
RESEARCH ARTICLE Open Access

Molecular prediction for atherogenic risks across
different cell types of leukocytes
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Abstract

Background: Diagnosing subclinical atherosclerosis is often difficult since patients are asymptomatic. In order to
alleviate this limitation, we have developed a molecular prediction technique for predicting patients with
atherogenic risks using multi-gene expression biomarkers on leukocytes.

Methods: We first discovered 356 expression biomarkers which showed significant differential expression between
genome-wide microarray data of monocytes from patients with familial hyperlipidemia and increased risk of
atherosclerosis compared to normal controls. These biomarkers were further triaged with 56 biomarkers known to
be directly related to atherogenic risks. We also applied a COXEN algorithm to identify concordantly expressed
biomarkers between monocytes and each of three different cell types of leukocytes. We then developed a multi-
gene predictor using all or three subsets of these 56 biomarkers on the monocyte patient data. These predictors
were then applied to multiple independent patient sets from three cell types of leukocytes (macrophages,
circulating T cells, or whole white blood cells) to predict patients with atherogenic risks.

Results: When the 56 predictor was applied to the three patient sets from different cell types of leukocytes, all
significantly stratified patients with atherogenic risks from healthy people in these independent cohorts.
Concordantly expressed biomarkers identified by the COXEN algorithm provided slightly better prediction results.

Conclusion: These results demonstrated the potential of molecular prediction of atherogenic risks across different
cell types of leukocytes.

Background
Atherosclerosis is the leading cause of death in most
countries [1]. In the United States alone, it is estimated
that more than 16 million people have atherosclerotic
heart disease resulting in 870, 000 deaths in 2005. Diag-
nosis of subclinical atherosclerosis is difficult since indi-
viduals are still asymptomatic. Early detection of
atherosclerosis may help to prevent complications of the
disease or slow its progression [2]. Atherosclerosis risk
can first be indirectly predicted by clinical disease risk
factors such as diabetes, LDL, HDL, or triglyceride. The
progression of atherosclerosis, however, is a complex
multifactorial process which involves multiple molecular
mechanisms such as lipid deposition in arteries, smooth
muscle cell proliferation, thrombogenesis, and platelet
aggregation so it has been found to be difficult to

predict atherosclerosis by these standard risk factors
alone. For example, Tertov and his collaborators [3]
found there was a lack of correlation between the degree
of human plasma low density lipoprotein oxidation and
its atherogenic potential (r = 0.10, n = 127) and LDL
levels showed a weak correlation with a coefficient of
0.12 for total atheroma volume.
Tests based on surgical patient samples such as arter-

ial tissue or atherosclerotic plaques are used to diagnose
atherosclerosis but are impractical [4,5]. High through-
put molecular techniques have also been used to better
understand the pathogenesis and progression of athero-
sclerosis but have not been fully utilized for diagnostics
[4,5]. Invasive or non-invasive imaging methods for pla-
que in human coronary arteries are currently used to
detect the more exact status of atherosclerosis in
patients [6,7]. However, use of these imaging methods
for plaque detection in human coronary arteries is costly
and associated with the risk of adverse events so are
often restricted to a small proportion of patients who
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already show high-risk features and clinical symptoms
[7]. Consequently, despite these biotechnical and mole-
cular efforts, diagnosis of subclinical atherosclerosis
remains difficult.
Identifying genome-wide biomarkers of various mole-

cular mechanisms relevant to atherogenic risks, we here
developed multi-gene prediction signatures for stratify-
ing patients with atherosclerosis using peripheral blood
samples. In particular, we addressed two questions in
this study: 1) whether subclinical atherosclerosis can be
diagnosed by molecular biomarkers in peripheral blood
samples, and 2) whether they share certain common
molecular expression signatures across different cell
types of leukocytes.

Methods
Patient and Microarray Data Sets
Four published microarray sets (Table 1) of different
leukocyte subsets from atherogenic patients and healthy
controls were used to construct and validate our multi-
gene predictors. The first set of patients with familial
hypercholesterolemia (FH) with microarray data of
monocytes, FH1 (NCBI GEO GSE6054), was used as
our training set [8]. Familial hypercholesterolemia is a
well-known genetic disease caused by a mutation (1 out
of 500 people) in the genetic encoding for the LDL
receptor (LDLR) gene [9]. This mutation results in dra-
matically elevated risks of atherosclerosis with most
patients experiencing atherogenic complications in their
early age. FH patients have thus been frequently fol-
lowed and investigated for atherosclerosis risks and dis-
ease mechanisms. In particular, the risk of
atherosclerosis among homozygous FH patients with
two abnormal copies of the LDLR gene is increased 5-
to 10-fold from that of patients with one abnormal copy
or heterozygous FH patients. This set consists of 23 sub-
jects: 3 homozygous FH patients, 7 heterozygous FH
patients, and 13 healthy controls.
Three additional data sets of patients were obtained

