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Abstract

Background: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic
effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation
text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical
treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles.

Methods: We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and
derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested
for significant differential expression (SDE) (false discovery rate -corrected p-values < 0.05) of the next-gen TM-derived
gene sets and the CTD-derived gene sets in gene expression (GE) data sets of five chemicals (from experimental
models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA)
knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen
TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets
associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture
(WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals.

Results: Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data
sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen
TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None
of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene
sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the
triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals.

Conclusions: Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method
for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action
and/or toxic effect.
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Background
In toxicogenomics, gene and protein activity within a
particular cell or tissue of an organism in response to
toxicants is studied with the aim to predict in vivo
effects from in vitro models. The assumption that simi-
lar gene expression profiles dictate similar physiological
responses underlies the use of gene expression profiling
in toxicogenomics to discern the toxicological properties
of a chemical entity. Connectivity mapping is a promis-
ing method, based on gene-expression similarity, that
can be applied to toxicogenomic data to understand
mechanisms of toxicity (for a recent review see [1]). In
essence, toxicological properties of a chemical entity are
discerned by connecting a query gene signature gener-
ated as a result of exposure of a biological system (whole
animal, tissue or cell line) to the chemical, to other,
already known, chemical entities via a database of chem-
ical compound reference gene expression signatures
(pioneered in [2]). In contrast to gene expression
data repositories such as Chemical Effects in Biological
Systems Knowledge Base (http://www.niehs.nih.gov/
research/resources/databases/cebs/) that contains data
from different laboratories running different experimen-
tal platforms on different biological samples, the data in
a reference gene expression signature database comes
from systematic screening of chemical compounds
against specific cell lines simulating biological condi-
tions. Unfortunately, building such a reference gene
expression signature database with many different cell
types and compound concentrations represented is not
easily feasible due to high costs and long development
time [3]. For example, in the case of the Connecti-
vity Map (cMap) (http://www.broadinstitute.org/cmap/),
which is the largest public reference gene expression sig-
nature database (7,000 expression profiles representing
1,309 compounds), not all small molecules were tested
in every cell model, and not all were tested across the
same spectrum of concentrations. Moreover, how to best
interpret the result of a query is still an open question.
As an alternative to such reference databases of gene

expression signatures, genes could be annotated to a
chemical response through text mining (TM) techni-
ques. Text mining is the use of automated methods for
exploiting the enormous amount of information avail-
able in the biomedical literature. Next-generation text
mining (next-gen TM) refers to knowledge discovery
based on concept profile matching (see section "Next-
gen TM for chemical-gene associations"), in comparison
to first-generation text mining where associations are
extracted purely from concept co-occurrence. The bio-
medical literature contains information about small
molecules that is not currently stored in gene expression
databases, and this information could be used to build
chemical response-specific signatures. For example,
searching the biomedical literature database PubMed
(http://www.ncbi.nlm.nih.gov/pubmed/) with the CAS
number and substance name search string “79983-71-4
OR hexaconazole” results in 69 entries, while no infor-
mation about the chemical can be found in the CEBS
Knowledge Base or cMap (search performed Nov 21,
2011). In addition, next-gen TM-derived chemical
response-specific signatures would not be specific to a
certain biological system or compound concentration,
and might therefore provide a less biased view on com-
pound action than standard connectivity maps. Given a
gene expression experiment where a biological system
has been exposed to a chemical, these next-gen TM-gen-
erated chemical response-specific signatures could then
be tested against the gene expression data set using gene
set analysis (GSA) methods [4] that utilize statistic tests
suitable for this purpose. The test would produce a rank-
ing of chemicals in a way similar to the results from a
connectivity-mapping query, with the difference that the
chemicals are represented by gene sets derived from the
literature instead of gene expression signatures from a
reference database. Gene set analysis has fast become
one of the standard methods in bioinformatics, and
there are many tools available (for a review of tools, see
[5]). Most GSA tools provide gene sets based on the
Gene Ontology (GO) [6], with only a few providing add-
itional sources of gene sets such as metabolic pathways,
protein domains, disease associations, tissue expres-
sion, transcription factors sequence motifs, miRNA
sequences, drug-gene associations [5] and toxicologically
relevant gene sets (Boorsma et al., submitted). We
hypothesize that more gene sets can be created by next-
gen TM, and that these can be used with GSA methods
for chemical treatment identification, for pharmaco-
logical mechanism elucidation, and for comparing com-
pound toxicity profiles.
GSA with literature-derived chemical response-specific

gene sets has been used before to relate chemical struc-
tures to gene expression patterns in microarray experi-
ments. Minguez et al. [7] used their tool MarmiteScan
to associate chemicals with the characteristics of acute
myeloid leukemia cell differentiation. However, there is
no information about the size and scope of the chemical
dictionary they used to mine the literature and their
gene sets are not separately available, thus forcing the
researcher to use their GSA method. There is also no
possibility to test a sub-set of the gene sets, for example
only those that are relevant for evaluation of develop-
mental toxicity. In contrast, we provide chemical
response-specific gene sets that can be used with any
GSA tool that allows for user-supplied gene sets. Patel
and Butte [3] used the hypergeometric test to associate
gene sets derived from curated chemical-gene interac-
tions from > 4,000 chemicals in the Comparative
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Toxicogenomics Database (CTD) [8] with six gene
expression data sets selected based on their diversity
with respect to species, chemical exposure and cell type.
Manual curation of chemical-gene interactions from
publications is a very time-consuming process producing
high-quality information but with limited coverage,
reflected by the number of chemicals that Patel and
Butte could create gene sets for (1338 chemicals). CTD's
chemical dictionary is a modified subset of descriptors
from the “Chemicals and Drugs” category and Supple-
mentary Concept Records from the U.S. National
Library of Medicine (NLM) Medical Subject Headings, a
hierarchical vocabulary used to index PubMed articles
containing > 100 000 chemicals. We aim to increase the
number of chemicals that can be annotated with genes by
using next-gen TM instead of manual curation. Jelier et al.
[9] used the weighted global test, with weights based on
drug-gene associations generated from next-gen TM, to
associate known peroxisome proliferator-activated receptor
alpha (PPARalpha) agonists with the gene expression differ-
ences between PPARalpha-null and wild-type mice exposed
to the fibrate WY14643. Although Jelier et al. demon-
strated the usefulness and performed extensive evaluation
of the next-gen TM technology for gene set testing, its reli-
ability still remains to be investigated by evaluating other
chemical classes than drugs and considering a wider range
of gene expression data sets using other GSA methods; this
validation is one of the aims of the present study.
According to a predefined procedure which avoids re-

