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Abstract

Background: Expression quantitative trait loci (eQTL) studies have helped identify the genetic determinants of
gene expression. Understanding the potential interacting mechanisms underlying such findings, however, is
challenging.

Methods: We describe a method to identify the trans-acting drivers of multiple gene co-expression, which reflects
the action of regulatory molecules. This method-termed co-regulatory expression quantitative trait locus (creQTL)
mapping-allows for evaluation of a more focused set of phenotypes within a clear biological context than
conventional eQTL mapping.

Results: Applying this method to a study of endometrial cancer revealed regulatory mechanisms supported by the
literature: a creQTL between a locus upstream of STARD13/DLC2 and a group of seven IFNb-induced genes. This
suggests that the Rho-GTPase encoded by STARD13 regulates IFNb-induced genes and the DNA damage response.

Conclusions: Because of the importance of IFNb in cancer, our results suggest that creQTL may provide a finer
picture of gene regulation and may reveal additional molecular targets for intervention. An open source R
implementation of the method is available at http://sites.google.com/site/kenkompass/.

Background
Expression Quantitative Trait Locus (eQTL) mapping
searches across the genome for markers associated with
individual transcripts to identify loci containing regula-
tory elements [1,2]. Although cis regulators are easily
interpreted, assigning function to trans regulators is
more difficult. At the transcriptional level, genes in
trans are often co-regulated by transcription factors
binding the same regulatory elements in the noncoding
sequences of multiple genes [3]. When looking genome-
wide, however, genes across many ontologies acting
upstream of transcription factors participate in the co-
regulation of genes [4,5]. Because of the difficulty in pre-
dicting the trans-regulators, the majority of transcrip-
tional regulatory proteins remain unknown.
Identification of genetic components of gene co-regu-

lation is important because there is compelling evidence

that aberrant gene co-regulation participates in human
disease [6,7]. Investigations into the genetic basis of
gene co-regulation have used Bayesian networks to iden-
tify cis- and trans-acting factors controlling modules of
co-regulated genes [8-10] or gene clusters. A key result
here was the identification of associations that would
have been missed when genes were tested individually,
as in traditional eQTL. Biologically, this is very compel-
ling because genes typically do not perform their func-
tions in isolation but rather in coordinated groups. The
existing Bayesian methods have focused primarily on the
identification of yeast regulatory programs where other
sources of information, such as sequence conservation,
transcription factor binding site (TFBS) data, or protein
interaction data are readily available and serve as prior
information [8,10]. Extension of these methods to
human genetics with data from HapMap subjects has
shown that sequence conservation and cis-regulatory
information were the most useful prior data [8].
Studies in other human cohorts and mice have used

directed Bayesian networks or undirected weighted gene
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coexpression networks to incorporate existing marker
and phenotype data into models that have made biologi-
cally validated predictions [11-16]. These network-based
methods and their alternatives (e.g. [17-21]) show great
promise but often have high computational complexity,
making them most practical for smaller datasets with
limited numbers of traits. Furthermore, prior informa-
tion is generally not readily available in humans. For
example, most TF binding sites remain unknown and
even within the same tissue, the vast majority of TFBS
appear divergent between human and mouse [22]. This
suggests that relying on sequence conservation or the
presence of conserved TF binding motifs may miss
some key associations and that agnostic, complementary
methods should be developed.
Many algorithms that search for the determinants of

gene co-regulation assign each gene to a single cluster
(e.g. [4,9,23]), which is limiting, because genes can
belong to different clusters under different biological
conditions [24]. More recent network approaches over-
come this problem by examining differential canonical
correlation between multiple states, such as healthy and
diseased, or with a reference [11]; these approaches,
however, may rely on methods that are not robust to
non-normal data to find correlated genes. This may be a
problem for gene microarray expression data, which is
often not normally distributed. Alternatively, robust,
“mega-clustering” methods have been developed to pro-
vide improved estimates of co-regulation for microarray
data [25]. One such algorithm-the ‘Gene Recommen-
der’-has successfully predicted previously unknown
interactions that were verified experimentally in a multi-
cellular organism [26]. A key property of the Gene
Recommender is the categorization of genes into clus-
ters under different conditions (i.e., allowing for “biclus-
ters”) where different samples’ contributions to the
given cluster may vary. Since inexpensive genotyping
platforms can presently interrogate >1 million SNPs and
we are rapidly shifting into the era of whole genome
sequencing, existing genetics and systems biology meth-
ods would be nicely complemented by computationally
feasible, agnostic approaches to the detection of trans-
acting factors that regulate groups of genes.
Therefore, here we extend the Gene Recommender with

an approach that can systematically identify trans loci con-
trolling gene co-regulation. We broadly refer to the identi-
fication of gene co-expression trait loci as ‘co-regulatory
expression quantitative trait loci’ (creQTL) mapping.
Unlike trans-eQTL analysis, our method does not consider
individual transcripts but rather focuses on multiple co-
regulated transcripts. We provide a genome-wide imple-
mentation of the Gene Recommender and a statistical fra-
mework for association testing. The key steps of the
creQTL approach are: gene clustering; calculation of each

sample’s similarity to each cluster; and statistical testing of
how well genotype explains the similarity. We applied
creQTL to a study of germline variants and tumor expres-
sion in endometrial cancer [27] and identified many loci
significantly associated with gene co-regulation. These loci
were commonly in noncoding regions closely in cis with
genes encoding proteins required for transcription, signal-
ing, cell adhesion, and development. Our results suggest
that associating genetic variants with co-regulation via
creQTL mapping provides an efficient and agnostic ave-
nue for detecting biological factors important in the coor-
dinate regulation of groups of genes.

