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Abstract

DNA methylation is an inheritable chemical modification of cytosine, and represents one of the most important
epigenetic events. Computational prediction of the DNA methylation status can be employed to speed up the
genome-wide methylation profiling, and to identify the key features that are correlated with various methylation
patterns. Here, we develop CpGIMethPred, the support vector machine-based models to predict the methylation
status of the CpG islands in the human genome under normal conditions. The features for prediction include
those that have been previously demonstrated effective (CpG island specific attributes, DNA sequence composition
patterns, DNA structure patterns, distribution patterns of conserved transcription factor binding sites and conserved
elements, and histone methylation status) as well as those that have not been extensively explored but are likely
to contribute additional information from a biological point of view (nucleosome positioning propensities, gene
functions, and histone acetylation status). Statistical tests are performed to identify the features that are significantly
correlated with the methylation status of the CpG islands, and principal component analysis is then performed to
decorrelate the selected features. Data from the Human Epigenome Project (HEP) are used to train, validate and
test the predictive models. Specifically, the models are trained and validated by using the DNA methylation data
obtained in the CD4 lymphocytes, and are then tested for generalizability using the DNA methylation data
obtained in the other 11 normal tissues and cell types. Our experiments have shown that (1) an eight-dimensional
feature space that is selected via the principal component analysis and that combines all categories of information
is effective for predicting the CpG island methylation status, (2) by incorporating the information regarding the
nucleosome positioning, gene functions, and histone acetylation, the models can achieve higher specificity and
accuracy than the existing models while maintaining a comparable sensitivity measure, (3) the histone modification
(methylation and acetylation) information contributes significantly to the prediction, without which the
performance of the models deteriorate, and, (4) the predictive models generalize well to different tissues and cell
types. The developed program CpGIMethPred is freely available at http://users.ece.gatech.edu/~hzheng7/
CGIMetPred.zip.

Background
Epigenetics refers to structural adaptation of chromoso-
mal regions to register, signal or perpetuate altered activ-
ity states [1]. A major type of epigenetic event is DNA
methylation, which involves the addition of a methyl

group to the number 5 carbon of the cytosine pyrimidine
ring [2]. In the human genome, is DNA methylation
mostly restricted to the cytosines of CpG dinucleotides.
Though the human genome generally shows a great defi-
cit of CpG dinucleotides (the genome-wide observed-to-
expected CpG ratio is ~0.2), and most of these CpG
dinucleotides are methylated in somatic cells [3], the
CpG dinucleotides are enriched around gene promoters
and form CpG islands, and tend to be protected from
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DNA methylation [4]. It has been shown that DNA
methylation plays an instrumental roles during normal
cell development and cell differentiation, and is also
involved in a number of key processes including genetic
imprinting, X-chromosome inactivation, suppression of
retroviral elements, and carcinogenesis [5,6].
A variety of techniques, based on biochemical experi-

ments and computational analysis, have been devised for
DNA methylation profiling. The biochemical experi-
ment-based approaches are mainly based on methyla-
tion-sensitive restriction, immunoprecipitation, or
bisulfite conversion, combined with the next-generation
sequencing technologies [7]. Whereas, computational
predictive models have been developed to identify CpG
dinucleotides methylated or unmethylated [8,9], CpG
islands (or CpG-rich regions) methylated or unmethy-
lated [3,10-13], and CpG islands (or CpG-rich regions)
differentially methylated in different tissue/cell types or
phenotypes [4,14]. These computational approaches can
effectively complement the biochemical-experiment
based approaches to speed up genome-wide DNA methy-
lation profiling and to identify critical factors or pathways
controlling DNA methylation patterns.
A key step for building computational predictive models

is to select features. Here we provide a brief review of the
existing computational models based on their features for
prediction. For the prediction of DNA methylation, the
features can be roughly grouped into two broad categories:
genetic and epigenetic. Given a region of interest (ROI, e.
g., a CpG island or a genomic region centered around a
particular CpG dinucleotide), the genetic features include
(1) general attributes of the ROI (e.g., length of the ROI,
and distribution of the CpG dinucleotides in the ROI), (2)
patterns of the DNA sequence composition of the ROI, (3)
patterns of conserved transcription factor binding sites
(TFBSs) or conserved elements within or near the ROI, (4)
structural and physicochemical properties of the ROI, (5)
functions of the genes within or near the ROI, (6) the
extent of the diversity of the ROI within the population,
and (7) the extent of the conservation of the ROI among
species. And, the epigenetic features mainly regard the
methylation and acetylation status of the histones.
Bhasin et al. used DNA composition features to predict

the methylation of single cytosines. A 39-nucleotide long
DNA fragment centered around the cytosine of interest
was considered as the ROI, and each nucleotide in the ROI
was coded by using a 5-bit binary sparse code. In this way,
each ROI was represented by a series of codes, and the dif-
ference between ROIs was able to be quantified. A ~75%
accuracy was reported using a support vector machine-
based classifier [8]. Lu et al. also used DNA composition
features for predicting whether a CpG dinucleotide is
methylated or not. A 1,000 nucleotide long DNA fragment
centered around the CpG dinucleotide was used as the