searcher bias we generated gene sets using next-gen TM
technology, and tested these gene sets using three differ-
ent GSA tools: ToxProfiler (Boorsma et al., submitted;
http://ntc.voeding.tno.nl/toxprofiler_test/), which imple-
ments the unpaired t-test to score the difference in gene
expression between the genes from a pre-defined gene
set and the remainder of the genes, the weighted glo-
bal test (http://www.bioconductor.org/packages/release/
bioc/html/globaltest.html), which implements a regres-
sion model where the gene expression measurements
correspond to the covariates and the phenotype corre-
sponds to the response, and GeneCodis (http://genecodis.
dacya.ucm.es), which implements the hypergeometric test
for gene set over-representation in a list of differentially
expressed genes with respect to a reference gene list.
Hereby we would like to show that the usefulness of next-
gen TM-based gene sets is not tied to a specific GSA
method. To show the versatility of data for which the
technology is applicable, we test our next-gen TM-based
gene sets with the GSA tools in three different case stud-
ies. The first study focuses on identification of the chem-
ical treatment, the second on pharmacological mechanism
elucidation, and the third on compound toxicity profile
comparison. We name these case studies 1, 2 and 3 in the
rest of this paper.
Case study 1 comprises the same gene expression
experiments used by Patel and Butte [3], as mentioned
earlier. We aim to compare the performance of CTD-
based gene sets with next-gen TM-based gene sets in
predicting the particular chemical treatment response.
In case study 2 we analyze the gene expression experi-
ment used by Jelier and coworkers [9], as mentioned
earlier. For this case study, we aim to predict the PPAR-
alpha agonism characteristic of fibrates. Fibrates have a
profound pharmacological response with well-defined
molecular toxicological properties, and constitute a clear
test case in which both methods (CTD, next-gen TM)
together with different gene-set testing approaches (Tox-
Profiler, weighed global test, GeneCodis) should perform
well. To compare our approach to connectivity mapping,
we compare the results from the GSA tools with the
results from the cMap. Since case study 2 is focused on
associating drugs with a gene expression profile and
cMap contains mainly drugs, this case study was consid-
ered an appropriate choice for which to include a com-
parison with cMap. In case study 3, we demonstrate the
power of the next-gen TM-based gene sets to link che-
micals with similar gene expression response, where the
manually curated gene sets from the CTD fail due to
lacking chemical-gene annotations. We do this by ana-
lyzing a recently published in vitro gene expression data
set on three chemicals belonging to the triazole class of
developmental toxicants [10] with the aim to find che-
micals with known, or unknown (to our knowledge),
links to the class. Using next-gen TM, we make chemical
response-specific gene sets for the chemicals contained
in the ToxRefDB_DevTox database (http://www.epa.gov/
ncct/toxrefdb/) [11] and link these gene sets to the data
set for the triazoles. For the same gene expression data
set we show that next-gen TM-derived gene sets also
can be used for other purposes than chemical similarity
matching. As an example, gene sets associated with em-
bryonic structures are used to discriminate triazoles
from other developmental toxicants, and from non-
developmental toxicants.

Methods
Associating chemicals with genes in the literature
Next-gen TM for chemical-gene associations
The next-gen TM-based gene sets were compiled based
on a literature-derived matching score for the chemical-
gene association. The technology uses the vector space
model to relate two concepts (such as chemicals and
genes) to each other [12]. Concepts originated from a
thesaurus (see section “Thesaurus”) that contains terms
referring to biomedical and chemical concepts, and a list
of term synonyms. The vector space model yields a
measure of the strength of the association through the
matching score determined by the cosine of the angle
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between the two concept vectors [12]. We call the vec-
tors “concept profiles”. More precisely, a concept profile
is a list of concepts with for every concept a weight to indi-
cate its association to the root concept, based on concept
co-occurrence statistics from the scientific literature data-
base PubMed (http://www.ncbi.nlm.nih.gov/pubmed). A
total of 13,834,150 PubMed IDs from January 1, 1980 to
January 6, 2011 were used to build the concept profiles
(PubMed IDs referring to experiments used in the case
studies in this work were excluded). The co-occurrence sta-
tistics were calculated as follows. Peregrine (https://trac.
nbic.nl/data-mining/), a software that performs thesaurus-
based indexing and disambiguation of concepts in text, was
used together with the thesaurus to identify concepts in
PubMed records. Stop words were removed and words
were stemmed to their uninflected form by the lexical vari-
ant generator (LVG) normalizer (http://lexsrv3.nlm.nih.
gov/LexSysGroup/Projects/lvg/current/docs/userDoc/tools/
norm.html). For all concepts except genes the PubMed
records were comprised of the texts in which the concept
was mentioned (titles, abstracts and Medical Subject Head-
ings). For genes only a subset of PubMed records were used
in order to limit the impact of ambiguous terms and distant
homologs. Gene Ontology (GO) terms are sometimes given
as words or phrases that are infrequently found in the nor-
mal texts. To still provide broad coverage of GO terms, the
PubMed records that were used as evidence for annotating
genes with this GO term were added. For every concept in
the thesaurus that was associated to at least five PubMed
records, a concept profile was created. This concept profile
is thus in reality a vector containing all concepts associated
with the root concept by direct co-occurrence, weighted by
the symmetric uncertainly coefficient [12]. The top 200
concepts in a concept profile were used when calculating
the matching scores. To make the gene sets we used a con-
cept profile matching score cut-off of 1e-04 [9] in combin-
ation with a maximum of 1000 gene associations per
chemical. To allow for comparison between the CTD-
based and next-gen TM-based gene sets, only chemicals
with Chemical Abstract Service (CAS) numbers were
included. Using these restrictions, we were able to create
30,211 chemical response-specific gene sets for mouse and
human.

Thesaurus creation
The thesaurus was composed of four parts: the 2010AB
version of Unified Medical Language System (UMLS)
(http://www.nlm.nih.gov/research/umls/), a gene the-
saurus derived from multiple databases [13]), a chemical
thesaurus derived from multiple databases [14], and a
toxicology thesaurus derived from the International
Union of Pure and Applied Chemistry (IUPAC) glossary
of terms used in toxicology (http://sis.nlm.nih.gov/
enviro/iupacglossary/frontmatter.html). For each part,
we gather the synonyms and the definition for each
concept. We then execute a number of rewriting and
suppression rules based on term structure [13,14], and
perform a manual analysis step of the top 250 frequent
terms from a PubMed-indexation using Peregrine. Next,
terms in the thesaurus are checked for in-thesaurus
homonyms, and the 250 terms with the most homonyms
are inspected manually for removal. When forming the
master thesaurus, the UMLS, gene, chemical and toxicity
thesauri are merged based on term overlap and patterns
for recognizing gene and protein names [13]. The differ-
ent steps are performed by a series of coupled java
scripts.

Processing the CTD for chemical-gene associations
The CTD includes manually curated cross-species inter-
actions between chemicals, genes, and diseases. CTD
specifically targets individual chemicals for curation
from a priority list; in addition, CTD also incidentally
curates all interactions appearing in individual articles ir-
respective of whether they happen to have been targeted.
We downloaded the chemical–gene interaction database
from the CTD on January 6, 2011. The database con-
tained 266,266 interactions in total. After filtering for H.
sapiens and M. musculus (the two species included in
the gene expression experiments used in this paper),
185,792 interactions remained. Neither the nature nor
the curation level of the chemicals were taken into
account. All different gene interactions with a specific
chemical were regarded as associations, and summarized
into one chemical response-specific gene set. During this
step, all interactions based on any of the gene expression
experiments used in the case studies in this work were
removed. From the single chemical-gene associations in
the CTD, we created gene sets with at least five genes
(similar to Patel and Butte [3]) per chemical. For every
chemical-gene association, CTD provides the CAS num-
ber for the chemical (if available), the Entrez Gene ID
for the gene, and the PubMed ID and organism for
which the association was reported. When filtering for
chemicals with a CAS number and restricting the organ-
isms to human and mouse we were able to make a total
of 1,189 (H. sapiens) and 588 (M. musculus) gene sets.
Sometimes in the CTD, H. sapiens Entrez Gene IDs are
incorrectly annotated to M. musculus. These H. sapiens
Entrez Gene IDs were mapped to M. musculus Entrez
Gene IDs using the Homologene database (http://www.
ncbi.nlm.nih.gov/homologene).