and used as test sets for our multi-gene predictors. The
first test set, FH2 (NCBI GEO GSE6088), was from the

same FH patients in the training set but with microarray
data of different cell, T-lymphocytes [8]. The second test
set, FH3 (NCBI GEO GSE13985), is a completely inde-
pendent set of 10 FH patients. In this study, whole
white blood cells from five FH patients and five controls
matched in age, sex, BMI, and smoking status were used
for gene expression profiling. All patient samples in
FH1, FH2, and FH3 sets were profiled with Affymetrix
HG-U133 plus 2.0 GeneChip microarrays.
The third test set, ATHERO1 (NCBI GEO GSE9874),

was comprised of 15 patients with asymptomatic athero-
sclerosis and a family history of coronary heart disease
and 15 age- and sex-matched subjects with no athero-
sclerosis and no family history of coronary heart disease
as control [10]. Two arrays were excluded after our
initial quality control analysis. Therefore a total of 28
samples was chosen for the model test. The microarrays
were obtained from monocyte-derived macrophage cells
of these patients’ peripheral blood samples with Affyme-
trix HG-U133A GeneChips. Affymetrix HG-U133A is a
part of Affymetrix HG-U133 plus 2.0 so we chose the
common probe sets for our model construction and
data analysis.

Development of Multi-Gene Predictors of Atherosclerosis
Our model training of atherosclerosis predictors was
composed of three sequential analysis steps (Figure 1).
The first was the identification of significant differen-
tially expressed genes by comparing FH patients and
normal controls in the training set by a two sample t-
test. In order to avoid the multiple comparisons pitfall
in the high throughput biomarker discovery, we adjusted
the statistical significance by False Discovery Rate (FDR)
q-value < 0.01 [11].
In the second step, we identified a subset of the above

biomarkers known to have functions directly related to
atherosclerosis and cardiovascular diseases. Biological
functional analysis on these genes was performed by the
Ingenuity Pathway Analysis (IPA; http://www.ingenuity.
com; Redwood City, CA). Genes related to inflamma-
tion, lipid metabolism process and another metabolic

Table 1 Microarray datasets were used for atherosclerosis prediction model derivation and evaluation.

Data Set Human Blood
Cell

Function GEO ID Disease information Samples

FH1 Monocyte Training GSE6054 Familial Hypercholesterolemia 23

FH2 Circulating T cells Test GSE6088 Familial Hypercholesterolemia 23

FH3 White Blood cells Test GSE13985 Familial Hypercholesterolemia 10

ATHERO1 Macrophage Test GSE9874 Patient with subclinical atherosclerosis and a family history of coronary heart
disease

28

Four previously-published microarray sets in the NCBI GEO database (http://www.ncbi.nlm.nih.gov/geo) from different human blood cells were used to construct
and validate our prediction model. Data set FH1 was chosen and used for our multi-gene model development. The other three sets—FH2, FH3, and ATHERO1—
were used for evaluation of the atherosclerosis prediction model.

GEO web address: http://www.ncbi.nlm.nih.gov/geo/
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process (including carbohydrate protein and nucleic acid
metabolism) and hematological system developments
were selected [12,13].
The last step (Step 3) was the multivariate prediction

model construction. Microarray expression values were
first standardized within each gene for each set in order
to adjust for biased expression distributions of the four
independent data sets obtained under different experi-
mental settings. We then applied principal component
analysis (PCA) to reduce the high dimension of the
multi-gene biomarker space. Top three PCAs were cho-
sen to convey the majority (> 70%) of the information
of original genes while their loadings (or weights) reflect
the influence of the original genes.
We trained our prediction model using the linear dis-

criminant analysis (LDA) technique, a widely-used mul-
tivariate classification technique for our prediction
modeling. First, 23 human samples in the training set
were divided into a low-risk group (normal controls)
and a high-risk group (patients with familial hypercho-
lesterolemia). The LDA is then performed to obtain a
linear discriminant function for the two risk classes by
maximizing the prediction power or minimizing the