Methods
creQTL Approach
To identify trans regulatory associations, creQTL map-
ping tests for the association between genetic variants
spanning the genome and clusters of co-regulated genes.
The variant data can be obtained, for example, from sin-
gle nucleotide polymorphism (SNP) arrays. Gene expres-
sion data can be obtained from standard gene
expression arrays or other high-throughput methods for
mRNA quantification.
Gene clustering is based on a recursive, heuristic

implementation of the Gene Recommender (GR) [26],
automated for genome-wide application. GR is a rank-
based biclustering algorithm with an existing, open
source R implementation [28]. Here we outline relevant
portions of the GR. First, gene expression data are nor-
malized to a uniform distribution with mean zero and
variance 1/3. A suggested gene list, based on prior knowl-
edge, of at least two putative co-regulated genes is input
to GR. For each putative cluster input, each sample’s
relative score, the “ZE(j)”, is computed, as in Equation 1.
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where kj is the number of gene expression values in
sample j, p is the number of samples, and YQ j, is the
median gene cluster expression value in sample j. Note
that the original implementation of Gene Recommender
used the mean gene cluster expression value in the
numerator of ZE(j) [26]; later versions of the algorithm
used the median [28]. Here we used the latest version.
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where var(YQ, j) is the variance of the genes within the
gene cluster in sample j (both equations, ref. [26]). ZE(j)
has an approximate Student’s t null distribution and
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larger values indicate tighter co-regulation of clustered
genes within sample j. Once ZE(j) has been computed,
an incremental approach is used to compute the corre-
lation coefficient, s.g.i., with a scoring function that
minimizes the number of nonquery genes scoring higher
than those in the query. The final s.g.i., which is propor-
tional to the Euclidean distance, is then based on the
most informative experiments.
It is not computationally feasible to compute all possi-

ble gene clusters from the dataset with GR, so heuristics
are necessary to find tightly co-regulated gene clusters.
Our extensions permit genome-wide use of the GR by
automatically selecting putative co-regulated genes, run-
ning the algorithm, and then recursively modifying the
query using leave-one-out cross validation (LOOCV) as a
scoring function until the cluster converges at a point
where all query genes contribute approximately equally
to the cluster. The procedure is as follows. First, using
each gene as a seed for a potential cluster, initial predic-
tions of co-regulated genes are made using Spearman’s
rank correlation. If the number of highly correlated genes
is less than 5 or more than 20, the putative cluster is
expanded or trimmed to the most correlated 5 or 20
genes, respectively. Next, the Gene Recommender algo-
rithm is run with this initial gene cluster, and then rerun
using the top hits (by s.g.i, the Gene Recommender nor-
malized correlation metric) from the initial run. If the
seed gene scores highly after the second run (i.e., within
the top 50 genes most correlated with the putative clus-
ter) LOOCV is used to trim the cluster to only the high-
est scoring hits (regardless of gene set size). Once a
tightly regulated cluster has been found, the next-highest
scoring genes are added incrementally while stringently
keeping LOOCV scores low. Ultimately, all genes within
a predicted cluster will have an approximately equivalent
contribution to the cluster, as determined by LOOCV.
Once gene clusters were assigned, for creQTL associa-

tion testing, we computed a modified version of ZE(j),
called Z2E(j), to describe how tightly regulated the gene
cluster was within a given sample. The modified version
replaces the numerator of ZE(j) with the mean of all genes’
contributions to the cluster and adds a small positive con-
stant, s0, to the denominator in order to moderate var-
iance and avoid extremely large values of Z2E(j). s0 was
chosen by minimizing the coefficient of variation of the
denominator of ZE(j) across moving windows of data, akin
to the strategy of Tusher et al. [29] for the moderation of t
statistics. The modified statistic for association testing is
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In place of the median expression value in the numera-
tor of the original ZE(j), we multiplied the sample’s med-
ian gene expression value with the expression values for
each individual gene within the cluster, and computed
the mean of the resulting vector. Although this strategy
will produce a higher Z2E(j) in the case of a cluster with
strongly driven outliers, it will also produce a lower Z2E
(j) in the presence of weakly driven outliers, even when
the cluster is otherwise strongly driven. Thus, a larger
priority was given to penalizing strongly driven clusters
with weakly driven outliers than the opposite. Overall,
this produced smaller values of Z2E(j) and gave a slightly
greater dispersion of clusters with outliers when com-
pared to taking the median gene expression value (not
shown). Our software implementation provides a choice
of either calculation for the numerator.
The association between genotypes and the Z2E(j) sta-

tistic was then evaluated with Bartlett’s k-sample var-
iance test [30], using the ‘bartlett.test’ function in R to
find significant differences in the variance of Z2E(j)
across each genotype using additive coding (i.e. AA, AB,
BB). Resulting p-values were then adjusted for FDR
using the ‘p.adjust’ function in R and the method of
Benjamini and Hochberg [31].