Tools selection
We selected three different GSA tools that all allow for
user-supplied gene sets but implement different statis-
tical tests. 1) ToxProfiler, which implements the un-
paired t-test to score the difference in gene expression
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between the genes from a pre-defined gene set and the
remainder of the genes [15]. 2) The weighted version of
the global test [16], which implements a regression
model where the gene expression measurements corres-
pond to the covariates and the phenotype corresponds
to the response. In the weighted global test the next-gen
TM-derived matching scores are used to weigh the con-
tribution of each gene in a gene set to the test [9]. 3)
GeneCodis [17], where biological annotations, or rela-
tionships among annotations based on co-occurrence
patterns, are tested for over-representation in a list of
differentially expressed genes with respect to a reference
gene list using the hypergeometric test or the chi-square
test. ToxProfiler and the weighted global test do not
require a pre-selection of differentially expressed genes
while GeneCodis does require such a list. For all tools,
p-values were corrected for multiple testing using
the False Discovery Rate (FDR) [18], and corrected
p-values < 0.05 were considered significant.
In case study 2 we use the text-mining tool Anni

(http://www.biosemantics.org/anni) [12] to explore the
relevance of the top significant results on a biological
process level. Anni is based on the same concept profile
technology that was used to generate the next-gen TM-
based gene sets, and provides direct links to the litera-
ture for the produced annotations.

Gene expression microarray data sets selection and
pre-processing
Gene expression profiling of Bisphenol A effects on human
Ishikawa cells (GEO accession number: GSE17624, set short
name: BPA)
The aim of the BPA study was to provide a comprehen-
sive evaluation of changes in gene expression during
treatment with Bisphenol A in vitro, and the study was
performed using five doses at three different time points
with four replicates each [19]. RNA was hybridized on
an Affymetrix Human Genome U133 Plus 2.0 Array. For
this study, we used the high dosed (10 nM) cells at
48 hours (four treated samples and four control
samples).

Gene expression profiling of 17 beta-Estradiol effects on
human MCF7 breast cancer cells (GEO accession number:
GSE11352, set short name: ESThsa)
The aim of the ESThsa study was to identify 17 beta-
Estradiol responsive genes in the estrogen-receptor posi-
tive breast cancer cell line, MCF7 [20]. MCF7 cells were
exposed to 10 nM Estradiol (or vehicle only) at 12, 24, and
48 hours. Each time point was performed in triplicate.
RNA was hybridized on an Affymetrix Human Genome
U133 Plus 2.0 Array. For this study, we used only the sam-
ples from 24 hours with their corresponding controls
(three treated samples and three control samples).
Gene expression profiling of 17 beta-Estradiol effects on
mouse thymus (GEO accession number: GSE2889, set short
name: ESTmmu)
The aim of the ESTmmu study was to compare the
effects of Estradiol and its analog Genistein on mouse
thymus [21]. Control samples were from the mice that
were untreated (day 0). Two treatments (Estradiol injec-
tion and Genistein diet) and three time points were
studied. Two replicated samples at each time point and
each treatment were collected. RNA was hybridized on
an Affymetrix Mouse Expression 430A Array. For this
study, we used only the samples from the mice treated
with Estradiol (day 2) and their corresponding controls
(two treated samples and two control samples).

Gene expression profiling of 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) effects on mouse liver (GEO accession
number: GSE10082, set short name: TCDD)
The aim of the TCDD study was to map the complete
spectrum of aryl hydrocarbon receptor (Ahr) dependent
genes in male adult liver by contrasting mRNA profiles
of Ahr-null mice (Ahr−/−) with those in mice with wild-
type Ahr (Ahr+/+) [22]. Transcript profiles were deter-
mined both in untreated mice and in mice treated 19 h
earlier with 1000 μg/kg TCDD. RNA was hybridized on
an Affymetrix Mouse Genome 430 2.0 Array. For this
study, we used only the data from the wild-type mice
(six treated samples and five control samples).

Gene expression profiling of 1alpha,25-Dihydroxyvitamin
D3 (VitD3) effects on bronchial smooth muscle cells (GEO
accession number: GSE5145, set shortname: VitD3)
The aim of the VitD3 study was to study gene regulation
in bronchial smooth muscle cells following VitD3 stimu-
lation [23]. The cells were from the same patient in all
hybridization. Cells were treated for 24 hours with 100
nM of VitD3 or with the same concentration of vehicle
(ethanol at 0.05%). The experiment was done in tripli-
cates and a total of six samples (three treated and three
control) were analyzed. RNA was hybridized on an Affy-
metrix Human Genome U133 Plus 2.0 Array.

Gene expression profiling of zinc sulfate (ZnSO4) effects on
human bronchial epithelial cells (GEO accession number:
GSE2111, set short name: ZnSO4)
The aim of the ZnSO4 study was to discriminate van-
adium (VOSO4) from ZnSO4 using gene profiling [24].
Human bronchial epithelial cells were treated with ve-
hicle (control), VOSO4 (50 uM) or ZnSO4 (50 uM) for
four hours (four replicates each). RNA was hybridized
on an Affymetrix Human Genome U133A Array. For
this study, we used only the data from the four samples
treated with ZnSO4 and their corresponding four
control samples.

http://www.biosemantics.org/anni
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Gene expression profiling of WY14643 effects on mouse
small intestine (GEO accession number: GSE9533, set short
name: PPARA)
The aim of the PPARA study was to examine the effects of
acute nutritional activation of PPARalpha on expression of
genes encoding intestinal barrier proteins [25]. Male, four
months old Wild-type (129S1/SvImJ) and PPARalpha −/−
mice (129S4/SvJae) were exposed to dietary fatty acids with
WY14643 as a reference during an exposure time of six
hours, after which the small intestines were removed. RNA
was hybridized on an Affymetrix Mouse Genome 430 2.0
Array. Here we use the samples corresponding to the
PPARalpha activation by WY14643 (four treated samples
and four control samples).

Gene expression data processing
The Affymetrix CEL files for all the different gene expres-
sion data sets listed above were downloaded from GEO and
pre-processed using GenePattern [26]. CEL files were nor-
malized applying Robust Multichip Average (RMA), using
the ExpressionFileCreator module. In addition, the MBNI
Custom CDF, which contains updated probe set definitions
for Entrez GeneIDs, was applied: http://brainarray.mbni.
med.umich.edu/Brainarray/Database/CustomCDF/11.0.1/
entrezg.asp. After normalization, the data was floored by
setting a threshold value of 50 for all probe sets. Log(2)
ratios were created by dividing the median of the treatment
values of each probe set by the median of the control
values. Probe sets were discarded if both values were equal
to 50.
No supplementary CEL files were available for the zinc

sulfate dataset (GEO: GSE2111) and the Estradiol mouse
dataset (GEO: GSE2889), instead the provided MAS5-
calculated signal intensities were used to calculate the log
(2)ratios. Affymetrix probeset identifiers were mapped to
entrez gene identifiers using the appropriate affymetrix
CDF. Log(2)ratios were created by dividing the median of
the values of each probe set by the median of the time
matched control where only probesets were selected that
contained a “present” flag.