overall classification error both for false positives and
false negatives with equal weights. The output of the
prediction model is the LDA posterior probabilities of
atherosclerosis between 0 (low-risk) and 1 (high-risk).
Thus, a high predicted score (or posterior probability) of
a subject implies a high risk of atherosclerosis whereas a
low predicted score suggests a low risk of
atherosclerosis.
The performance of prediction models was evaluated

to examine if the predicted (posterior) probability of
atherosclerosis risk could statistically discriminate
patients at high risk for atherosclerosis from normal
controls in these three test sets. The statistical signifi-
cance of the difference in scores was first evaluated
using the two-sample t-test between high risk and con-
trol groups. To define an optimal cutoff value for each
predictor, a Receiver Operating Characteristic (ROC)
curve was plotted for the predicted scores of athero-
sclerosis risk and phenotype information on each set.
The cutoff value on each ROC curve was then deter-
mined by maximizing the Youden index (= sensitivity
+specificity-1) [14]. Sensitivity, specificity, positive pre-
dictive value, (PPV), and negative predictive value
(NPV) were then calculated to evaluate its prediction
performance at the optimal cutoff values.
Sensitivity, specificity, PPV, NPV were defined as

Sensitivity =
number of true positives

number of true positives + number of false negatives

Specificity =
number of true negatives

number of true negatives + number of false positives

PPV =
number of true positives

number of true positives + number of false positives

NPV =
number of true negatives

number of true negatives + number of false negatives

We also applied the COXEN algorithm, a previously
published bioinformatics technique that can identify
concordantly (expression) regulated genes between dif-
ferent cancer types [15,16] to improve our prediction on
patient sets from different cell types of leukocytes.
White blood cells (WBC) are a heterogeneous mixture
of many different cell types, each of which can present
some different expression patterns [8]. Here, we applied
this technique to identify concordantly expressed bio-
markers between different types of leukocytes. The
COXEN algorithm compared expression patterns among
candidate genes between the two sets to find concor-
dantly expressed genes between them. Figure 2 is a
schematic illustration of the COXEN algorithm by using
an artificial 5-gene probe example [15]. In this figure,

T-test (qvalue<0.01) 

FH1 Training (FH vs Ctl) 

Significant Genes (363) 

Atherosclerosis-related  
Genes (56) 

Function analysis 

Circulating T-Cell  Set FH2  
(FH vs Ctl) 

White Blood Cell Set FH3 
(FH vs Ctl) 

Macrophage Set 
(ATHRO1) 
(Athero vs Ctl) 

Model Test Concordantly expressed genes 

Model Test 

COXEN 
algorithm 

Figure 1 Schematic diagram of the atherosclerosis prediction
model construction and validation processes. Our prediction
model was developed by four distinct steps - 1) the identification of
significant genes by t-test analysis of the training set FH1, 2)
selected biomarkers known to be directly related to atherosclerosis
performed by Ingenuity Pathway Analysis, 3) (optional) selection of
COXEN biomarkers among the atherosclerosis-related gene
biomarkers obtained from the third step which led to the 48, 6, and
26 biomarkers for test set 1 (circulating T-cell), test set 2 (white
blood cell) and test set 3 (macrophage), 4) the multivariate
prediction model construction based on universal or COXEN
predictors.
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gene probes 1 and 3 in cell set 1 (e.g., the monocyte in
this paper) essentially show the same patterns as probes
1 and 3 in cell set 2 (e.g., the T-lymphocyte). That is to
say, these two probes have the same co-expression cor-
relation with other probes in these two cell sets. This
co-expression correlation is analyzed by Spearman cor-
relation. On the contrary, probes 2, 4, and 5 show differ-
ent patterns of co-expression correlation in these two
cell sets. In this example, gene probes 1 and 3 (but not
2, 4, and 5) are selected by the COXEN algorithm.
More technical details of the COXEN analysis can be
found elsewhere [15,16]. By using the COXEN algorithm
to the above monocyte-derived biomarkers (identified in
Step 2), we identified three subsets of genes from these
56 genes which showed concordant expression network
patterns between monocyte and each of T-lymphocyte,
macrophage, or whole WBC, respectively. We also
tested the predictive performance of these COXEN
genes in this paper.