ROI, and the frequencies of all pentamer oligonucleotides
formed the features. A ~77% accuracy was reported for the
CD4 lymphocytes data set using a nearest neighbor-based
classifier [9]. Feltus et al. used frequencies of seven DNA
patterns, TCCCCCNC, TTTCCTNC, TCCNCCNCCC,
GGAGNAAG, GAGANAAG, GCCACCCC, and GAG-
GAGGNNG with N representing any base, and achieved
an ~82% accuracy on the human fibroblast data set when
distinguishing between methylation-prone and methyla-
tion-resistant CpG islands using a linear programming-
based classifier [4].
In addition to DNA composition features, Fang et al.

also used the distribution of the repetitive element AluY
as well as the distribution of TFBSs for predicting the
methylation status of CpG rich segments, and reported
an ~84% specificity and ~84% sensitivity on the human
brain data set using a support vector machine-based clas-
sifier [3]. Bock et al. used DNA composition features,
predicted DNA helix structure, attributes of repeat ele-
ments and TFBSs, evolutionary conservation of Phast-
Cons elements [15] and the number of single nucleotide
polymorphisms (SNPs) for the prediction of CpG island
methylation [10,11], and their method achieved a high
specificity (~98%) but a relatively low sensitivity (~67%)
on human lymphocytes using a support vector machine-
based classifier [13]. Ali et al. also used the DNA compo-
sition information, predicted DNA structure, and SNP
features, and reported a ~72% accuracy on the human
lymphocytes data set using a K nearest neighbor-based
classifier [12]. To predict tissue-specific differentially
methylated regions (DMRs), Previti et al. used CpG
island specific attributes, attributes of repetitive elements,
number and frequency of PhastCons elements, as well as
structural and physicochemical properties. When classi-
fying CpG islands into four categories: constitutively
methylated, constitutively unmethylated, tissue-specific
DMR, and lack of methylation exclusively in sperm, they
reported an ~89% accuracy using a decision tree-based
classifier [14].
Computational prediction models that are solely based

on genetic features can hardly fully characterize DNA
methylation status. This is because DNA methylation, as
an epigenetic phenomenon, is affected by some other epi-
genetic factors, such as histone methylation and histone
acetylation. In light of the reported interaction between
histone modification enzymes and DNA methylases
[16,17], Fan et al. found four histone methylation marks
that are highly correlated with the DNA methylation sta-
tus of CpG islands, and then incorporated these histone
methylation marks into the prediction of the methylation
status of CpG islands. Compared to those methods with-
out histone methylation information [13,11], the aug-
mented features indeed led to improved performance: a
~94% specificity and ~74% sensitivity on the CD4 T cell
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data set using a support vector machine-based classifier
[13].
In this study, we consider various attributes that are pos-

sibly related to the CpG island methylation. These attri-
butes include those that have been previously investigated
(CpG island specific attributes, DNA sequence composi-
tion patterns, DNA structure patterns, distribution pat-
terns of conserved TFBS’s and conserved elements, and
histone methylation status), and those that have not been
extensively investigated but are potentially related to DNA
methylation from biochemical perspectives (nucleosome
positioning propensities, gene functions, and histone acet-
ylation status). The contribution of each individual feature
is evaluated by statistical tests; and the correlation between
features is reduced by principal component analysis
(PCA). These DNA methylation-relevant yet non-intercor-
related features are then used to build support vector
machine (SVM)-based models to predict the methylation
status of CpG islands. The predictive models are evaluated
by using the HEP data set. Specifically, the CpG island
methylation profiles in the CD4 lymphocytes are used to
train and validate the models, while the CpG island
methylation profiles in the other 11 tissues/cell types are
used to test the generalizability of the models. Through
these experiments, we assess the individual and combina-
tional influence of the newly added features and the
impact of histone modification information.
The rest of the paper is organized as follows. In Section

2, we describe the data collection used to train, validate
and test the computational models. In Section 3, we dis-
cuss the methods for feature extraction, feature selection,
and building the predictive models. The experimental
results are reported in Section 4. And finally in Section 5
we draw conclusions.

Data sets
We obtain the methylation profiles of the human genome
from HEP. bisulfite DNA sequencing technique, and pro-
vides high-resolution data of the genome-wide DNA
methylation patterns in various tissues and cell lines [18].
It currently covers chromosomes 6, 20 and 22, and con-
tains ~1.9 million CpG methylation values of 2,524 ampli-
cons from 12 different tissues and 43 different samples.
The methylation values of the CpGs range from 0 to 100
inclusive, where 0 corresponds to the lowest and 100 to
the highest methylation intensity.
We define the CpG island as a DNA stretch that is not a

repetitive element but satisfies the Gardiner-Garden cri-
teria, i.e., with length of ≥ 200 bps, GC content ≥ 50%, and
observed to expected CpG ratio ≥ 0.6 [19]. We construct
our training data set based on the CpG islands extracted
from the UCSC genome browser and the DNA methyla-
tion profiles specified by HEP. Specifically, we only con-
sider those CpG islands more than 10% of whose CpG