Gene expression profiling of triazole effects on mouse
embryonic stem cell differentiation (ArrayExpress accession
number: E-MTAB-300, set short name: triazoles)
In the triazoles experiment, M. musculus embryonic
stem cells were exposed to a range of developmental
toxicants and non-developmental toxicants (carbamaze-
pine, flusilazole, hexaconazole, methotrexate, methyl-
mercury chloride, monobutyl phthalate, monoethylhexyl
phthalate, monomethyl phthalate, nitrofen, saccharine,
triadimefon, warfarin) with the aim to evaluate develop-
mental toxicant identification using gene expression pro-
filing in embryonic stem cell test (EST) differentiation
cultures [10]. RNA was hybridized on an Affymetrix
Mouse Genome 430 2.0 Array. For the analysis with the
weighted global test, we used the data at the 24 hour
timepoint for the three different triazoles (flusilazole,
hexaconazole, and triadimefon), one negative control (sac-
charine), and one unexposed control (dimethyl sulfoxide),
each with eight replicates. The Affymetrix CEL files for
the triazoles gene expression data set were normalized
using the expresso package in R with the default settings.
Due to the large number of replicates, no probe filtering
was performed. Probesets were annotated with Entrez
gene IDs using the bioconductor 4302.db package. To
summarize the data at the Entrez gene ID level, read-outs
from probesets with the same Entrez gene ID were aver-
aged. For the PCA analysis, we used the data from all
groups. The Affymetrix CEL files were normalized using
Robust Multichip Average (RMA) normalization and
probe to gene mapping was performed as described previ-
ously [27]. Probe sets for Affymetrix internal controls or
probe sets that did not correspond to an Entrez gene ID
were not used in further analyses.

Results
Case study 1
In this case study we aimed to compare the performance
of CTD-based gene sets with next-gen TM-based gene
sets in predicting the particular treatment response for
six gene expression data sets. The H. sapiens gene sets
were tested with the GSA tools against the human gene
expression data sets (BPA, ESThsa, VitD3 and ZnSO4)
and the M. musculus gene sets were tested with the
GSA tools against the mouse gene expression data sets
(ESTmmu and TCDD). Ranking based on the FDR-
corrected p-value for the gene sets from each method
(CTD, next-gen TM) for each GSA tool was used as out-
come measure. The CTD-based gene sets ranked consist-
ently and considerably higher than the next-gen TM-based
gene sets over all GSA tools, with one exception: the next-
gen TM-based ZnSO4 gene set ranked higher on the
ZnSO4 gene expression data set using ToxProfiler (Table 1).
On average, the gene set representing the treatment was
significantly altered in three experiments using the next-
gen TM-based gene sets and in five experiments using the
CTD-based gene sets (Table 1). An exception is the
weighted global test, for which both approaches scored
significant in five experiments.
The statistical test behind ToxProfiler allows for com-

parison of gene sets over different gene expression data
sets based on the t-values produced by the test [15].
Such a profile for a gene set is called a t-profile, and
gives information about the specificity of the gene set
(that is, if the gene is significantly differential expressed
in more than one data set). We compared the t-profiles
for the CTD-based and next-gen TM-based gene sets
that corresponded to the chemical treatments for the data
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Table 1 Chemical treatment prediction ranks

ToxProfiler Weighted global test GeneCodis single annotation

CTD TM CTD TM CTD TM

BPA 9 (2.0e-07) 92 (1.0e-01) 18 (3.9e-04) 21 (6.2e-05) 10 (9.1e-08) -

ESThsa 38 (8.8e-02) 400 (2.4e-01) 269 (3.2e-03) 920 (5.6e-04) 4 (2.4e-02) -

ESTmmu 18 (3.5e-05) 189 (1.3e-04) 360 (5.7e-01) 482 (4.3e-01) - -

TCDD 19 (8.0e-07) 89 (1.2e-03) 14 (2.9e-10) 84 (5.7e-10) 1 (5.3e-32) 89 (1.7e-05)

VitD3 9 (4.5e-02) 400 (3.0e-01) 186 (2.4e-03) 762 (6.0e-04) 1 (2.0e-26) 200 (6.0e-03)

ZnSO4 9 (3.8e-05) 6 (3.4e-04) 3 (2.6e-06) 4 (6.8e-05) - -

Chemical treatment prediction rank and false discovery rate-corrected p-value (within parentheses) per gene expression data set for the different gene set analysis
tools. Significant results (false discovery rate-corrected p<0.05) are in bold. GeneCodis only reports results with a false discovery rate-corrected p-value smaller
than 0.05. Missing values denote such non-significant results.
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sets. The t-profiles were made on species level so that the
gene sets containing mouse genes were compared across
the mouse gene expression data sets and the gene sets
containing human genes were compared across the
human gene expression data sets. T-profiling of the CTD-
based and next-gen TM-based gene sets corresponding to
the chemical treatment for the different gene expression
data sets showed similar t-profiles for three (Figure 1A
Figure 1 T-profiles of mouse gene sets. T-profiles of the CTD-based and
mouse gene sets (B) for the TCDD (black bar) and ESTmmu (dark gray bar)
border of significant t-values.
and B, and Figure 2D) of the six gene sets. The other three
gene sets (Figure 2A-C) had a dissimilar t-profile.
The CTD-based gene sets ranked highest when using

the GeneCodis single annotation option (Table 1), but
for some data sets the gene set representing the treat-
ment did not score significant. For CTD, the Estradiol
and ZnSO4 treatments were not significant. When opt-
ing for co-occurring annotations, GeneCodis additionally
next-gen TM-based TCDD mouse gene sets (A) and Estradiol (EST)
mouse gene expression data sets. The dotted line represents the



Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 T-profiles of human gene sets. T-profiles of the CTD-based and next-gen TM-based BPA human gene sets (A), the Estradiol (EST)
human gene sets (B), the VitD3 human gene sets (C), and the ZnSO4 human gene sets (D) for the BPA (striped bar), ESThsa (black bar), VitD3
(dark gray bar) and ZnSO4 (light gray bar) human gene expression data sets. The dotted line represents the border of significant t-values.
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predicted the CTD-based Estradiol mouse gene set for
the ESTmmu gene expression data set as significant with
a rank of 14, together with the co-occurring gene sets
TCDD and Tretinoin. Zinc and zinc chloride CTD-
based gene sets were reported as significant at rank 1
together for the ZnSO4 gene expression data set, but
not ZnSO4. For next-gen TM, three additional gene sets
were reported significant when opting for co-occurring
annotations: the Estradiol human gene set for the
ESThsa gene expression data set with a rank of 164
together with nine other chemicals; the Estradiol mouse
gene set for the ESTmmu gene expression data set with
a rank of 41 in a cluster with 11 other chemicals; the
ZnSO4 gene set for the ZnSO4 gene expression data set
with a rank of 1 in a cluster together with 12 other
chemicals.
Among the other tools, the weighted global test had

the highest number of significant scoring gene sets while
ToxProfiler had the better ranking in most cases
(Table 1).
In short, the CTD-based gene sets ranked higher than

the next-gen TM-based gene sets for all gene expression
data sets except the ZnSO4 data set, but t-profiling
indicated a similar significance pattern for 50% of the
next-gen TM-based and CTD-based gene sets.