Results
Identification of atherosclerosis-associated biomarkers
The initial biomarker discovery step (Step 1) identified
363 differentially expressed genes by comparing FH
patients and normal controls in the training set FH1
with q-value < 0.01 (Figure 1). The second function ana-
lysis was performed by identifying genes of which biolo-
gical functions might be closely related to
atherosclerosis using the Ingenuity Pathway Analysis
(IPA) software (Redwood City, CA). In particular, Genes
related to inflammation, lipid metabolism process and
another metabolic process and hematological system
developments were selected. This functional analysis
was necessary since differential expression of some of
the initial biomarkers might not be directly relevant to
the atherogenic disease mechanisms and only specific to
the training patient set FH1 we used. This step resulted
in 56 gene probes whose functional information is sum-
marized in Table 2.

Figure 2 A schematic illustration of COXEN algorithm by using an artificial five-probe example. Probes 1 and 3 in cell set show
essentially the same patterns as probes 1 and 3 in cell set 2. These two probes have the same co-expression correlation with other probes in
these two cell sets. On the contrary, probes 2, 4, and 5 show different patterns of co-expression correlation in these two cell sets. Therefore,
Probes 1 and 3 (but not 2, 4, and 5) will be selected by the COXEN algorithm.
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Table 2 Selected atherosclerosis related genes for model derivation.

Probes Gene_Symbol Pvalue Qvalue Fold change Predictor for test set Function

211921_x_at PTMA 8.88E-08 5.79E-04 1.47 MO/MA Inflammatory Disease

206788_s_at CBFB 2.87E-07 7.32E-04 -1.50 MO/MA Inflammatory Response

207760_s_at NCOR2 2.49E-07 7.32E-04 1.25 MA Other Metabolic Processes

218828_at PLSCR3 2.05E-07 7.32E-04 1.27 MO/WBC Other Metabolic Processes

201331_s_at STAT6 2.74E-06 2.18E-03 1.32 MO Inflammatory Response

201591_s_at NISCH 2.55E-06 2.18E-03 1.28 MO/WBC Other Metabolic Processes

205125_at PLCD1 2.19E-06 2.18E-03 1.22 MO Other Metabolic Processes

202102_s_at BRD4 3.25E-06 2.39E-03 1.41 MO/WBC Other Metabolic Processes

205059_s_at IDUA 3.94E-06 2.44E-03 1.38 MO/MA Other Metabolic Processes

212705_x_at PNPLA2 4.25E-06 2.56E-03 1.36 MO/MA Lipid Metabolism

203839_s_at TNK2 4.95E-06 2.88E-03 1.37 MO/MA Other Metabolic Processes

210969_at PKN2 5.25E-06 2.95E-03 -1.55 MO Other Metabolic Processes

207292_s_at MAPK7 5.67E-06 2.97E-03 1.23 MO Other Metabolic Processes

211716_x_at ARHGDIA 5.74E-06 2.97E-03 1.43 MO Inflammatory Disease

206580_s_at EFEMP2 6.76E-06 3.24E-03 1.35 MO Inflammatory Disease

202389_s_at HTT 7.10E-06 3.25E-03 1.17 WBC Lipid Metabolism

218961_s_at PNKP 7.00E-06 3.25E-03 1.22 MO Other Metabolic Processes

1555214_a_at CLEC7A 7.61E-06 3.44E-03 -1.89 MO Inflammatory Response

220088_at C5AR1 8.96E-06 3.56E-03 1.32 MO Inflammatory Response

204506_at PPP3R1 /WDR92 1.01E-05 3.87E-03 -1.51 MO/MA Other Metabolic Processes

202848_s_at GRK6 1.25E-05 4.08E-03 1.13 MO Inflammatory Response

204524_at PDPK1 1.42E-05 4.25E-03 1.36 MO Other Metabolic Processes

211537_x_at MAP3K7 1.55E-05 4.25E-03 -1.28 MO/MA Inflammatory Response

224883_at PLDN 1.57E-05 4.25E-03 -1.27 MO Inflammatory Response

205926_at IL27RA 1.70E-05 4.30E-03 1.75 MO/MA Inflammatory Response

202264_s_at TOMM40 1.90E-05 4.51E-03 1.24 MO/MA Inflammatory Response

210995_s_at TRIM23 1.91E-05 4.51E-03 -1.67 MO/MA Other Metabolic Processes

210809_s_at POSTN 1.98E-05 4.60E-03 1.19 MO Inflammatory Disease

207904_s_at LNPEP 2.08E-05 4.73E-03 -1.60 MO/MA Other Metabolic Processes

226111_s_at ZNF385A 2.29E-05 4.95E-03 1.40 MO Hematological System Development and Function