dinucleotides are annotated with methylation intensities.
For each tissue or cell type, the methylation intensity of a
CpG dinucleotide is calculated as the average in different
samples [20]; and the methylation intensity of a CpG
island is calculated as the average of all the CpG dinucleo-
tides within it. The CpG islands with methylation intensity
≥ 50 are regarded as the methylated (positive), while those
with methylation intensity ≤ 10 are regarded as the
unmethylated (negative) [13]. The number of so-obtained
methylated and unmethylated CpG islands are summar-
ized in Table 1. In particular, there are 101 methylated
and 368 unmethylated CpG islands for the CD4 lympho-
cytes, which are used for training and validating the pre-
dictive models, while the CpG islands in the other tissues
or cell types are used for generalizability testing.

Methods
The core of our establishment of the computational pre-
dictive models consists of three parts, feature extraction,
feature selection and model training and testing, as
depicted in Figure 1. We here describe these three steps
in detail.

Feature extraction
A key step for building computational predictive models is
to select features. It has been shown that the CpG island
methylation status is correlated with the following fea-
tures: CpG island specific attributes (e.g. length, GC con-
tent, GC observed/expected ratio) [14,21,3], patterns of
DNA sequence composition [4,21,10], patterns of pre-
dicted DNA structure [14,10], patterns of conserved
TFBS’s and conserved elements [14], as well as the methy-
lation status of nearby histones [13]. Computational pre-
diction of CpG island methylation status based on the
statistical properties of these features could render fairly
reasonable accuracy (e.g., ~89% [4,13]). In this study we

Table 1 Number of methylated and unmethylated CpG
islands in the twelve different tissue and cell types based
on the DNA methylation profiles of HEP.

Tissue/Cell type Methylated Unmethylated

CD4 101 368

CD8 103 332

sperm 45 331

liver 105 334

heart muscle 96 372

skeletal muscle 91 371

fetal skeletal muscle 79 281

fetal liver 76 270

placenta 92 328

dermal melanocytes 107 326

dermal fibroblasts 92 358

dermal keratinocytes 91 374
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incorporate three more sets of attributes that have not
been extensively explored, including (i) the nucleosome
positioning propensities of the CpG island, (ii) the acetyla-
tion status of nearby histones, and (iii) the functional roles
of nearby genes. In the following paragraphs, we describe
how these features are extracted.
General attributes
Three attributes, including the GC content, length and
observed/expected CpG ratio, are directly obtained from
UCSC human genome browser for each CpG island
[22].
DNA sequence composition
We use the tetramer frequencies and their correspond-
ing z-scores to characterize the DNA composition pat-
terns of the CpG island. The z-score of a tetramer, Z
(N1N2N3N4), depicts how much the observed frequency
of the tetramer N1N2N3N4, O(N1N2N3N4), deviates from
its expected frequency E(N1N2N3N4).

Z(N1N2N3N4) =
O(N1N2N3N4) − E(N1N2N3N4)

σ (N1N2N3N4)
(1)

where E(N1N2N3N4) is approximated by using a maxi-
mal-order Markov model [23]:

E(N1N2N3N4) =
O(N1N2N3)O(N2N3N4)

O(N2N3)
(2)

and the standard deviation s(N1N2N3N4) is calculated
based on the observed frequencies of dimers and trimers:

σ (N1N2N3N4) = E(N1N2N3N4)∗ [O(N2N3) − O(N1N2N3)][O(N2N3) − O(N2N3N4)]
O2(N2N3)

(3)

Altogether, we extract 512 features about DNA
sequence composition, including 256 for tetramer fre-
quencies and 256 for their z-scores.

Conserved TFBS’s and conserved elements
The distribution patterns of the conserved TFBS’s and
conserved elements in the CpG island and the flanking
regions are also taken into account. Here a conserved
TFBS refers to one that is conserved in human, mouse
and rat genomes [24]; and there are 258 such TFBS’s that
can roughly be grouped into 115 groups according to their
function similarity [10]. Also, a conserved element refers
to a genomic segment (other than TFBS) that is conserved
across vertebrate, insect, worm and yeast genomes [15].
Each conserved TFBS or conserved element is character-
ized by a score quantifying its degree of conservativeness.
We consider both the short- and long-range associations
between these elements and CpG islands, and therefore
select the flanking regions of various lengths (ranging
from 100 bps to 2,000 bps with an increment of 100 bps)
upstream and downstream of each CpG island. Given a
CpG island (and its flanking region of a particular length),
for each TFBS group (or conserved element), we count
the number of TFBS’s (or conserved elements) that over-
lap with this CpG island (and its flanking region) and the
average score of these TFBS’s (or conserved elements).
Therefore, in terms of conserved TFBS’s and conserved
elements, each CpG island is characterized by 210 (115 ×
2, for conserved TFBS’s) plus two features (for conserved
elements).
Structural properties
We focus on those basic characteristics that capture the
DNA 3-D conformation and newly added nucleosome
positioning propensities. The DNA conformation related
features measure the twist, tilt, roll, shift, slide and rise
propensities of dinucleotides [25]. For each of these six
features, the average value over all dinucleotides in the
CpG island is used.