Case study 2
In this case study we analyzed a PPARalpha-knock-out
gene expression data set with the aim to predict the
PPARalpha agonism characteristic of fibrates. When inter-
secting the CAS numbers for the CTD and next-gen TM
gene sets, 585M. musculus gene sets remained. The
resulting 585M. musculus CTD-based and next-gen TM-
based gene sets were tested with the GSA tools against the
PPARA gene expression data set, and compared to the
results from the cMap. As mentioned before, ToxProfiler
and the weighted global test do not require a list of differ-
entially expressed genes, but GeneCodis does. To generate
the list of differentially expressed genes needed for the
analysis with GeneCodis, we used the topTable function
from the bioconductor Limma package in R to obtain a
ranked list of probes with the most evidence of differential
expression between the knockout and wild-type samples.
Probes with an adjusted p-value of less than 0.05 where
kept (930 probes). Probesets were annotated with Entrez-
Gene IDs using the bioconductor 4302.db package. To
compare the results with cMap, we started with the same
probesets and proceeded to make the query signature.
cMap only accepts probes from the Affymetrix GeneChip
Human Genome U133A Array. We therefore used the
NetAffx tool supplied by Affymetrix (http://www.affymetrix.
com/analysis/netaffx/index.affx) to map the probe IDs from
our signature to Affymetrix GeneChip Human Genome
U133A Array IDs.
Fibrate gene sets ranking and number of relevant bio-

logical processes annotated to the significant scoring
chemical response-specific gene sets were used as out-
come measures. All six next-gen TM-based fibrate gene
sets ranked among the top-10 significant results in Tox-
Profiler and GeneCodis (using the single annotation op-
tion in GeneCodis) (Table 2). Three CTD-based fibrate
gene sets ranked within the top-10 significant results in
ToxProfiler and GeneCodis (using the single annotation
option in GeneCodis) (Table 2). When opting for co-
occurring annotations in GeneCodis, GeneCodis add-
itionally predicted the CTD-based ciprofibrate gene set
as significant with a rank of 554 in a cluster together
with Acetaminophen, WY14643, TCDD, and Ethinyl
Estradiol. All six fibrate gene sets scored significant for
both CTD and next-gen TM using the weighted global
test, but with lower average rank than for the other tools
(Table 2). Jelier and co-workers [9] used the weighted
global test to test four of the fibrates and reported ranks
between 210 and 378. However, they used a different
selection of chemicals (the semantic category "drugs" in
the thesaurus) to test against the gene expression experi-
ment. When testing the same selection of chemicals but
with our concept profile matching association scores,
the fibrates ranked between 183 and 304.
None of the fibrate signatures in cMap scored signifi-

cant against the PPARA gene expression set signature.
In the PPARA study [25], a list of differentially

expressed genes was manually annotated with the fol-
lowing categories of biological processes: fatty acid oxi-
dation, cholesterol flux, glucose transport, amino acid
metabolism, intestinal motility, and oxidative stress. To
investigate if the significant chemicals from the GSA
tools and cMap were annotated with these biological
processes, we matched the concept profiles for the sig-
nificantly scoring chemicals against the concept profiles
of the following semantic categories in Anni: cell func-
tion, molecular function, molecular dysfunction, organ
or tissue function (this combination of semantic categor-
ies covered all biological process categories from the
PPARA study). If more than 100 chemicals had scored
significant using the GSA tools and cMap, the top-100
were used for the analysis. Venn diagrams of overlapping
top-100 biological processes for the significant chemicals
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Table 2 Fibrate drug prediction ranks

ToxProfiler Weighted global test GeneCodis single annotation

CTD TM CTD TM CTD TM

clofibrate 7 (6.1e-10) 2 (<1e.-10) 22 (1.0e-03) 71 (1.0e-06) 5 (1.1e-04) 2 (7.6e-29)

gemfibrozil 53 (2.0e-01) 8 (<1e.-10) 35 (2.0e-03) 106 (5.4e-06) - 6 (3.5e-19)

bezafibrate 54 (2.5e-01) 7 (<1e.-10) 42 (2.1e-03) 105 (5.3e-06) - 5 (9.3e-22)

fenofibrate 3 (<1e.-10) 10 (<1e.-10) 27 (1.6e-03) 115 (7.1e-06) 3 (2.2e-07) 9 (1.5e-18)

ciprofibrate 33 (4.2e-02) 5 (<1e.-10) 21 (8.7e-04) 97 (2.6e-06) - 3 (3.1e-25)

WY14643 2 (<1e.-10) 4 (<1e.-10) 12 (5.5e-05) 118 (7.2e-06) 1 (3.2e-79) 4 (6.5e-22)

Fibrate drug prediction ranks and false discovery rate-corrected p-values (within parentheses) for the PPARA gene expression data set for the different gene set analysis tools.
Significant results (false discovery rate-corrected p<0.05) are in bold. GeneCodis only reports results with a false discovery rate-corrected p-value smaller than 0.05. Missing
values denote such non-significant results. ToxProfiler does not report false discovery rate-corrected p-value less than 1.e-10. These are denoted as <1.e-10 in the table.
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for each GSA tool and cMap showed higher overlap
between CTD and next-gen TM, than between cMap
and CTD, or cMap and next-gen TM (Figure 3). For
ToxProfiler and cMap, no common concept could be
found for CTD, next-gen TM and cMap, but 13 matched
Figure 3 Venn diagrams showing the overlap in biological
processes. Venn diagrams showing the overlap in biological
processes for the most significant (false discovery rate-corrected
p-value<0.05) chemicals between ToxProfiler and cMap (A), between
the weighted global test and cMap (B), and between GeneCodis
and cMap (C).
either next-gen TM or CTD (Figure 3A). For the weighted
global test and cMap, four common concepts were found
(Figure 3B), as for GeneCodis and cMap (Figure 3C). We
then manually inspected the top 100 biological processes.
Among the biological processes that were manually anno-
tated to a list of differentially expressed genes in the PPARA
study, fatty acid oxidation, cholesterol flux, glucose trans-
port and oxidative stress were found among the top-100
biological processes for the significant chemicals for all
GSA tools. For the significant chemicals from cMap, fatty
acid oxidation and intestinal motility concepts where found.
In short, the next-gen TM-based fibrate gene sets

ranked similar to or better than the CTD-based fibrate
gene sets using two of the GSA tools, and all next-gen
TM-based fibrate gene sets were significant using all
GSA tools. The top-scoring chemicals from the GSA
analyses represented underlying biological processes
relevant to the gene expression experiment, both for the
CTD-based and next-gen TM-based gene sets. In con-
trast, none of the fibrate signatures in cMap scored sig-
nificant against the PPARA gene expression set
signature, and fewer relevant biological processes were
found for the top-ranking chemicals from cMap.

