
dataset will change the whole dataset just like adding a
new number to a vector of numbers will change its
mean.

Classification
For probe selection, classification and crossvalidation a
nearest shrunken centroid method was chosen [31]
(implemented in the Bioconductor package pamr).
Briefly, it calculates several different possible classifiers
using different shrinkage thresholds (i.e. different num-
ber of genes) and finds the best threshold from crossva-
lidation. Here we picked the classifier with the smallest
number of genes (largest threshold), if more than one
threshold yielded the same crossvalidation results.

External Validation
Thyroid nodules were obtained from instantaneous sec-
tion pathology at the Vienna General Hospital with the
approval of the local ethics committee. We analysed 82
thyroid samples of 7 different entities: ATC(n = 3), FTA
(n = 18), FTC (n = 13), MTC (n = 6), normal thyroid (n
= 5), PTC (n = 19) and NG (n = 18). The choice of
nodules also included a high rate of histological variants,
like follicular variant PTC, tall cell PTC and oxyphilic
follicular nodules. Approximately 30 mg of tissue was
lysed in RLT-buffer on a FastPrep FP120 instrument
(Qbiogene p/n 6001-120) and extracted using Qiagen
All-Prep DNA/RNA extraction (Qiagen p/n 80204)
according to manufacturers instructions. RNA quality
was assessed on the Agilent 2100 Bioanalyser (p/n
G2938C).
We had chosen following ABI TaqMan Assays: ACTB

(Hs99999903_m1), CASC3 (Hs00201226_m1), DAD1
(Hs00154671_m1), PPIA (Hs99999904_m1) and Ser-
pinA1 (Hs01097800_m1). Oligo-dT primed reverse tran-
scription was done using Superscript III (Invitrogen),
following the suppliers instructions. RT reaction with
180 ng RNA was used for three controls (ACTB, DAD1,
PPIA) and the SerpinA1 gene in triplicates for quantita-
tive PCR (12 reactions). We used 125 μl of the ABI 2×
Gene-Expression-Mastermix, 20 μl cDNA and 42,5 μl

RNase free water for the PCR mastermix. Aliquots of 15
μl (for 4 assays in triplicates) were added to a 1 μl+4
μl dilution of each assay (5 μl diluted assay plus 15 μl
cDNA Mastermix). Cycling conditions were 2 sec 50°C,
10 sec 95°C and then 15 sec 95°C, 1 sec 60°C for 50
cycles (ABI 5700 Sequence Detection System). Using the
method of Vandesompele et.al [32], DAD1 was picked
as the gene with the highest stability and therefore used
as housekeeping gene for normalisation.

Gene Set Enrichment Analysis (GSEA)
First, inference statistics was calculated using the bio-
conductor package limma [33]. This includes non-speci-
fic filtering and linear modelling using empirical bayes
moderated variances and Benjamini-Hochberg correc-
tion for multiple testing. For each gene, limma calcu-
lates a log odds ratio for differential expression (B-
value). GSEA for pathway enrichment was performed on
Students t-statistics using the geneSetTest function in
the limma package. All data analysis except DWD-inte-
gration (Matlab®, Natick, MA) was done in R/biocon-
ductor http://www.bioconductor.org [34]. R-codes and
qPCR raw data is available at http://www.methcancerdb.
net/methcancerdb/img/ThyroidMetaAnalysis.zip.
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