205400_at WAS 2.68E-05 5.31E-03 1.48 MO/MA Lipid Metabolism

203709_at PHKG2 2.87E-05 5.57E-03 1.21 MA Other Metabolic Processes

209812_x_at CASP2 3.02E-05 5.72E-03 -1.26 MO Lipid Metabolism

221957_at PDK3 3.48E-05 6.13E-03 -1.34 MO/MA Other Metabolic Processes

1557145_at STK38 3.61E-05 6.15E-03 -1.50 Other Metabolic Processes

217888_s_at ARFGAP1 3.69E-05 6.18E-03 1.19 MO Inflammatory Disease

204158_s_at TCIRG1 3.98E-05 6.35E-03 1.28 Immunological Disease

204150_at STAB1 4.16E-05 6.47E-03 1.46 Inflammatory Response

36936_at TSTA3 4.17E-05 6.47E-03 1.16 MO/MA Carbohydrate Metabolism

211652_s_at LBP 4.51E-05 6.57E-03 1.20 MO Lipid Metabolism

225647_s_at CTSC 4.74E-05 6.80E-03 -1.36 MO Inflammatory Disease

200604_s_at PRKAR1A 6.14E-05 7.77E-03 -1.54 MO/MA Other Metabolic Processes

202804_at ABCC1 6.52E-05 7.80E-03 1.15 MO Lipid Metabolism

221563_at DUSP10 6.60E-05 7.82E-03 -1.26 MO Other Metabolic Processes

207240_s_at LHCGR 7.14E-05 8.15E-03 1.09 Carbohydrate Metabolism

206217_at EDA 7.32E-05 8.21E-03 1.32 MO/MA Other Metabolic Processes

208867_s_at CSNK1A1 7.69E-05 8.34E-03 -1.39 MA Other Metabolic Processes

221770_at RPE 8.05E-05 8.40E-03 -1.29 MO/WBC/MA Carbohydrate Metabolism

207319_s_at CDC2L5 8.46E-05 8.70E-03 -1.59 MO/MA Hematological System Development and Function

207764_s_at HIPK3 9.28E-05 9.18E-03 -1.57 MO/MA Other Metabolic Processes

209532_at PLAA 9.57E-05 9.33E-03 -1.19 MO Lipid Metabolism
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Independent Evaluation of Atherosclerosis Risk Prediction
for Test Sets
Broad predictive information of these genes could be
found in a standard hierarchical clustering analysis
using the so-called McQuitty’s or WPGMA algorithm
which is known to be robust with highly varying sizes of
clusters by using the average distance between clusters

weighted by uneven cluster sizes. We performed a clus-
tering analysis of the 56 biomarkers on one test data-
set—FH2—by standardizing (subtracted by its mean and
divided by its standard deviation) each gene’s expression
values across all patient samples (Figure 3). This cluster-
ing heatmap showed that all but two FH patients clus-
tered into their respective groups. These 56 genes were
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Figure 3 Clustering Analysis of 56 genetic biomarkers for test set FH2. Test set FH2 was standardized (subtracted by its mean and divided
by its standard deviation) for each gene and a hierarchical clustering analysis was performed on this set. McQuitty’s or WPGMA method, which
uses the average distance between clusters weighted by uneven cluster sizes, was used. Three functional subclusters of the 56 biomarkers were
identified by examining common biological functions of these gene subclusters by the function annotation tool in DAVID database (http://david.
abcc.ncifcrf.gov).

Table 2 Selected atherosclerosis related genes for model derivation. (Continued)

210333_at NR5A1 9.76E-05 9.43E-03 1.37 MO/WBC/MA Hematological System Development and Function

205546_s_at TYK2 1.02E-04 9.67E-03 1.16 MO Inflammatory Response

207201_s_at SLC22A1 1.10E-04 9.97E-03 1.33 MO/MA Other Metabolic Processes

213733_at MYO1F 1.11E-04 1.00E-02 1.15 Inflammatory Response

214971_s_at ST6GAL1 1.11E-04 1.00E-02 -1.46 MO/MA Inflammatory Response

These genes were identified by t-test, biological function analysis and COXEN algorithm

MO: Monocyte (Test set1); WBC: White blood cell (Test set2); MA: Macrophage (Test set3)
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also found to be well clustered into three sub-functional
categories: biological regulation, localization, and meta-
bolic process.
We independently evaluated the performance of our