Case study 3
The triazoles gene expression data set was analyzed with
two aims: 1) to link chemicals with biological effects
derived from -omics data similar to triazoles, and 2) to
discriminate triazoles from other developmental toxi-
cants (carbamazepine, methotrexate, methylmercury
chloride, monobutyl phthalate, monoethylhexyl phthal-
ate, nitrofen, warfarin), and from non-developmental
toxicants (monomethyl phthalate and saccharine) using
gene sets associated with embryonic structures.
Only the weighted global test was applied in this case

study. The triazoles gene expression data set show very
small variation in gene expression levels [10]. The
weighted global test has a very strong null hypothesis,
asserting that no gene with a positive importance weight
is associated with the response, making it an appropriate
test for analyzing such a data set.
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For aim 1, a subset of the 30,211 next-gen TM gene
sets derived from chemicals with CAS numbers was
used. We only considered mouse genes, since the gene
expression experiment was performed on mouse embry-
onic stem cells. Chemicals were selected based on the
list of 384 compounds tested for developmental toxicity
contained in the ToxRefDB_DevTox database. The num-
ber of similar morphological developmental toxicity end-
points in vivo in rabbit or rat (as recorded in the
ToxRefDB_DevTox database) between the significantly
scoring chemicals and the triazoles was used as outcome
similarity measure. The morphological developmental
toxicity endpoints were the following: cleft lip and/or
cleft palate; variations or abnormalities of the limb,
including scapula, clavical and pelvis; variations or
abnormalities of the vertebral column, ribs or sternum;
variations or abnormalities of the cranium; abnormalities
of the metanephric kidney; and abnormalities of the
ureter. The triazoles also caused general developmental
toxicity endpoints: change in weight of fetus at near-term
of pregnancy; histopathological, clinical, or unclassified
abnormalities in fetus; preimplantation loss, postimplan-
tation loss (resorptions) or fetal death impacting litter
size; and pregnancy loss or maternal wastage, but these
endpoints were not considered specific enough to be
included in the similarity outcome measure.
After matching the CAS numbers of the chemicals in

the ToxRefDB_DevTox to the CAS numbers of com-
pounds with next-gen TM-based gene sets, 319 gene sets
remained. Matching the CAS numbers of the chemicals in
the ToxRefDB_DevTox to the CAS numbers for the CTD
gene sets resulted in 30 gene sets. Of the triazoles used in
this study, only triadimefon was included in the CTD gene
sets. All triazoles used in this study were included in the
next-gen TM gene sets (see http://www.biosemantics.org/
index.php?page=chemical-response-specific-gene-sets), in-
cluding Hexaconazole for which no information could be
found in the CTD (as stated in the Background section).
Therefore, we decided to continue the analysis using only
the next-gen TM-based gene sets. Testing the 319 gene
sets against the triazoles gene expression data set with the
weighted global test resulted in 33 chemicals with signifi-
cant changes in gene expression compared to untreated
controls (Table 3). Of these 33 chemicals, 21 had a similar
morphological developmental in vivo toxicity pattern as
the triazoles according to the ToxRefDB_DevTox (at least
one similar morphological developmental toxicity end-
point (see section Materials and Methods). Six of these
were triazoles: diniconazole, difenoconazole, febuconazole,
triadimenol, myclobutanil, and cyproconazole. Of the
remaining 12 significantly scoring chemicals, nine had a
non-specific pattern of in vivo toxicity compared to the
triazoles according to the ToxRefDB_DevTox database (at
least one similar general developmental toxicity endpoint),
and three are reported as non-toxic in the ToxRefDB_
DevTox database. Testing the 319 gene sets against the
saccharine gene expression data set with the weighted
global test resulted in five chemicals with significant
changes in gene expression (Primisulfuron, Monosodium
methane arsenate, Benfluralin, Pyridaben, Cyprodinil), of
which four are developmentally toxic.
For aim 2, we created a total of 442 gene sets associated

with embryonic structures and tested these against the tria-
zoles gene expression data sets with the weighted global
test. The embryonic structure concepts originated from
the semantic category "Embryonic Structure" from the
UMLS part in our thesaurus, and the gene sets were cre-
ated in a similar fashion to the chemical response-specific
gene sets (see the next-gen TM-based gene set creation
section). To validate the relevance of the these gene sets,
we compared the top-25 gene sets obtained from the
weighted global test to the effects of triazoles seen in rat
postimplantation Whole Embryo Culture (WEC) [28]. The
top-25 gene sets for embryonic structures resulting from
the weighted global test correlated well with effects on the
branchial arches, otic vesicles, posterior neuropore, heart,
and somites as seen in the WEC (Table 4). Three gene sets
could not be translated to changes seen in the WEC, since
there is no scoring parameter for these changes in the
WEC. Two of these gene sets concern the cloacal mem-
brane. Even though there is no annotation for these in the
WEC, the results correspond well with the in vivo data in
the ToxRefDB_DevTox database (triazoles give rise to uro-
genital malformations). The third gene set (structure of
embryo stage 6) has no direct correspondence in the
WEC, but might be linked to the decrease in Total
Morphological Score as seen in the WEC.
In order to discriminate triazoles from other develop-

mental and non-developmental toxicants using PCA, the
most significant genes in the gene set with the lowest
p-value from the weighted global test were used in the
PCA analysis. These genes were extracted by calling the
leafNodes function in the global test package. The leaf-
Nodes function gives an efficient summary of the test
result by extracting the most significant subset of genes
within a gene set using the inheritance multiple testing
procedure of J.J. Goeman and L. Finos (as explained in
the manual for the weighted global test). The "neural
plate/tube" embryonic structure gene set had the highest
FDR-corrected p-value (1.5e-07) of the 442 embryonic
structure gene sets tested with the weighted global test
against the triazoles gene expression data set. No embry-
onic structure gene sets came out significant after FDR
correction for the saccharine gene expression data set.
The "neural plate/tube" gene set contained 993 genes,
and the 13 genes contributing most to the test (i.e. the
leaf nodes) (Table 5) were used for PCA discrimination.
Gene expression values of these selected genes were
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Table 3 Number of similar toxicological endpoints