Application of creQTL to Endometrial Cancer
We applied creQTL mapping to a study of 52 endome-
trial tumor samples with genotype and expression data
available (NCBI GEO 14860; [27]). We downloaded the
raw genotype and normalized microarray data from
GSE14860. Genotype data were from Affymetrix 100K
SNP chips, and calls were made with the ‘crlmm’ func-
tion from the ‘oligo’ library (v1.10.0) [32] for Biocon-
ductor (v2.5; [33]) and R (v2.10.0; [34]). Prior to
association testing, SNP markers were prefiltered to
satisfy the following stringent conditions for each mar-
ker: a call confidence value of at least 95% in 51/52
samples, no significant deviations from Hardy-Weinberg
equilibrium at p = 0.05 (with ‘snpMatrix’ v1.8.0 [32]),
and at least two different genotypes observed with at
least 5 samples for each genotype. This was analogous
to requiring a SNP minor allele frequency of 5% if two
genotypes were observed, and 14% if all three genotypes
were seen. To enrich the microarray data for abundant
and strongly-hybridized transcripts, we calculated the
variance of each probe and excluded the lowest 50%
from our analyses. Microarray data were ranked and
normalized to mean 0 and variance 1/3 across each
gene, the default for the Gene Recommender algorithm.
SNP r2 values were calculated with ‘snpMatrix.’ Because
all 52 samples were from a single county in Norway
[27], we did not perform any adjustments for popula-
tion stratification.
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For comparison with the creQTL results, we also
undertook an eQTL analysis of the EC dataset. Here,
the microarray data were normalized to have a mean of
zero and variance equal to one within each individual
sample. cis eQTL analysis evaluated all SNPs within
5 MB of a gene using an analysis of variance (ANOVA)
of expression level on genotype and including covariates
identified with surrogate variable analysis [35]. trans
eQTL was done similarly, focusing on the remaining
SNPs > 5 MB from any protein-coding gene. For cis and
trans eQTL analyses, p-values were adjusted separately
for FDR [31].
Finally, we evaluated whether associated genes were

overrepresented in broad gene ontology categories for
creQTL. We organized all Gene Ontology [36] annota-
tions into Biological Process (BP), Cellular Component
(CC), and Molecular Function (MF) subcategories (Affy-
metrix, Santa Clara CA). SNPs were assigned to genes,
as for cis-eQTL, using the minimum q-value for associa-
tion across all tested SNPs within a 5 MB distance cut-
off (to generate per-gene q-values). For all GO
subcategories with at least 10 genes, the two-sample
Kolmogorov-Smirnov test (one-tailed) was used to test
for enrichment of significant genes in each Gene Ontol-
ogy category. Specifically, to compute exact p-values for
each category, we compared the observed q-value for a
given gene set to those calculated from 10,000 same-
sized sets of randomly drawn q-values. Because of the
large number of categories, many of which contained
overlapping genes, resulting p-values (for each GO cate-
gory) were then adjusted for FDR [31].

Results
The key steps in our creQTL approach and application
to identify loci controlling co-regulation of genes are
outlined in Figure 1. Because of the overall unreliability
of low-expression measurements in gene microarray
expression data and our interest only in genes with
dynamic expression patterns, we prefiltered those data
to exclude the bottom 50% of probes by variance, leav-
ing 8,543 for inclusion in our analysis of gene clustering
and QTL testing. 68,523 SNPs from the Affymetrix
100K chip met cutoffs for inclusion in our analysis.
From the expression data, we identified 282 gene clus-

ters with at least 3 co-regulated genes. The distribution
of gene cluster sizes is shown in Figure 2. Many genes
present within the same clusters had overlapping,
known biological functions, and genes within individual
clusters often were syntenic, such as the IFNb-induced
genes IFI44, IFI44L, and IFIT1, -2, and -3, on chromoso-
mal regions 1p31.1 and 10q23-26, contained within a
cluster significantly associated with a SNP/locus
upstream of RFC3 and STARD13.

We found 453 associations between genotype and Z2E
(j) with q-values < = 0.005 (Additional File 1 contains
annotated associations) after 19,323,486 variance tests of
282 gene clusters and 68,523 SNPs. Note that a FDR q-
value of 0.005 corresponded to an unadjusted p-value of
approximately 1 × 10-7. Table 1 and Figure 3 highlight
two of the most significant creQTLs that were within
5 MB of a protein-coding gene. As shown in Figure 3,
for statistically significant creQTLs, the SNP genotypes
exhibit varying contributions to the clusters. Moreover,
samples that contribute most to a given cluster have
more extreme, more tightly-clustered expression values;
samples that contribute little to a given cluster have
expression values (and contributions) closer to zero with
greater variability. Additional File 2 shows the q-value
density for associations as a function of gene cluster
size. As can be seen in the figure, there was no relation-
ship between q-values and gene cluster size.
For the association between rs9315220 and the cluster
noted above, several other nearby SNPs (rs9315219,
rs9315215, rs7981602, rs4943110) were also significantly
associated with this cluster (see Additional File 1),
reflecting the high linkage disequilibrium (LD) among
them (the pairwise r2 across all five SNPs ranged from
0.92 to 0.96 in these 52 samples). The smallest q-value
was nearest to the STARD13 locus (q-value = 1.13 × 10-
4). Another strong association (q = 5.40 × 10-4) shown
in Figure 2 was between the intronic SNP rs2296697 in
LPHN2 (latrophilin 2) and a cluster of genes including
C21orf58, CPNE6, SOX11, MMP8, LRTM1, and one
unannotated gene. The genes within this cluster have
established roles in Ca2+-dependent signaling and cancer
[37-41] (Discussion). Interestingly, a conventional trans-
eQTL analysis between the SNPs and individual expres-
sion values of these co-regulated genes did not detect
any associations (see Table 1); these results were typical
of other clusters (data not shown).
The strongest regulatory loci for creQTL (q = 5.50 ×