56-gene predictor of T-cells on the FH2 set (Table 3). To
examine the distributional differences of the predicted
scores among 3 homozygous FH patients, 7 heterozygous
FH patients and 13 normal controls in FH2 data set, the
predicted scores of the two groups were plotted (Figure
4). We also compared predicted scores between the high-
risk group (FH patients) and low-risk group (controls) by
the Student’s two-sample t-test. The predicted scores of
the control (low-risk) group were significantly lower than

those of the FH patient (high-risk) group (p = 0.01).
Furthermore, the predicted scores of homozygous FH
patients with a higher risk of atherosclerosis were found
to be considerably higher than those of heterozygote FH
patients who generally show a lower risk of atherosclero-
sis. The high- and low-risk groups could be well distin-
guished at the optimal cutoff value in the ROC analysis
by maximizing the Youden index (with sensitivity =
70.0% and specificity = 92.3%). Thus, the 56-gene
COXEN predictor for T-lymphocytes significantly strati-
fied the two different risk groups of atherosclerosis.
In the next application, we used another independent

patient dataset FH3 of total white blood cells to test the

Table 3 Prediction Results for three test sets.

No. of genes for prediction T-test (P-value) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Youden index

56 gene model

FH2 56 0.011 70.0 84.6 77.8 78.6 0.55

FH3 56 0.010 80.0 100 100 0.83 0.8

ATHRO1 56 0.019 71.4 71.4 71.4 71.4 0.43

COXEN model

48 0.0024 70.0 92.3 87.5 80.0 0.62

6 1.5e-10 100 100.0 100.0 100 1.00

25 0.010 78.6 66.7 68.8 76.9 0.45

Data sets FH2, FH3, and ATHERO1 were used to evaluate the classification performance of our atherosclerosis prediction model. We tested if the predicted risk
of atherosclerosis could statistically discriminate familial hypercholesterolemia or general atherosclerosis patients with normal people in these test sets. The
statistical significance of the difference in predicted scores (COXEN SCORE) was evaluated using the two-sample t-test between patients and normal groups.
Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were also calculated.

Figure 4 Prediction results of the data set FH2 using universal and COXEN predictors. Comparison of LDA probabilities of Familial
Hypercholesterolemia (FH) patients and control people in data set FH2. Normal controls, homozygous and heterozygous FH patients are labeled
with dots, empty and filled triangles respectively. The statistical significance (p-value) of the set of predictions was assessed by a two sample t-
test.
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predictability of the same 56-gene model for WBC. This
small cohort consisted of 5 FH patient and 5 healthy
controls. As shown in Figure 5, this 56-gene predictor
was also able to significantly discriminate the two
groups showing predicted scores of the FH patients sig-
nificantly higher than those of the controls (two sample
t-test p-value = 0.01, Table 3) with perfect classification
specificity = 1 and sensitivity = 1 at the Youden cutoff
value for this small set.
We next applied the identical 56-gene predictor to the

ATHERO1 set of asymptomatic atherosclerosis patients.
This set included 28 blood macrophage samples from
14 patients confirmed with asymptotic atherosclerosis
and 14 healthy controls, both groups with a family his-
tory of coronary artery disease. In particular, 14 patients
were diagnosed with atherosclerosis by CTA but they
had not shown any clinical symptoms with little clinical
difference from the control subjects with a family his-
tory of CAD. Therefore, this stratification was challen-
ging and we believe it could be similar to difficult cases
of diagnosis in clinics.
Using the prediction model of these 56 biomarkers on

FH1, we tested this multi-gene predictor on macrophage
cell data for predicting the risk of asymptomatic athero-
sclerosis. As shown in Figure 6, the predicted scores of
asymptomatic atherosclerosis patients were significantly
higher than those of the controls (t-test p-value = 0.02,
Table 3). This result was again quite encouraging indi-
cating that our multi-gene model could provide the pre-
dictability for asymptomatic atherosclerosis patients.

COXEN applications
While our universal 56-gene model showed consistent
prediction performance on the three independent test
sets, we further investigated whether these predictions
could be improved by using biomarkers that preserved
highly concordant expression patterns between different
cell types of leukocytes. In particular, we used the
COXEN algorithm originally developed to discover con-
cordant expression biomarkers between cancer cell lines
and human patients with cancer. Applying the COXEN
algorithm, we identified 48, 6, and 25 genes (among
these 56 genes) that preserved highly concordant gene
expression patterns between patient sets FH1 and FH2,
FH1 and FH3, or FH1 and ATHERO1, respectively, with
a Pearson correlation association p-value < 0.001 (Table
2).
The number of COXEN genes generally reflects the

similarities between two data sets. FH1 and FH2 were
found to share the most concordantly expressed genes
(48 genes among 56) since these two data sets were
obtained from the same set of patients. For the other
two data sets, the ATHERO1 set from macrophages was
found to result in more COXEN genes (25 genes among
56) that were concordantly expressed with those of the
FH1 monocyte set than the WBC FH3 set (6 among
56). Thus, macrophage cells appeared to preserve many
common gene expression patterns with monocyte cells.
On the contrary, WBC, which is a mixture of different
cell types, showed less consistent gene expression pat-
terns with monocytes than the other two sets. As shown