Figure 1 Workflow used for the prediction of the methylation status of CpG island in human genome. The CpG island map is obtained
by applying the traditional Gardiner-Garden sequence criteria on non-repetitive sequences of the human genome. The core steps of our model
development consist of three parts - feature extraction, feature selection and predictive modeling.
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Due to an accumulating body of evidence showing
that DNA methylation is influenced by nucleosome
positioning propensities [26], we also investigate these
features. Nucleosome positioning propensities of the
CpG islands are estimated based on the genome-wide
prediction of the nucleosome organization map [27].
There are two types of predictions, one at the nucleotide
level, and the other at the DNA fragment level. The
nucleotide level prediction regards the probability of
each nucleotide being covered by any nucleosome,
based on which we calculate the mean and standard
deviation over the entire CpG island. The fragment level
prediction regards the nucleosome positioning potential
of each 147 bp (typical length of a nucleosome) DNA
fragment, based on which we calculate the mean and
standard deviation over all fragments overlapping with
the CpG island. Altogether, we extract four features
regarding nucleosome positioning propensities.
Functional roles of nearby genes
Since DNA methylation is heavily involved in biological
processes such as tumor suppressor gene silencing
[28,29], we examine whether a CpG island’s nearby genes
are involved in any cancer-related biological processes. A
CpG island’s nearby genes refer to those whose promoter
region (from the 1,000 bps upstream to the 200 bps
downstream of the transcription start site) overlaps with
the CpG island. 37 biological processes (30 oncogene
related, 11 tumor suppressor related, and 4 common) are
determined through gene ontology enrichment analysis
of the genes retrieved from the Cancer Gene Census [30].
If the gene ontology annotations of a gene include one or
more of these processes, the corresponding gene function
feature is 1 and 0 otherwise. We have two features for
functional roles of nearby genes, one for oncogene
related and the other for tumor suppressor gene related
biological processes.
Histone methylation and acetylation
We consider the methylation status of each CpG island’s
nearby histones. The histone methylation information is
obtained from Barkski et al’s data set, which characterizes
the genome wide distribution of 20 histone methylations
as well as histone variant H2A.Z, RNA polymerase II,
and the insulator binding protein CTCF in CD4 lympho-
cytes [31].
Since DNA methylation has also been observed to be

associated with histone acetylation [32], we further
include the histone acetylation features in the feature set.
The histone acetylation information is obtained from
Wang et al.’s data set [33], which characterizes the gen-
ome-wide patterns of 18 histone acetylations in CD4
lymphocytes.
In both data sets, a nucleotide is tagged if its nearby

histone undertakes a methylation or acetylation modifica-
tion; hence, the number of tags at each nucleotide can be

interpreted as being proportional to the modification
level of nearby histones. We use the average and standard
deviation of the number of tags over all nucleotides of a
CpG island to represent the methylation (or acetylation)
level of the CpG island’s nearby histones. Altogether, we
have 46 features for histone methylation and 36 features
for histone acetylation.

Feature selection
Altogether, we generate 841 features using the above
procedure as summarized in Table 2. Compared to the
size of our training data set (see Table 1), this dimen-
sion of the feature space is prohibitively high, which will
potentially lead to classifier designs that are too expen-
sive to implement or that cannot well generalize to
unseen data. Therefore, we perform a two-step feature
selection procedure, where the statistical test is used to
select those features that are highly correlated with the
methylation status of CpG islands, and PCA is used to
minimize the redundancy in the features.

Statistical test
Three statistical tests, Fisher’s exact [34], Chi-squared [35]
and Kolmogorov-Smirnov (KS) tests [36], are used to
identify those features whose statistical patterns are signifi-
cantly different between the positive and negative datasets.
Specifically, the Fisher’s exact tests are used for functional
roles of nearby genes, for which the feature variable is
categorical and some expected values in the contingency
tables are extremely small (< 5). The Chi-squared tests are
applied to categorical features, including the number of
conserved TFBS’s and conserved elements. And, the KS
tests are applied to the numeric features, including CpG
island general attributes, DNA sequence composition fea-
tures (frequencies and z-scores), average scores of con-
served TFBS’s and conserved elements, structural
properties, histone methylation and histone acetylation. A
feature is selected if the p-value rendered by the statistical
test is less than 0.05.

PCA
Although statistical tests may identify those features
showing correlation with the CpG island methylation, the
identified features might be inter-correlated themselves.
For example, DNA sequence and structure properties are
likely to be correlated, because most DNA structures are
predicted based on DNA sequences. The histone methy-
lation and acetylation status are likely to be correlated,
because some acetylation and methylation (e.g. histone
H3 at lysine 9) play opposite roles in gene activity [37].
The correlation between features makes the feature space
unnecessarily high-dimensional. To minimize the redun-
dancy in the features, we perform the PCA on those
methylation-related features that are selected via the
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above statistical tests. The PCA uses an orthogonal trans-
formation to convert a set of values of possibly correlated
dimensions into a set of values of uncorrelated dimen-
sions called principal components [38]. After PCA trans-
formation, the feature components are completely
decorrelated, and the information contained in the origi-
nal feature space before the transformation is maximally
retained in the first several number of components of the
new feature space. Therefore, by keeping only the first
several components of the new feature space, most of the
information can still be retained while the redundancy in
the feature collection is greatly removed and the dimen-
sionality of the feature space is greatly reduced.