10-4) are shown in Table 2. We calculated pairwise r2

between all 453 SNPs from creQTLs with q < 0.005 and
eliminated those with r2 values above 0.5, leaving 338
creQTLs. Of the 338 SNPs remaining, 190 were in non-
coding regions; 145 were intronic; two were in coding
sequences; and one was in the 3’ untranslated region.
Interestingly, many of the associated creQTLs contained
SNPs in noncoding sequences >500 kb from the nearest
gene. After assigning the 68,523 SNPs to 8,398 protein-
coding genes in cis (Methods), we plotted the resulting
8,398 q-values versus cis-location relative to the nearest
gene in Figure 4. Consistent with the pattern for the
highest-scoring hits at q < 0.005, associations appeared
most enriched in the intronic regions, and within the
non-intronic, noncoding regions, significant associations
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appeared most in regions >10 KB away from the coding
sequence.
We further analyzed the creQTL results with Gene

Ontology in order to determine if any broad categories of
genes participated in the regulation of gene clusters. There

were 648, 176, and 310 Gene Ontology Biological Process
(BP), Cellular Component (CC), and Molecular Function
(MF) annotations, respectively, for gene set enrichment
testing that were represented on the SNP arrays after
assigning the 68,523 SNPs to 8,398 protein-coding genes

Figure 1 Overview of analysis.
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in cis, using an arbitrary minimum cutoff of 10 genes for a
category to be tested. Top hits are shown in Table 3 at a
more relaxed q = 0.05. The most significant ontologies
were related to cell adhesion, potassium- and calcium ion
transport, binding, channel activity, development, and the
nervous system, particularly development and plasticity.
For Biological Process and Molecular Function, as
expected, some of the most enriched categories were
related to transcription factors and other aspects of tran-
scriptional regulation. For Molecular Function, categories
‘0003700’ (transcription factor activity) and ‘0003714’
(transcription corepressor activity), with 497 and 74 genes,
respectively, were just beyond the FDR significance cutoff
with adjusted p-values of 0.056 and 0.078 (Additional File
3). For Cellular Component, nearly all significant cate-
gories were directly related to various aspects or cell-type
specific (e.g. neuronal) specializations of the cellular mem-
brane (9 of 13 hits at q = 0.05).
eQTL analysis identified no significant cis-eQTLs (q =

0.05); the smallest FDR-adjusted significance level for
cis-eQTLs was q = 0.098 (not shown). There were 63
significant trans-eQTLs (q = 0.05; Additional File 4),
and the most significant are shown in Table 4. A raw
p-value of approximately 6 × 10-9 corresponded to q =
0.05. Even with a high 50% FDR cutoff, there were only
1,293 cis-eQTLs (of 1,468,327), or 0.09%, and 290,625
(of 507,010,655), or 0.06% trans-eQTLs. Although mar-
ginally significant (q = 0.049), the association between
ZNF639 and TCF12 is included in Table 4 due to asso-
ciation of 3q26 with survival in this dataset [27] (Dis-
cussion). We did not perform gene ontology analysis of
the eQTL experiment since there were no clear cis-
eQTLs detected.

Discussion
creQTL provides an agnostic framework for predicting
trans regulators of clusters of genes. It does not require
any one particular biclustering method or statistical test
and can be extended to any species for which genetic
markers (including those derived from linkage) and gene
expression data can be obtained; for example, creQTL
mapping in mice would allow the study of gene regula-
tion in many disease models and in normal biological
processes such as development, which are highly rele-
vant to human disease. Like eQTLs, creQTLs may be
incorporated into additional analyses. As recent studies
have used eQTL data to assemble genetic loci into
directed, Bayesian networks to predict causal relation-
ships (e.g. [16,42]), future studies could assemble
creQTLs into directed or undirected gene networks.
Because creQTL mapping groups co-regulated genes
into a smaller number of modules, network construction
using creQTL information in place of eQTL information
should be computationally more efficient.
In our application to endometrial cancer, there was an

abundance of creQTLs in noncoding regions and
introns, and relatively very few in coding regions. Poly-
morphisms in coding regions, although observed less
frequently, would likely generate more pronounced
effects, and for signaling molecules, these could result in
substantial downstream effects important for carcino-
genesis due to a change in function of the protein. How-
ever, these alleles, which are likely to be under strong
negative selection and very rare, would not be covered
by the genotyping platform used in the present study.
Unlike the results of eQTL studies, our strongest hits
were not typically located in cis regions very close to the
coding sequences of individual genes, but rather in more
distant, noncoding regions located over 10 KB from the
nearest gene. This suggests that regions that regulate
clusters of genes, unlike those regulating individual
genes, are located farther from coding sequences and
may possibly function as general enhancers. However,
without careful experimentation, such as promoter
reporter gene assays that would specifically test the
enhancer activity of these sequences, it is difficult to
predict their actual roles. Future studies could address
the relationship between location, allele frequency, and
other empirical aspects of creQTLs in larger cohorts
and healthy tissue. Collapsing SNPs into a dominant
model would permit testing of less common SNPs, as
requiring five observations in each genotype essentially
restricted our analysis to more common variants.
Our results for creQTL from the Gene Ontology enrich-

ment analysis indicated a regulatory hierarchy, consistent
with data from wet-lab studies, where signal transduction
molecules receive signals at the plasma membrane and
transduce them through various intracellular intermediates
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Figure 2 Histogram of gene cluster sizes identified from the EC
gene expression data.