Figure 5 Prediction results of the data set FH3 using universal and COXEN predictors. Comparison of LDA probabilities of FH patients and
healthy controls in FH3. The statistical significance (p-value) of the set of predictions was assessed by a two sample t-test.
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in Table 3 these COXEN predictors provided even bet-
ter prediction results. The three COXEN biomarker pre-
dictors showed very significant t-test p-values for
stratifying high risk patients from controls to 0.0024,
1.5e-10, and 0.01, respectively. Thus, the COXEN pre-
dictors showed considerable improvement from the uni-
versal prediction model.
Gene function analysis by the IPA software (Redwood

City, CA) showed 6 of 48 biomarkers of T-lymphocyte
cells were directly related to leukocyte activation and a
change in morphology and behavior of a leukocyte
including lipopolysaccharide binding protein (LBP),
interleukin 27 receptor, alpha (IL27RA), mitogen-acti-
vated protein kinase kinase kinase 7 (MAP3K7), pallidin
homolog (PLDN), signal transducer and activator of
transcription 6, interleukin-4 induced (STAT6) and C-
type lectin domain family 7, member A (CLEC7A). This
clearly implied that T-lymphocyte activation was
involved in atherogenesis. 6 genes selected for white
blood cell FH3 prediction were phospholipid scramblase
3 (PLSCR3), nischarin (NISCH), bromodomain contain-
ing 4 (BRD4), huntingtin (HTT), ribulose-5-phosphate-
3-epimerase (RPE) and nuclear receptor subfamily 5,
group A, member 1 (NR5A1). Also, the 6 biomarkers
were the phosphoproteins of which phosphate groups
regulate protein functions by esterifying to serine, threo-
nine or tyrosine. In particular, NR5A1 is known to be a
nuclear receptor that regulates the transcription of

many genes involved in atherogenesis and PLSCR3 has
been proved to be related to atherosclerosis develop-
ment by animal studies [17].

Discussion
In this study, we developed multi-gene biomarker mod-
els to predict early-stage (asymptomatic) atherosclerosis
based on different types of leukocytes. In particular, we
have shown a proof-of-concept strategy to predict
asymptomatic atherosclerosis by using molecular bio-
markers from peripheral blood samples, and the exis-
tence of common molecular expression signatures of
atherogenic risks across different cell types of WBC. We
believe these predictions were possible due to several
reasons. First, gene expression signatures from patient
blood samples appear to have a high potential to predict
atherosclerosis in its early stage since certain molecular
changes in blood cells may occur much before the pla-
que development or serious clinical symptoms. Second,
a genome-wide microarray technique enabled us to
comprehensibly identify relevant molecular expression
signatures of atherogenic risks beyond the information
obtained from standard clinical parameters. We also
believe our multi-gene predictors could predict the risk
of atherosclerosis more accurately than predictors based
on single biomarkers or a small number of clinical para-
meters. Finally, we found many biomarkers of athero-
sclerosis shared consistent expression patterns across

Figure 6 Prediction results of the data set ATHERO1 using universal and COXEN predictors. Comparison of LDA probabilities of patient
with subclinical atherosclerosis and a family history of coronary heart disease (CHD) and the age and sex-matched subjects with no
atherosclerosis and no family history of CHD (control group). The statistical significance (p-value) of the set of predictions was assessed by a two
sample t-test.
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different leukocyte subsets. It will be interesting to
further investigate these common biomarkers for their
specific roles in the disease.
We note that FH1 and FH2 were from the identical set

of familial hyperglycemia patients and healthy controls,
and possibly that our significant prediction on FH2 is
correlated with the use of the identical patient set. How-
ever, we believe that our significant prediction on FH2 is
not mainly due to the use of the same patient set for the
following reasons. First, the molecular data of the two
sets were from completely different immune cells—FH1
from monocytes and FH2 from circulating T cells. Since
our biomarker discovery and predictive modeling were
performed strictly based on monocyte cells of the FH1
set, FH2 is independent of FH1 for its molecular charac-
teristics and data. Second, we observed that our identical
prediction model performed considerably better for
white blood samples on FH3, a completely independent
set of FH patients and controls from the FH1 set. We
think this was due to the fact that monocytes are partially
included in white blood cells so our monocyte-based pre-
dictor presented a better predictability for that set.
Therefore, the common molecular information appears
to be more important than the use of specific patient set
for our training and prediction.
We believe our approach can be highly useful for clin-