Chemical name CAS number # similar
general
developmental
toxicity endpoints

# similar
morphological
developmental
toxicity endpoints

p-value

Metam-sodium 137-42-8 3 3 5.6e-03

Mepiquat chloride 24307-26-4 0 2 9.3e-03

Clomazone 81777-89-1 2 3 9.3e-03

6-Deisopropylatrazine 1007-28-9 0 2 9.3e-03

Zoxamide 156052-68-5 0 0 9.3e-03

Iprodione 36734-19-7 4 2 9.3e-03

Monosodium methane arsenate 2163-80-6 3 0 9.3e-03

Cyprodinil 121552-61-2 2 2 9.5e-03

Carfentrazone-ethyl 128639-02-1 0 1 1.3e-02

Primisulfuron-methyl 86209-51-0 1 3 1.3e-02

3-(3,5-Dichlorophenyl)-1,5-dimethyl-3-azabicyclo
(3.1.0)hexane-2,4-dione

32809-16-8 0 0 1.7e-02

Bromadiolone 28772-56-7 1 0 1.7e-02

MGK 264 113-48-4 0 0 2.5e-02

Diniconazole 83657-24-3 3 3 2.5e-02

Difenoconazole 119446-68-3 3 1 2.5e-02

Fenpropathrin 39515-41-8 1 0 2.5e-02

Fenbuconazole 114369-43-6 4 1 2.5e-02

Bendiocarb 22781-23-3 2 0 2.5e-02

Dacthal 1861-32-1 1 0 2.5e-02

Fludioxonil 131341-86-1 0 2 2.5e-02

Mancozeb 8018-01-7 3 3 2.5e-02

Triadimenol 55219-65-3 0 3 2.5e-02

Myclobutanil 88671-89-0 2 1 2.5e-02

Cyproconazole 94361-06-5 2 2 2.9e-02

Fluroxypyr 69377-81-7 1 0 3.1e-02

Fluazifop-P-butyl 79241-46-6 2 4 3.5e-02

Ethametsulfuron methyl 97780-06-8 4 2 3.5e-02

Cyclanilide 113136-77-9 0 0 3.8e-02

EPTC 759-94-4 4 1 4.1e-02

Metaldehyde 108-62-3 1 0 4.1e-02

Cyhexatin 13121-70-5 3 0 4.1e-02

Pyrimethanil 53112-28-0 3 2 4.1e-02

Nitrapyrin 1929-82-4 1 1 4.7e-02

Number of similar toxicological endpoints and false discovery rate-corrected p-values for chemicals predicted similar to the triazole gene expression data set using
the weighted global test. Chemicals with a similar morphological developmental in vivo toxicity profile to triazoles are in bold.
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derived from the triazoles data set. These data were used
to evaluate discrimination of triazoles from other develop-
mental and non-developmental toxicants using PCA. Gene
expression changes within these 13 genes indicated clear
separation between the triazoles on one hand and the other
compound-exposed cultures as well as the unexposed
time-matched cultures on the other hand (Figure 4).
In short, 33 chemicals could be linked to the gene ex-
pression changes induced by triazoles. Toxicants corre-
sponding to 21 of these 33 had a similar morphological
developmental in vivo toxicity pattern as the triazoles.
Using next-gen TM-derived gene sets for embryonic
structures, we confirmed the relation between gene
expression patterns and embryotoxic effects seen in the



Table 4 The top 25 embryonic structure gene sets
Embryonic structure p-value WEC effect

neural plate and or tube 1.5e-07 Posterior neuropore open

second branchial arch structure 4.9e-06 Branchial bars deformed

fourth branchial arch structure 4.9e-06 Branchial bars deformed

entire fourth branchial arch 4.9e-06 Branchial bars deformed

structure of first pharyngeal pouch 6.3e-06 Otic vesicles deformed

entire first pharyngeal pouch 6.3e-06 Otic vesicles deformed

entire neural tube 6.4e-06 Posterior neuropore open

Branchial Region 7.3e-06 Branchial bars deformed

entire second branchial arch 7.3e-06 Branchial bars deformed

structure of tympanic annulus 7.3e-06 Otic vesicles deformed

entire tympanic annulus 7.3e-06 Otic vesicles deformed

Neuroectoderm 7.5e-06 Posterior neuropore open

entire cloacal membrane 9.8e-06 No corresponding scoring
parameter available in
the WEC.

branchial arch structure 1.1e-05 Branchial bars deformed

structure of cloacal membrane 1.1e-05 No corresponding scoring
parameter available in
the WEC.

entire ostium secundum 1.1e-05 Heart ventrally turned

structure of third aortic arch 1.1e-05 Heart ventrally turned

entire branchial arch 2.2e-05 Branchial bars deformed

Otic Vesicle 2.2e-05 Otic vesicles deformed

entire auditory vesicle 2.2e-05 Otic vesicles deformed

structure of embryo stage 6 2.2e-05 No corresponding scoring
parameter available in
the WEC.

structure of early somite stage 2.2e-05 Somites irregular

entire early somite stage 2.2e-05 Somites irregular

third branchial arch structure 2.2e-05 Branchial bars deformed

entire third branchial arch 2.2e-05 Branchial bars deformed

False discovery rate-corrected p-values for the top 25 embryonic structure
gene sets from the weighted global test on triazole gene expression data from
the embryonic stem cell test, together with the effect seen in rat
postimplantation Whole Embryo Culture (WEC).

Table 5 The neural plate/tube gene set

Entrez gene ID Gene symbol p-value

15394 HOXA1 5.2e-10

14472 GBX2 2.4e-07

64290 FOXB1 6.4e-05

94222 OLIG3 2.9e-04

218772 RARB 4.1e-05

20668 SOX13 1.5e-07

22413 WNT2 1.2e-05

320202 LEFTY2 1.5e-04

17292 MESP1 6.9e-05

14174 FGF3 1.1e-04

54352 IRX5 1.2e-05

18423 OTX1 3.1e-07

57028 PDXP 2.0e-06

False discovery rate-corrected p-values for the genes from the neural plate/
tube gene set that contributed most to the weighted global test.
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Whole Embryo Culture, and discriminated triazoles
from other chemicals in a principal component analysis.

Discussion
In the present study we perform identification of the
chemical treatment, pharmacological mechanism eluci-
dation, and compound toxicity profile comparison by
testing chemical response-specific next-gen TM-based
gene sets with GSA methods against different gene
expression data sets. Such experiments have been per-
formed before but were limited to evaluation of one spe-
cific tool and used a limited number of literature-based
gene sets [3,7,9]. In contrast to the tool-specific gene
sets that were used for identification of the chemical
treatment in Minguez et al., we provide the size and
scope of our chemical response-specific gene sets, and
make them available for download in a generic format
(http://www.biosemantics.org/index.php?page=chemical-
response-specific-gene-sets). We extend the evaluation
of literature-based gene sets for identification of the
chemical treatment performed by Patel and Butte to in-
clude next-gen TM. In doing this, we were able to create
many more chemical response-specific gene sets
(~30,200 gene sets for both human and mouse using
next-gen TM compared to ~1,200 gene sets for human
and ~600 gene sets for mouse using the CTD). While
Jelier and co-workers tested next-gen TM-based gene
sets for drugs on one gene expression data set using one
GSA method, we tested next-gen TM-based gene sets
on diverse sets of gene expression data with a variety of
methods. No GSA method consistently outperformed
the other, and we recommend using more than one GSA
method when analysing gene expression data. We
showed that gene sets generated by next-gen TM are
less compound-specific than gene sets based on manual
curation efforts but perform equal to or better than
manual curation efforts in elucidating the pharmaco-
logical mechanism of fibrates. In addition, we show that
next-gen TM allows for toxicity profile comparison of
compounds for which manual annotation efforts are
lacking (triazoles). We also successfully use next-gen
TM-based gene sets for embryonic structures to describe
effects induced by the triazoles hexaconazole, triadime-
fon and flusilazole in the EST, and to discriminate the
triazoles from other chemicals using PCA.
A possible limitation of our approach is that we do

not take the nature of the relation (for example expres-
sion (negative or positive) or phosphorylation) between
the genes and chemicals or genes and embryonic

http://www.biosemantics.org/index.php?page=chemical-response-specific-gene-sets
http://www.biosemantics.org/index.php?page=chemical-response-specific-gene-sets