Model training, validation and testing
After feature selection through statistical tests and PCA,
each CpG island is represented by a multi-dimensional
feature vector that corresponds to the retained principal
components. The feature is then fed to the models to
predict the methylation status of the CpG island. To
examine the contribution of the newly added features as
well as the impact of the inhibitive-to-acquire histone
modification information, we establish 16 models, (1) M1:
with all information being incorporated, (2) M2: with all
but the histone modification information being incorpo-
rated, (3) M3-M9: models with individual or combina-
tions of the newly added features being excluded, and (4)
M10-M16: models with individual or combinations of the
newly added features as well as the histone methylation
information being excluded. Each model is based on the
SVM, and outputs binary results indicating whether the
CpG islands are methylated or unmethylated and contin-
uous results ranging from 0 (minimum) to 100 (maxi-
mum) indicating the methylation intensities of the CpG
islands. Given the binary predictions provided by a

model and the true methylation status as specified in the
HEP data set for a group of CpG islands, we can estimate
the specificity, sensitivity and accuracy of the model as in
Eqns. (4)-(6):

SP =
#correctly classified unmethylated CpG islands

#unmethylated CpG islands
(4)

SE =
#correctly classified unmethylated CpG islands

#methylated CpG islands
(5)

ACC =
#correctly classified CpG islands

#CpG islands
(6)

where SP, SE, ACC stand for specificity, sensitivity and
accuracy, respectively. And, given the continuous predic-
tions and the true methylation intensities of the CpG
islands, we can calculate their correlation coefficient as:

CC =
cov(predicted status, actual status)

σpredicted status ∗ σactual status
(7)

where CC stand for correlation coefficient, cov(·)
denotes the covariance, and s denotes the standard
deviation. Note that the specificity reflects the model’s
capabilities in dealing with the negative (unmethylated)
data - a high specificity measure implies that a predicted
unmethylated CpG island is highly likely truly unmethy-
lated. And the sensitivity reflects the models’s capabil-
ities in dealing with the positive (methylated) data - a
high sensitivity measure implies that a predicted methy-
lated CpG island is highly likely truly methylated.
Whereas, the accuracy and correlation coefficient reflect
the model’s overall capabilities in dealing with all types
of CpG islands - high accuracy and high (close to one)

Table 2 Number of features in each category and information resource for the feature extraction.

Category #
Features

Resource

General attributes 3 Gardiner-Garden criteria [19], obtained from UCSC Genome Browser

DNA sequence
composition

tetramer frequency 256 calculated by in-house code based on definition

tetramer z-score 256 calculated by in-house code based on formula (1)-(3)

Conserved TFBS’s/
elements

conserved TFBS’s 230 calculated by in-house code based on UCSC information [24]

conserved elements 2 calculated by in-house code based on conserved elements [15] from
UCSC

Structural properties DNA 3-D conformation 6 calculated by in-house code based on formula [25]

nucleosome positioning
propensity

4 calculated by in-house code using nucleosome organization map [27]

Functional roles of nearby genes 2 calculated by in-house code for enrichment analysis

Histone modifications histone methylation 46 calculated by in-house code based on the data set from [31]

histone acetylation 36 calculated by in-house code based on the data set from [33]
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correlation coefficient implies that the predictions are
highly likely true.
Training/validation
All these models are trained and validated by using the
CD4 lymphocyte data with a 10-fold cross validation
scheme. The 469 CpG islands are randomly partitioned
into 10 approximately equally-sized folds. Each fold is
used in turn for validation while the remaining folds are
used for training. The performance of the model is
assessed based on the data in the validation fold. This
partition-training-and-validation procedure is repeated
for 20 times, and the performance of the model (in
terms of specificity, sensitivity, accuracy and correlation
coefficient) is averaged over the 200 validation folds (10
validation folds per partition ×20 partitions).
Generalizability test
Two predictive models built on the CD4 lymphocyte
data, M1 (using all information) and M2 (using all but
histone modification information), are also tested for
generalizability using the data of the other 11 tissues and
cell types. For generalizability testing on M1, we apply
the histone modification information of the CD4 lympho-
cyte to the other 11 tissues and cell types because corre-
lation analysis by ourselves and others has indicated that
histone modifications exhibit modest to strong correla-
tions for different cell lines [39,13]. The generalizability
performance of the model is also measured in terms of
specificity, sensitivity, accuracy and correlation coeffi-
cient, which are averaged over all the models constructed
from all the above training/validation partitions.