ical diagnosis of atherosclerosis for the following rea-
sons. First, we used molecular signatures from patients’
blood samples that can be conveniently obtained in rou-
tine clinical practice. Second, we found that molecular
signatures of atherogenic risks exist and are commonly
shared among different types of leukocytes so we may
be able to choose and further refine diagnosis tests
based on one or multiple types depending on their accu-
racy and clinical applicability. For example, clinical data
showed that monocyte cells are involved in very early
pathogenetic stages of atherosclerosis [18]. In particular,
when atherosclerosis plaques (or foam cells) are differ-
entiated from monocytes recruited from circulating
blood, critical molecular changes appear to occur much
before any clinical symptoms of atherosclerosis. Thus, a
molecular test based on blood monocyte cells may serve
as an effective diagnosis tool for an early stage of ather-
osclerosis. Also, as seen in several patient data sets we
investigated here, microarray profiling of a small amount
of blood cells can now be efficiently and cost-effectively
performed so its use becomes quite practical for clinical
applications as well as scientific investigations. However,
once final biomarkers and prediction models are identi-
fied and finalized, diagnosis tests and assays can also be
developed with more economic and convenient techni-
ques such as RT-PCR.
There are several limitations in our current study.

First, our primary biomarker discovery and prediction

model training were performed by contrasting familial
hypercholesterolemia patients against healthy controls.
Likely due to this restriction, our prediction was better
in stratifying FH patients from healthy controls than
general subclinical atherosclerosis patients. When we
reversed the role of training and test sets in our preli-
minary analysis, i.e. used the subclinical atherosclerosis
patient set for model training and FH patient sets for
independent model test, the prediction results were gen-
erally deteriorated, possibly due to the small sample size
of the subclinical atherosclerosis patient set (data not
shown). Questions regarding whether predictors can
perform significantly better if they are trained based on
the same disease type of patients and/or same subtype
of blood cells requires more careful investigation with a
larger number of patient data in a future study. Also, we
found that COXEN biomarker discovery and modeling
training based on monocyte data was more successful to
predict risks based on other cell types than other direc-
tions, e.g. T-cell data for training to predict the others.
It may be due to the data quality or biological informa-
tion in the monocyte data which requires further
investigation.
Even though we did not use patients’ outcome infor-

mation in our COXEN-based predictions, we partially
used the molecular information of our test patient data
sets in the current study. A more rigorous prediction
performance of these predictors should thus be further
evaluated using a third patient set from the same cell
type of leukocytes. Our current predictors were con-
structed solely based on molecular data due to the lack
of patients’ other clinical information in our datasets.
However, we believe additional predictive information
can be obtained from many clinical parameters of
patients such as age, gender [19], LDL level, HDL level,
apolipoproteins or triglyceride level. Also one of the
keys to enhancing the success rate by the prediction
model in the future is that “six stages of atherosclerotic
lesion” were used to construct the model, rather than
only using “0” or “1” to represent the atherogenic risk of
the atherosclerosis patients. If relevant clinical data are
available for our model development, we believe predic-
tion of atherogenic risks can be further improved by
constructing models both with molecular and clinical
parameters.

Conclusion
We discovered 56 atherosclerosis-related expression bio-
markers which showed significant differential expression
between genome-wide microarray data of monocytes
from patients with familial hyperlipidemia and increased
risk of atherosclerosis compared to normal controls.
Based on these biomarkers, we developed our multi-
gene biomarker model that could predict early-stage
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(asymptomatic) atherosclerosis across different types of
leukocytes. We also applied a COXEN algorithm to
identify concordantly expressed biomarkers between
monocytes and each of three different cell types of leu-
kocytes—macrophage, circulating T, and whole white
blood cells. We then developed three separate multi-
gene predictors using the three subsets of these 56 bio-
markers using the monocyte patient data as the training
set. These individual predictors showed further
improved statistical power for predicting early-stage
atherosclerosis. We thus believe these predictors can be
quite useful for developing diagnostic tools for patients
who are at an increased risk of cardiovascular disease.
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