Kompass and Witte BMC Medical Genomics 2011, 4:6
http://www.biomedcentral.com/1755-8794/4/6

Page 6 of 14



to the nucleus to activate specific transcription factors,
other DNA-binding proteins, and other transcriptional reg-
ulatory proteins. The relative abundances of DNA-binding
proteins at the promoter region may control gene expres-
sion [43]. Because of the enrichment of cell adhesion and
signaling ontologies at the cell junction and membrane at
the highest significance levels, the major steps of gene reg-
ulation in endometrial cancer may occur not within the
nucleus but rather at the cellular membrane. In addition,
GO enrichment in genes required for telomere mainte-
nance suggests additional target genes and loci for further
investigation, as telomerase has long been considered an
attractive target for therapy in endometrial carcinoma [44]
and more recently, a mouse model of endometrial cancer
showed that telomere length affected initiation of type II
carcinogenesis [45].
Gene Ontology analysis is not without its own pitfalls.

Besides the obvious effects of overlapping annotations

for the majority of genes and annotation bias, the cate-
gories themselves often do not describe real biological
phenomena. Given that transcription factors are very
cell-type specific, a category that includes all of them is
not particularly useful. In light of this, the q-values for
transcription factor-related categories are likely to be
overly conservative, and would probably be smaller if
those TFs not expressed in this tissue were excluded.
Future studies could address this problem using array
and wet lab expression data.
For the association shown in Figure 2, the nearest

coding sequence to rs9315220 is STARD13, a.k.a. DLC2
(deleted in liver cancer 2). All genes of this cluster but
one (OAS1), including MX1, IFI44, IFIT2, IFIT3, IFI44L,
and IFIT1, are known to be induced by IFNb in humans
[46]. IFNb, besides its role in the treatment of multiple
sclerosis (MS), is anti-tumorigenic [47-50]. Similarly,
many genes from this cluster also have established or

Table 1 Two representative, significant creQTL associations

creQTL 1

SNP Annotation

Locus dbSNP Location (bp) Position Gene Symbol Gene Title

chr13q12.3-q13 rs9315220 304602 upstream RFC3 replication factor C (activator 1) 3, 38 kDa

chr13q12-q13 rs9315220 227702 upstream STARD13 StAR-related lipid transfer (START) domain containing 13

Gene Cluster Annotation

Locus Entrez ID qcreQTL peQTL Gene Symbol Gene Title

chr1p31.1 10561 1.13 × 10-4 0.21 IFI44 interferon-induced protein 44

chr1p31.1 10964 0.28 IFI44L interferon-induced protein 44-like

chr10q23-q25 3433 0.21 IFIT2 interferon-induced protein with tetratricopeptide repeats 2

chr10q24 3437 0.49 IFIT3 interferon-induced protein with tetratricopeptide repeats 3

chr10q25-q26 3434 0.19 IFIT1 interferon-induced protein with tetratricopeptide repeats 1

chr12q24.1 4938 0.52 OAS1 2’,5’-oligoadenylate synthetase 1, 40/46 kDa

chr21q22.3 4599 0.56 MX1 myxovirus (influenza virus) resistance 1, interferon-inducible
protein p78 (mouse)

creQTL 2

SNP Annotation

Locus dbSNP Location (bp) Position Gene Symbol Gene Title

chr1p31.1 rs2296697 0 intron LPHN2 latrophilin 2

Gene Cluster Annotation

Locus Entrez ID qcreQTL peQTL Gene Symbol Gene Title

chr2p25 6664 5.40 × 10-4 0.92 SOX11 SRY (sex determining region Y)-box 11

chr3p14.3 57408 0.38 LRTM1 leucine-rich repeats and transmembrane domains 1

chr11q22.3 4317 0.10 MMP8 matrix metallopeptidase 8 (neutrophil collagenase)

chr14q11.2 9362 0.38 CPNE6 copine VI (neuronal)

chr21q22.3 54058 0.64 C21orf58 chromosome 21 open reading frame 58

NA NA 0.35 NA NA

For each of the two creQTLs shown in this table (labeled ‘creQTL 1’ and ‘creQTL 2’), the associated SNP (labeled ‘SNP Annotation’) is first shown with annotation
for the nearest coding genes in cis. Beneath the SNP annotation is annotation for the significantly associated, co-regulated gene cluster (labeled ‘Gene Cluster
Annotation’). These two significant associations correspond to the two loci shown in Figure 3. ‘Position’ indicates the relative location of the SNP relative to the
nearest coding gene; ‘Location (bp)’ indicates the physical distance, in base pairs, between the SNP and the nearest coding genes; peQTL indicates unadjusted
significance of standard eQTL analysis.
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putative roles in cancer; IFI44 was part of a small set of
genes independently validated for recurrence status in
non-small cell lung carcinoma [37], is anti-proliferative
in melanoma cell lines [38], and is upregulated in squa-
mous cell carcinoma [39]. IFIT2 inhibits migration and

proliferation in squamous cell carcinoma cultures [41].
IFIT1 was one of a small group of genes that predict
carcinogenesis after training on DNA-damage response
[40], while STARD13 is upregulated in human lympho-
cytes following gamma-irradiation [51], suggesting that

Figure 3 creQTL1 (left panel) and creQTL2 (right panel) from Table 1, with SNP IDs rs9315220 and rs2296697, respectively. For each
association, co-regulation of a given cluster and a SNP is shown. The 52 endometrial carcinoma samples are color coded by genotype on the x-
axis (upper panel), with every third sample labeled beneath the axis. On the y-axis (upper panel), normalized gene cluster expression values are
plotted. The median, 25th/75th quantiles, minimum, and maximum gene values across all genes in the cluster are shown for each sample. The
bottom panel of each figure shows the Z2E(j) statistic for each sample and the given cluster.