Results and discussions
Statistical tests and PCA
Out of a total number of 841 features, 342 features are
retained whose p-values in the statistical tests are less
than 0.05. These features include two of the CpG island
specific attributes, 217 DNA sequence compositional fea-
tures, and eight DNA structural features, 35 features
regarding the conserved TFBSs, two features regarding
the conserved elements, two features regarding the func-
tional roles of the neighboring genes, and 76 features
related to the modification status of nearby histones. Par-
ticularly, among the newly added features, two out of the
four nucleosome positioning features, all of the 36 his-
tone acetylation features, and both of the features regard-
ing the functional roles of the neighboring genes are
retained after statistical tests.
PCA is performed on these 342 selected features to

minimize their correlations. Table 3 summarizes the
number of principal components that must be retained
to keep a certain percentage of the variance of the ori-
ginal feature space. Observe that the first eight princi-
pal components together can account for the ~99.90%
of the total variance and are therefore used to build

the predictive models. Figure 2 depicts the contribution
of each of the 342 original feature dimensions to the
eight principal components. Observe from Figure 2
that each of the following categories of features, (i) the
CpG island general attributes, (ii) DNA sequence com-
position, (iii) distribution of the conserved TFBS’s and
conserved elements, (iv) DNA structure patterns, (v)
gene functions, (vi) histone methylation and acetylation
status, makes substantial contributions to one or more
principal components, suggesting that these categories
of information, though correlated, are complementary
to a certain extent for predicting the CpG island
methylation.

Performance of the predictive models based on the CD4
lymphocyte data
The specificity, sensitivity, accuracy and correlation
coefficient measures of our predictive model M1 that
incorporates all information are summarized in Table 4.
The performance of our classifier is compared to that of
Fan et al.’s method (which is based on a similar set of
features and represents the state of the art [13]). Note
that both models have incorporated the histone modifi-
cation information. Observe that our model shows an
improved specificity and accuracy while maintaining a
comparable sensitivity.
We could argue that the improvement of our model

M1 over the existing model is partly due to the incor-
poration of the three new types of features - nucleosome
positioning propensities, gene functions, and histone
acetylation status. The performance of our models M3

through M9, each with an individual or a combination
of the new types of features being excluded, are sum-
marized in Table 5. Observe that the performance of
the predictive model deteriorate to different extents
when individual or combinations of the newly added
features are excluded. Specifically, the models without
histone acetylation information (M3, M6, M7, and M9)
deteriorate more than those models with histone acety-
lation information but without the other two types of
newly added features (M4, M5, and M8). Therefore, his-
tone acetylation appears to be the most influential fea-
ture to the performance of the predictive model among
the newly added features.

Table 3 Number of principal components (PCs) required
to retain a certain percentage (Pcnt) of the variance of
the original feature space of the 342 features selected
through statistical tests.

Pcnt 100% 99:99% 99:90 99:00%

PCs 342 10 8 6

Pcnt 95:00% 90:00 75:0% 50:00%

PCs 5 4 3 2
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We suspect that the information carried by the histone
methylation features is too dominant to fairly assess the
influence of these newly added features; and therefore
exclude the histone methylation features and repeat the
above experiments excluding individual or combinations
of the newly added features. The resultant models are M10

through M16, and their performance is summarized in
Table 5. Similarly, the models without an individual or a
combination of the newly added features deteriorate. It is
noteworthy that (1) the histone methylation and acetyla-
tion information greatly affect the sensitivity of the mod-
els, and (2) the loss of histone methylation information
could largely be made up by including the histone acetyla-
tion information. This is not surprising, given that these
two forms of histone modifications are closely related as
repeatedly observed in various tissues and cell types [37].

Classifier generalizability
The two predictive models, one with the histone modifi-
cation information (M1) and the other without (M2), that
are both built on the human CD4 lymphocyte data are
then tested on the data of the other 11 tissue and cell

types for their generalizability. The sensitivity, specificity,
accuracy and correlation coefficient of M1 and M2 during
these testing experiments are summarized in Tables 6
and 7.
When the histone modification information is incorpo-

rated, the classifier model built on the CD4 lymphocyte
data can be applied to most of the other tissues and cell
types (except for sperm) with little or no performance
deterioration. When the histone modification informa-
tion is not used, the performance of the predictive model
on the data of the other tissues and cell types deteriorate
substantially, especially in terms of the sensitivity. How-
ever, if compared to the validation results where the his-
tone modification information is not used (see Table 3),
the performance on the testing data is not unexpected.
Therefore, with or without the histone modification
information, the predictive model established on the CD4
lymphocyte data can well generalize to the other tissue or
cell type data.
Considering that DNA methylation is heavily involved

in cellular differentiation, our results in Tables 6 and 7
may look suspicious. We therefore count the number of
differentially methylated CpG islands (Table 8) and cal-
culate the correlation of the CpG island methylation
levels between any two different tissue and cell types
(Figure 3). Observe that between somatic/placenta cells,
the number of differentially methylated CpG islands is
small and the correlation coefficients are very high,
whereas between the somatic/placenta and sperm cells,

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8CpG island specific

DNA composition

DNA structure
TFBS

Evolutionarily conserved
Function of nearby genes

Histone methylation

Histone acetylation
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2 Contribution of the 342 features to the eight principal components. Each column corresponds to a principal component, and
each row corresponds to an original feature dimension. All feature categories make substantial contributions to one or more principal
components, suggesting that these categories of information, though correlated, are complementary to a certain extent for predicting the CpG
island methylation.