Figure 4 Discrimination of triazoles using PCA. Discrimination of triazoles (hexaconazole (HEX), triadimefon (TDI), flusilazole (FLUc)) from other
developmentally toxic compounds (monobutyl phthalate (MBP), monoethylhexyl phthalate (MEHP), carbamazepine (CBZ), methylmercury (MeHg),
warfarin (WARF), nitrofen (NIF), methotrexate (MTX)), non-toxic compunds (monomethyl phthalate (MMP), saccharine (SACC)) and time-matched
unexposed cultures (Control) using principal component analysis on the basis of the leafnodes from the neural plate/tube gene set. Variance of
the first principal component (horizontal axis): 70%. Variance of the second principal component (vertical axis): 14%.
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structures into account when creating the gene sets. In
the CTD, such information has been manually curated
for the chemical-gene interactions. For the gene sets
generated by text mining, such relations could be mined
from the literature by using an ontology of known bio-
logical relations. Even though it might seem logical to
only include curated expression relations, it also limits
the possibility of finding new relations. From our omics
point of view, all associations are of possible interest. In
the future, it could be worth investigating how the
nature of the relation influences the results of the GSA.
Another limitation relates to the number of gene

expression data sets we used to test our methods on and
the species variety (mouse and human). We choose
these two species as a starting point since the annotation
information available is more complete than for other
genomes, but the amount of gene expression data and
gene annotations for other model organisms in toxicol-
ogy such as rat and zebrafish is increasing, and gene set
creation and testing for these and other organisms is a
topic for future research.
The amount of information in PubMed and CTD con-

tinue to increase. For example, following our “79983-71-
4 OR hexaconazole” PubMed search example where we
were able to retrieve 69 articles on November 21 (2011),
the same search now (October 6 (2012)) retrieves 80
articles. A topic for future research would be to investi-
gate how this information growth affects the gene set
predictions.
Also, the process of updating the concept association

scores is non-trivial. A conversion of the methods to a
Web service environment, preferably with a Web inter-
face, would greatly enhance its usability and is a project
we are currently undertaking.

Identification of chemical treatment
In this case study, we aimed to show that next-gen TM-
based gene sets compare well to CTD-based gene sets in
associating chemicals with gene expression data sets. The
CTD-based gene sets ranked higher than the next-gen
TM-based gene sets for all gene expression data sets except
the ZnSO4 data set. This might be expected since the
CTD-based gene sets are curated. However, t-profiling of
the CTD-based and next-gen TM-based gene sets showed
similar t-profiles for three of the six gene sets, indicating a
similar gene set significance pattern for these gene sets
despite the higher ranks of the CTD-based gene sets. The
ranks for the CTD-based and next-gen TM-based gene
sets differed between the different tools and between the
experiments, indicating that in general, not one tool is to
be preferred over the other when performing GSA
analysis-based connectivity mapping. One needs to select
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the tool best suited for the experimental design. For
example, ToxProfiler performs well with small number of
replicates, while the weighted global test deals well with
small changes in gene expression levels. The CTD-based
gene sets had the highest significant ranks when using
GeneCodis, which is in line with what Patel and Butte [3]
reported for these experiments (using the hypergeometric
test). The co-occurring annotations option in GeneCodis
proved useful compared to the single annotation option in
some cases.

Pharmacological mechanism elucidation
In this case study, we aimed to associate PPARalpha
agonists (fibrates) with a PPARalpha knock-out gene
expression data set, and to show that the significantly
scoring chemicals relate to relevant biological processes.
The next-gen TM-based fibrate gene sets ranked similar
or better than the CTD-based fibrate gene sets using
two of the GSA tools, and all next-gen TM-based fibrate
gene sets were significant using all GSA tools. Clearly,
for this experiment, next-gen TM presents a comparable
alternative to manual inspection of the literature. This
might be the case since there is pharmacological and
toxicological consensus on the action of peroxisome
proliferators, and as such the literature accumulated
over the past is more clearly described. The CTD-based
gene sets for gemfibrozil and bezafibrate did not score
significant using ToxProfiler and GeneCodis. These
fibrates also had the lowest number of genes annotated
to them: only four for gemfibrozil and nine for bezafi-
brate could be mapped to the current gene expression
experiment. The size of the gene set has less influence
when using the weighted global test compared to the
other tools, which might explain that these gene sets
scored significant using this method. The next-gen TM
fibrate gene sets ranked much lower when using the
weighted global test compared to the other tools. How-
ever, rankings were improved compared to the results by
Jelier and coworkers [9]. The non-significant results for
the fibrates when using cMap indicates that GSA tools
present a good alternative when performing connectivity
mapping.
We annotated the top-scoring chemicals for CTD and

next-gen TM in Anni with biological processes to investi-
gate if these corresponded to the ones annotated by hand
in the PPARA study. For all GSA tools, biological pro-
cesses corresponding to all categories reported in the
PPARA study were found, except intestinal motility con-
cepts. Intestinal motility concepts could be annotated to
the significantly scoring signatures in cMap, while only
one more (fatty acid oxidation) of the other five biological
processes could be found using this method. These results
show that the top scoring chemicals from the GSA ana-
lyses represent underlying biological processes relevant to
the gene expression experiment, both for the CTD-based
and next-gen TM-based gene sets.

Compound toxicity profile comparison
The triazoles gene expression data set was analyzed with
the aim to predict chemicals with a toxicity profile simi-
lar to triazoles and to discriminate triazoles from other
developmental toxicants, and non-toxic compounds.
Many (64%) of the predicted chemicals had an in vivo
toxicity pattern corresponding to that of the triazoles.
The highest ranking compound with a toxicology pat-
tern different from the triazoles according to Tox-
RefDB_DevTox was Monosodium methane. Three of the
eight genes that contributed most to the significance of
this compound where annotated with the concept “axial
skeletal structure” in Anni. Triazoles cause malforma-
tions in this structure according to the ToxRefDB_Dev-
Tox. Even though Monosodium methane does not cause
malformations in the axial skeletal structure of rats or
rabbits according to the ToxRefDB_DevTox, our results
suggest that the compound should be tested for in vivo
toxicity also in mouse. On the level of risk assessment
we are interested in the situation in man, and the more
information about the toxic effects of compounds in dif-
ferent systems the better. The highest ranking non-toxic
compound (Zoxamide) scored significant mainly because
of the presence of the gene CYP51A1 in the gene set.
The fungicidal mode of action of triazoles is based on
the inhibition of this gene [29]. We noted five signifi-
cantly scoring chemicals for the saccharine gene expres-
sion experiment of which four were developmental
toxicants, which confirms that gene set testing with
chemical response-specific gene sets should be consid-
ered as hypothesis generation and that every significantly
scoring compound need to be investigated further. This
is something that also applies to standard connectivity
mapping. Using the weighted global test, further investi-
gation would constitute inspection of the leaf nodes in
the gene sets, since these genes contribute most to the
test. Anni can be used to infer the function of the leaf
nodes, give information on how these are connected to
each other, and via direct links to the literature more
thorough information can easily be found.
De Jong and co-workers [28] showed that the embry-

onic stem cell test (EST) is able to give a relatively good
potency ranking compared with the in vivo developmen-
tal toxicity potency of triazoles, but pointed out that the
system gives little information on the type of effects that
can occur after exposure to the chemicals. We show that
by associating embryonic structure gene sets with a
triazole gene expression profile obtained through the
EST, effect information becomes readily available. Also,
the genes in the embryonic structure gene set that con-
tributed most to the weighted global test could separate
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triazoles from other chemicals in a PCA. Genes that
effectively can separate between chemical classes are
usually searched for by applying a statistical test on
differential gene expression (see for example [30]). Here,
we show that such genes can also be found by applying
the weighted global test with relevant gene sets (in this
case embryonic structure gene sets).

Conclusions
In conclusion, GSA with next-gen TM-derived chemical
response-specific gene sets is a scalable method for iden-
tifying similarities in gene responses to other chemicals,
from which one may infer potential mode of action and/
or toxic effect.
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