Table 2 Top scoring creQTLs at a significance threshold of q = 5.50 × 10-4

Locus dbSNP Location (bp) Position Gene Symbol Gene Title qcreQTL

chr6q16 rs959186 125994 downstream RNGTT RNA guanylyltransferase and 5’-phosphatase 1.13 × 10-4

chr13q12.3-q13 rs9315215 348455 upstream RFC3 replication factor C (activator 1) 3, 38 kDa 1.13 × 10-4

chr13q12-q13 rs9315215 183849 upstream STARD13 StAR-related lipid transfer (START) domain containing 13 1.13 × 10-4

chrXq21.33 rs4969656 695921 upstream DIAPH2 diaphanous homolog 2 (Drosophila) 1.93 × 10-4

chrXq21.3-q22 rs4969656 2315179 upstream NAP1L3 nucleosome assembly protein 1-like 3 1.93 × 10-4

chr3q13.1 rs4856121 2246645 upstream ALCAM activated leukocyte cell adhesion molecule 1.93 × 10-4

chr5q31-q32 rs319217 0 intron PPP2R2B protein phosphatase 2 (formerly 2A), regulatory
subunit B, beta isoform

1.13 × 10-4

chr1p31.1 rs2296697 0 intron LPHN2 latrophilin 2 5.40 × 10-4

chr2p21 rs222471 31099 downstream KCNG3 potassium voltage-gated channel, subfamily G, member 3 4.91 × 10-4

chr2p21 rs222471 49701 upstream COX7A2L cytochrome c oxidase subunit VIIa polypeptide 2 like 4.91 × 10-4

chr4q21 rs1992489 59023 upstream CXCL13 chemokine (C-X-C motif) ligand 13 5.19 × 10-4

chr4q21.1 rs1992489 282671 downstream CCNG2 cyclin G2 5.19 × 10-4

chr14q13-q21 rs1951319 680177 downstream RPL10L ribosomal protein L10-like 5.48 × 10-4

chr14q21.2 rs1951319 717439 upstream C14orf106 chromosome 14 open reading frame 106 5.48 × 10-4

chr8p23.2 rs1714757 0 intron CSMD1 CUB and Sushi multiple domains 1 1.47 × 10-4

chr16p13.12 rs1159167 147599 upstream ERCC4 excision repair cross-complementing
rodent repair deficiency, complementation group 4

4.91 × 10-4

chr16p13.12 rs1159167 968670 upstream CPPED1 calcineurin-like phosphoesterase domain containing 1 4.91 × 10-4

chr22q12.1 rs10483151 0 intron TTC28 tetratricopeptide repeat domain 28 1.81 × 10-4

Associated gene clusters have been omitted for brevity and are listed in Additional File 1. ‘Position’ and ‘Location (bp)’ as for Table 1; qcreQTL’ indicates FDR-
adjusted significance.
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IFIT1 may be a downstream target of STARD13 follow-
ing DNA damage.
STARD13/DLC2 encodes a Rho GTPase activating pro-

tein and was identified from a region of chromosome 13
exhibiting a loss of heterozygosity in hepatocellular carci-
noma [52]. It is a tumor suppressor that antagonizes Rho
expression [53], and its downregulation or deletion has
been reported in multiple cancers [54,55]. Supporting its
role as a regulator of IFNb-induced genes, an intronic
SNP in STARD13 was amongst eighteen that were repli-
cated in a study of responders to IFNb therapy in MS
patients [56]. Further, SNPs in OAS1 have been asso-
ciated with MS susceptibility [57]. Therefore, this parti-
cular gene cluster and its predicted regulatory partner,
STARD13, may be interacting determinants of the
response to various negative stimuli. This also proposes
the hypothesis that the role of STARD13 as a tumor sup-
pressor is from its induction in response to DNA
damage, and that deletion of this region in at least ten
different cancers is pathogenic possibly due to hyper-acti-
vation of Rho, which promotes migration, proliferation,
and invasion [58]. In this case, beyond improvement of
the total lack of significant association from the indivi-
dual eQTLs, creQTL proposed a more complete picture
of the biological pathway.
We detected a strong association of rs2296697, within

an intron of LPHN2 (latrophilin 2), with a cluster of
genes including C21orf58, CPNE6, SOX11, MMP8, and