Table 4 Performance of our classifiers M1 on CD4
lymphocytes with comparison to the existing method.

Method SP SE ACC CC

M1 0.9405 0.9257 0.9313 0.8302

Fan et al.’s [13] 0.7400 0.9428 0.8994 -
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the number of differentially correlated CpG islands is
relatively larger and the correlation coefficients is rela-
tively lower. This suggests that the methylation status of
CpG islands are highly correlated in various somatic/pla-
centa cells, and therefore do not represent tissue-specific
differentially methylated regions. Our observations are
consistent with recent studies [17,40] that there are few
variance in methylation levels of autosomal CpG island
promoters, and there is only a relatively small fraction of
CpG islands with tissue-specific methylation. The differ-
ence between the somatic/placenta and sperm cells, as
reflected by their moderate cross-correlations and the
performance deteriorations of our prediction models
being applied to the sperm cell data, suggests that

gametes are epigenetically more deviated from somatic
cells than somatic cells themselves. This difference is
likely related to the meiotic process, the special condi-
tions and gene expression required for gamete produc-
tion [41].

Conclusions and future works
The establishment of DNA methylation pattern is a cru-
cial part of cell differentiation and organ development,
suppression of viral genes and deleterious elements, and
carcinogenesis. Computational prediction of DNA
methylation levels provides an effective, fast and cheap
alternative approach for studying the DNA methylation
patterns. In this study, we perform the computational

Table 5 Performance of the predictive models (M3 through M16), each with an individual or a combination of the
newly added categories of features being excluded.

Features SP SE ACC CC

Histone Methylation Retained All retained 0.9405 0.9257 0.9313 0.8302

Acetylation (M3) 0.9012 0.8965 0.9046 0.7852

Functional role (M4) 0.9302 0.9265 0.9210 0.8038

Nucleosome (M5) 0.9270 0.9250 0.9205 0.8024

Acetylation+Functional (M6) 0.8791 0.8903 0.8897 0.7632

Acetylation+Nucleosome (M7) 0.8698 0.8835 0.8826 0.7625

Functional+Nucleosome (M8) 0.9186 0.9116 0.9186 0.8012

All three (M9) 0.8685 0.8822 0.8786 0.7558

Histone Methylation Excluded All but histone methylation 0.9318 0.5932 0.8575 0.6404

Acetylation (M10) 0.9670 0.2247 0.8001 0.3302

Functional (M11) 0.9092 0.5670 0.8312 0.6124

Nucleosome (M12) 0.9078 0.5660 0.8296 0.6076

Acetylation+Functional (M13) 0.9320 0.2279 0.7862 0.3236

Acetylation+Nucleosome (M14) 0.9266 0.2304 0.7641 0.3264

Functional+Nucleosome (M15) 0.8990 0.5519 0.8232 0.5924

All three (M16) 0.8972 0.2338 0.7352 0.3013

Specificity (SP), sensitivity (SE) and accuracy (ACC) are evaluated for binary classification, and correlation coefficient (CC) for regression models.

Table 6 Performance of the classifier model and the influence of newly added features on the data of 11 different
tissues and cell types: with histone modification.

Procedure Tissue/Cell Type with added features without added features

SP SE ACC CC SP SE ACC CC

Validation CD4 0.9405 0.9257 0.9313 0.8302 0.8685 0.8822 0.8786 0.7558

Testing CD8 0.9608 0.8932 0.9448 0.8286 0.8692 0.8534 0.8758 0.7476

liver 0.9680 0.8762 0.9465 0.8292 0.8512 0.8468 0.8698 0.7398

heart muscle 0.9462 0.9479 0.9466 0.8342 0.8678 0.8796 0.8724 0.7542

skeletal muscle 0.9542 0.9451 0.9524 0.8411 0.8714 0.8923 0.8895 0.7612

embryonic skeletal 0.9395 0.9367 0.9389 0.8337 0.8676 0.8802 0.8774 0.7553

embryonic liver 0.9259 0.9342 0.9277 0.8250 0.8490 0.8834 0.8683 0.7324

placenta 0.9695 0.9130 0.9571 0.8412 0.8704 0.8742 0.8802 0.7597

dermal melanocytes 0.9663 0.8785 0.9446 0.8401 0.8677 0.8792 0.8726 0.7498

dermal fibroblasts 0.9525 0.9239 0.9467 0.8332 0.8625 0.8792 0.8656 0.7478

dermal keratinocytes 0.9385 0.9341 0.9376 0.8310 0.8505 0.8690 0.8502 0.7371

sperm 0.8459 0.9778 0.8617 0.7204 0.7115 0.8992 0.7508 0.6052
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prediction of the CpG island methylation by incorporat-
ing additional features and effectively selecting and dec-
orrelating the features. We incorporate the information
regarding the nucleosome positioning propensity, acetyla-
tion status of nearby histones, and the functional roles of
nearby genes. These features are first screened through
statistical tests and PCA. The most DNA methylation-rele-
vant yet non-intercorrelated features are subsequently
used to build computational models to predict the methy-
lation status of CpG islands. Our experiments on the HEP
data set demonstrated that (1) an eight-dimensional fea-
ture space, which combines all the eight categories of
information, is effective in predicting the methylation sta-
tus of CpG islands; (2) by incorporating the information
regarding the nucleosome positioning propensities, gene
functions, and histone acetylation, our predictive model
achieves a higher specificity and accuracy than the existing
model while maintaining a comparable sensitivity; (3) the

histone modification attributes carry a weight of informa-
tion for the prediction, without which the performance of
the predictive model deteriorates substantially in terms of
sensitivity; (4) with or without the histone modification
information, the performance of the predictive models are
consistent on the validation and testing data.
Though it is known that DNA methylation is heavily

involved in the normal development and differentiation, as
well as in the onset and progression of diseases, the exact
mechanisms are yet to be discovered. It will certainly help
to accelerate biomedical investigations if we can, through
computational predictions, comparative analyses, and evo-
lutionary studies, identify those DNA regions whose
methylation variation patterns are correlated with, indica-
tive of, and underlying of the variations in gene expres-
sions, histone modifications and chromatin structures that
are related to normal development, cell differentiation,
genome imprinting, X-chromosome inactivation, and

Table 7 Performances of the classifier model and the influence of newly added features on the data of 11 different
tissues and cell types: without histone modification.

Procedure Tissue/Cell Type with added features without added features

SP SE ACC CC SP SE ACC CC

Validation CD4 0.9670 0.2247 0.8001 0.3302 0.8972 0.2338 0.7352 0.3013

Testing CD8 0.9722 0.2108 0.8104 0.3325 0.8978 0.2284 0.7350 0.3009

liver 0.9678 0.2143 0.8122 0.3328 0.8965 0.2325 0.7298 0.3005

heart muscle 0.9562 0.2386 0.8186 0.3402 0.8804 0.2468 0.7190 0.3001

skeletal muscle 0.9594 0.2364 0.8306 0.3268 0.8874 0.2476 0.7268 0.3003

embryonic skeletal 0.9425 0.2298 0.8100 0.3228 0.8805 0.2406 0.7222 0.3002

embryonic liver 0.9389 0.2306 0.8054 0.3217 0.8796 0.2512 0.7350 0.3015

placenta 0.9655 0.2184 0.8276 0.3450 0.9004 0.2216 0.7398 0.3128

dermal melanocytes 0.9700 0.2186 0.8156 0.3358 0.8986 0.2306 0.7354 0.3027

dermal broblasts 0.9605 0.2200 0.8058 0.3286 0.8902 0.2276 0.7308 0.3016

dermal keratinocytes 0.9425 0.2204 0.8095 0.3325 0.8854 0.2304 0.7304 0.3013

sperm 0.8524 0.2365 0.7625 0.2678 0.7906 0.2408 0.6705 0.2317

Table 8 The number of CpG islands that are differentially methylated in any two tissues among 321 common CpG
islands for all the 12 tissues.

Tissue CD4 CD8 DF DK DM EL ESM HM Liver Placenta SM Sperm

CD4 0 0 5 6 4 0 3 0 2 0 0 28

CD8 0 0 7 7 6 0 5 2 3 1 0 32

DF 5 7 0 4 2 4 1 1 6 1 1 26

DK 6 7 4 0 6 5 4 2 7 2 2 28

DM 4 6 2 6 0 4 4 1 4 1 2 32

EL 0 0 4 5 4 0 3 0 2 0 0 24

ESM 3 5 1 4 4 3 0 1 4 1 0 24

HM 0 2 1 2 1 0 1 0 2 0 0 25

Liver 2 3 6 7 4 2 4 2 0 3 2 29

Placenta 0 1 1 2 1 0 1 0 3 0 0 22

SM 0 0 1 2 2 0 0 0 2 0 0 22

Sperm 28 32 26 28 32 24 24 25 29 22 22 0

DF: dermal fibroblasts, DK: dermal keratinocytes, DM: dermal melanocytes, EL: embryonic liver, ESM: embryonic skeletal muscle, HM: heart muscle, SM: skeletal
muscle.
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phenotypic changes, respectively. This computational
model, with its evidently high specificity and sensitivity,
provides an effective tool for identification of new methy-
lation targets and therefore lays foundation for our future
endeavors in the regulation mechanisms of DNA
methylation.
Availability
An standalone program for the CpGIMethPred is freely
available for download at http://users.ece.gatech.edu/
~hzheng7/CGIMetPred.zip. Given the chromosome loca-
tion (hg18) of a CpG islands, CpGIMethPred is able to
predict the methylation status of it.
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