LRTM1. LPHN2 belongs to the latrophilin subfamily of
G-protein coupled receptors, with known roles in cell
adhesion and signal transduction [59]. Cell adhesion was
among the most enriched categories from Gene Ontol-
ogy analysis of creQTL. CPNE6 (copine VI), is a mem-
ber of the ubiquitous copine family, which bind
phospholipid in Ca2+-dependent manner and have roles
in cellular division and growth [60]. Although very little
is known regarding CPNE6, other members of the
copine family have been shown to promote tumor cell
migration [61] and repress NF-KB transcription [62].
SOX11 is a TF with important roles in brain develop-
ment that is strongly upregulated in lymphoma [63] and
malignant glioma, where it may affect tumorigenesis
[64,65]. SOX11 may also be a prognostic marker for
recurrence-free survival in another uterine neoplasia,
epithelial ovarian cancer [66]. MMP8 (human neutrophil
collagenase) is a member of the matrix metallopeptidase
family. Recent work has shown that a SNP in MMP8
may be a predictor of lung cancer risk [67], and that
higher plasma levels of MMP8 may protect against
lymph node metastasis in breast cancer [68]. Consistent
with these findings, somatic mutations of MMP8 were
common in melanomas, and mutated MMP8 failed to
inhibit tumor formation in vivo [69], suggesting wide-
spread roles for MMP8 in cancer progression. Three
members of this gene cluster have no known roles, yet
the functions of the other cluster members suggest they
could contribute to cancer progression. In this case, the
association of this cluster of genes with LPHN2 has sug-
gested that LPHN2 may be a regulatory point for the
modulation of genes with important roles in cancer,
including MMP8 and SOX11.
eQTL analysis was not done in the original paper pre-

senting this dataset [27], and the general lack of findings
from the eQTL analysis may be from a lack of power,
given that there were only 52 samples. This is not sur-
prising: an eQTL study of 60 samples from the CEU
cohort in the HapMap data identified only 10 cis-eQTLs
and 94 in trans [70], although there may have been
some technical issues here [71].
However, in the present study, creQTL appeared to

identify interactions that were supported by recent work
in the literature. A very compelling benefit of creQTL
over trans-eQTL is greater computational efficiency and
a reduced multiple testing burden, as there was an
approximate 25-fold reduction in the number of statisti-
cal tests. By organizing genes into co-regulated clusters
prior to statistical testing, the problem becomes more
computationally feasible and the resulting output more
biologically interpretable. The identification of more sig-
nificant hits after adjustment was likely not simply due
to a lighter multiple testing penalty; cis-eQTL required
1,468,327 tests, far less than the 19,323,486 tests for
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Figure 4 Genewise genomic locations of SNP q-values. After
assigning 68,523 SNPs to 8,398 genes based on the minimum
association q-value within 5 MB of the nearest gene’s coding
sequence, q-values were binned into categories based on their
relative position to the nearest gene. Note that the q-values do not
reach the bottom of the plot as they were chosen as the minimum
value within 5 MB of the nearest gene.
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Table 3 Gene Ontology enrichment analysis for creQTL at q = 0.05

Gene Ontology Biological Process

Category ID Category Size Category Title qKS

7214 18 gamma-aminobutyric acid signaling pathway < 0.008

7612 21 learning < 0.008

7411 62 axon guidance < 0.008

7156 69 homophilic cell adhesion < 0.008

7417 80 central nervous system development < 0.008

7155 320 cell adhesion < 0.008

45944 203 positive regulation of transcription from RNA polymerase II promoter 0.008

7399 225 nervous system development 0.008

45595 12 regulation of cell differentiation 0.014

48754 19 branching morphogenesis of a tube 0.018

30900 42 forebrain development 0.018

45165 29 cell fate commitment 0.027

43065 69 positive regulation of apoptosis 0.04

7224 16 smoothened signaling pathway 0.043

7420 74 brain development 0.043

30326 35 embryonic limb morphogenesis 0.043

7169 56 transmembrane receptor protein tyrosine kinase signaling pathway 0.043

6813 94 potassium ion transport 0.043

Gene Ontology Cellular Component

Category ID Category Size Category Title qKS
5913 18 cell-cell adherens junction < 0.004

45202 156 synapse < 0.004

30054 231 cell junction < 0.004

14069 49 postsynaptic density 0.004

45211 79 postsynaptic membrane 0.004

30424 83 axon 0.006

781 13 chromosome, telomeric region 0.013

5912 27 adherens junction 0.013

34707 36 chloride channel complex 0.016

5923 40 tight junction 0.016

5886 1504 plasma membrane 0.037

42734 21 presynaptic membrane 0.038

5578 174 proteinaceous extracellular matrix 0.038

Gene Ontology Molecular Function

Category ID Category Size Category Title qKS
8066 11 glutamate receptor activity < 0.008

5216 187 ion channel activity < 0.008

5509 491 calcium ion binding < 0.008

4993 11 serotonin receptor activity < 0.008

4970 12 ionotropic glutamate receptor activity 0.009

5234 12 extracellular-glutamate-gated ion channel activity 0.009

43565 273 sequence-specific DNA binding 0.009

5244 85 voltage-gated ion channel activity 0.016

4890 17 GABA-A receptor activity 0.017

5246 11 calcium channel regulator activity 0.019

31404 49 chloride ion binding 0.023

30594 18 neurotransmitter receptor activity 0.028

30165 32 PDZ domain binding 0.029
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creQTL, and produced no statistically significant results
even at the more liberal q-value cutoff of 0.05. Overall,
these results suggest that individual SNP-gene interac-
tions are more difficult to detect (as in eQTL) when
compared to relative changes in the expression levels of
tightly co-regulated genes, in agreement with previous
work in yeast [9]. creQTL may be better-suited to the
identification of the strongest trans drivers of gene
expression because it better explains the data; i.e., genes
do not work individually to exert their biological effects,
but rather in tightly coordinated groups. However, our
results regarding the location of these drivers of co-reg-
ulation relative to coding sequences suggests that they
might be disjoint from cis drivers of individual gene
expression.
Some trans-eQTL hits were significant and may merit

further investigation based on previously established
biological roles for associated loci, indicating comple-
mentary utility of eQTL and that the two methods may
be most useful when applied side-by-side. Copy number
analysis of this EC dataset by the original authors
revealed two regions of gain that were predictive of

survival - 3q26.32 and 12p12.1 [27]. Deletions were not
considered. Because PIK3CA is located in this region,
the authors proposed a role for the PI3-kinase pathway,
and found supporting evidence for this theory based on
indirect, bioinformatic analysis of existing, in vitro data.
Located 200 kb from PIK3CA is ZNF639, a.k.a. ZASC1,
which is often contained within the same amplicon in
cancer [72,73]. ZNF639 was originally identified in squa-
mous cell carcinoma as a Kruppel-like transcription fac-
tor with mRNA expression levels prognostic for survival
and metastasis [72,73]. trans-eQTL identified a SNP less
than 35 kb upstream of ZNF639 (SNP_A-1686963) driv-
ing expression of the TCF12 gene at 15q21. TCF12, a.k.
a. HTF4 or ME1, is a basic helix-loop-helix TF with key
roles in development [74]. In a mouse experiment,
TCF12 was associated with obesity [14], a key prognos-
tic factor for endometrial cancer [75]. Because the stoi-
chiometric concentration of TFs within the nucleus may
control gene expression [43], this association proposes a
link between obesity and TCF12 through ZNF639.
Because ZNF639 regulates anchoring of E-cadherin to
the cytoskeleton through alpha N-catenin [76], given the

Table 3 Gene Ontology enrichment analysis for creQTL at q = 0.05 (Continued)

5001 13 transmembrane receptor protein tyrosine phosphatase activity 0.029

5267 53 potassium channel activity 0.029

5230 24 extracellular ligand-gated ion channel activity 0.037

5254 48 chloride channel activity 0.041

8146 26 sulfotransferase activity 0.041

16455 11 RNA polymerase II transcription mediator activity 0.042

Results are presented for Biological Process, Cellular Component, and Molecular Function, respectively. Category IDs are presented minus leading zeroes. ‘qKS’
indicates FDR-adjusted significance of the category.

Table 4 The most significant associations from trans-eQTL analysis at q = 0.05

SNP Locus dbSNP Location (bp) Position SNP Gene Symbol mRNA Locus Entrez ID mRNA Gene Symbol qeQTL

chrXp22.11 rs4828879 23770 upstream PRDX4 chr11p15.5 7140 TNNT3 0.003

chr7q32.3 rs277491 0 intron PLXNA4 chr3p26-p25 7862 BRPF1 0.003

chr4q32.3 rs10517754 0 intron FSTL5 chr22q12.1 25770 C22orf31 0.005

chr7q34 rs2363830 0 intron DENND2A chr11q23-q24 56 ACRV1 0.016

chr3q22.1 rs938243 0 intron CPNE4 chr16q23.3 93517 SDR42E1 0.018

chr2q13 rs10496425 0 intron CCDC138 chr7q11.23 7461 CLIP2 0.019

chr2q13 rs7591305 0 intron CCDC138 chr7q11.23 7461 CLIP2 0.019

chr10q21.1 rs10509024 0 intron PCDH15 chrXp11.23 778 CACNA1F 0.029

chr3p24.3 rs964910 561192 upstream SGOL1 chr1q44 114548 NLRP3 0.029

chr21q21.1 rs2826728 0 intron NCAM2 chr11p15.5 7140 TNNT3 0.029

chr21q21.1 rs2155798 0 intron NCAM2 chr11p15.5 7140 TNNT3 0.029

chr1q43 rs2790645 135107 upstream CHRM3 chr5q31-q32 5521 PPP2R2B 0.029

chr11q14.1 rs62388 0 intron DLG2 chr7q34 154790 CLEC2L 0.029

chr3q26.33 rs9290675 34917 upstream ZNF639 chr15q21 6938 TCF12 0.049

’Position’ indicates SNP genomic location; ‘ qeQTL’ indicates FDR-adjusted significance. Annotation is shown for SNPs in the first 5 columns, then for mRNA
expression; e.g. for the first (non-header) row of this table, the mRNA expression levels for gene TNNT3 were significantly associated with genotype at rs4828879,
which is 23,770 base pairs upstream of the PRDX4 locus.
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importance of cell adhesion proteins in cancer [77],
future studies of endometrial cancer might focus on
ZNF639.

Conclusions
With the advent of low-cost SNP and expression
arrays, human genetics has become a common tool for
the dissection of gene regulation. Genetic approaches
to the study of transcriptional regulation are compel-
ling because they can detect regulatory molecules at all
stages of gene regulation. Our approach expands upon
previous methods and uses genetic variation to help
identify transcriptional regulatory mechanisms, provi-
ding a biologically intuitive approach for detect-
ing potential links between genotype and gene co-
regulation.

Additional material

Additional file 1: Significant creQTLs. All significant creQTLs at q =
0.005 with annotation.

Additional file 2: creQTL q-values by gene cluster size. Plot of q-
values for all associations, grouped by gene cluster size. The right panel
is a zoomed view of the left panel, highlighting the rejection region. For
both panels, the legend at upper left indicates the number of genes in
the cluster.

Additional file 3: creQTL Gene Ontology. All results of Gene Ontology
testing for creQTL.

Additional file 4: trans-eQTL. Results of trans-eQTL analysis at q = 0.05,
annotated.
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