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Abstract

Background: Over 10,000 long intergenic non-coding RNAs (lincRNAs) have been identified in the human
genome. Some have been well characterized and known to participate in various stages of gene regulation. In the
post-transcriptional process, another class of well-known small non-coding RNA, or microRNA (miRNA), is very
active in inhibiting mRNA. Though similar features between mRNA and lincRNA have been revealed in several
recent studies, and a few isolated miRNA-lincRNA relationships have been observed. Despite these advances, the
comprehensive miRNA regulation pattern of lincRNA has not been clarified.

Methods: In this study, we investigated the possible interaction between the two classes of non-coding RNAs.
Instead of using the existing long non-coding database, we employed an ab initio method to annotate lincRNAs
expressed in a group of normal breast tissues and breast tumors.

Results: Approximately 90 lincRNAs show strong reverse expression correlation with miRNAs, which have at least
one predicted target site presented. These target sites are statistically more conserved than their neighboring
genetic regions and other predicted target sites. Several miRNAs that target to these lincRNAs are known to play
an essential role in breast cancer.

Conclusion: Similar to inhibiting mRNAs, miRNAs show potential in promoting the degeneration of lincRNAs.
Breast-cancer-related miRNAs may influence their target lincRNAs resulting in differential expression in normal and
malignant breast tissues. This implies the miRNA regulation of lincRNAs may be involved in the regulatory process
in tumor cells.

Background
Deep sequencing data from the Encyclopedia of DNA Ele-
ments Consortium (ENCODE) suggests that 70-80% of
the human genome can be transcribed, and non-protein-
coding RNAs (ncRNA) exceed the number of protein-
coding genes [1]. The recent discovery of a large number
of non-coding RNAs (ncRNAs) significantly enriches the
portfolio of potential genetic factors. Rather than being
transcriptional noise, many ncRNAs serve as master

regulators that affect expression levels of dozens or even
hundreds of target genes [2-7]. These regulatory RNAs
integrate signals from both genetic and environmental fac-
tors, and therefore can play major roles in controlling bio-
logical processes [8]. Most notably, a strong association of
epigenetic marks with long intergenic non-coding RNAs
(lincRNAs >200 nucleotides) in humans and mice was
recently described [9-11]. The lincRNAs show evolution-
ary conservation and spatiotemporally restricted expres-
sion patterns, implying that they are functional and
regulated. These lincRNAs are reported to regulate dosage
compensation, imprinting, and development by establish-
ing chromatin domains in an allele- and cell-type specific
manner [12,13]. According to an analysis on half-lives,
lincRNAs are more stable than intron-derived long
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noncoding RNAs, as they are usually spliced, which also
suggest widespread functionality [14].
In two recent studies, over 10,000 lincRNA regions were

identified in human and mouse genomes. These regions
were discovered based on epigenetic marks, where the
promoter mark H3K4me3 is followed by the transcript
mark H3K36me3. Comparative genomics analysis suggests
that a significant portion of these regions do not have
strong protein coding potentials, and do not have
sequence homology with other known proteins [2]. The
K4-K36 signature indicates that the transcription of these
non-coding RNAs is regulated in a similar fashion as
protein-coding genes. Although the molecular mechan-
isms through which most lincRNAs function were
unknown, diverse regulatory mechanisms have been
reported for several well-characterized lincRNAs [15,16].
By targeting the chromatin modification complexes and
RNA-binding proteins (XIST, AIR) [17,18], they can inhi-
bit gene expression (HOTAIR, DBE-T) [12,19], and con-
trol alternative splicing (MALAT-1) [20]. In addition,
some lincRNAs are found to be differentially expressed
(HOX) or coactivate other proteins (SRA) in tumor cells
[10,21], and are reported to be strongly associated with
tumorigenesis [22,23].
MicroRNA (miRNA) is another type of noncoding RNA

whose biological functions have been extensively studied.
MiRNAs are ~22nt small non-coding RNAs [24] that pro-
mote mRNA degeneration and/or inhibit their translation
by complementarily binding on the 3’ un-translated region
(3’UTR) of mRNAs [25] and attracting RNA-induced
silencing complex (RISC). In the past decades, over one
thousand miRNAs have been identified [25,26]. They are
broadly related with regular cell functions and diseases
[27-30].
Despite the extensive investigation on the roles of miR-

NAs in regulating protein-coding genes, only a few iso-
lated non-coding transcripts (CDR1 antisense and MEG3)
are reported to be regulated by miRNA [31,32]. Though
CDR1 antisense is not an intergenic ncRNA, and MEG3 is
indirectly regulated by miR-29, these discoveries encour-
aged us to explore the potential roles of miRNA in regu-
lating non-specific lincRNA expression. Because the
primary mechanism of miRNA regulation is by targeting
RNA for degradation [33], they are likely to also broadly
regulate lincRNA expression. In fact, 5% of genomic
regions interacting with argonaute proteins are located in
non-coding RNAs [34]. The argonaute protein family is
one of the major components of the RNA-induced silen-
cing complex (RISC) that is responsible for gene silencing
due to miRNA expression and RNA interference [35]. In
this study, we intend to generally investigate the potential
roles of miRNAs in regulating the lincRNA expression.
GENCODE project and NONCODE database have

both collected and integrated long noncoding RNA

annotations[36,37]. Based on GENCODE annotation,
miRcode provides a map of possible miRNA targets on
long noncoding RNAs by using multiple bioinformatics
prediction software [38]. However, in tissue-specific
lincRNA studies, the ab initio approach is usually
employed to reconstruct the annotation of lincRNAs
from the RNA-seq data [2,3,39]. Considering that
lincRNA shows a high tissue or cell-specific expression
pattern [3], this approach is also appropriate for our
study.
RNA-seq experiments sequence millions to billions of

short RNA fragments in a single experiment, by which it
measures the expression levels of the whole transcriptome,
including noncoding RNAs, without relying on detailed
annotation. To explore the potential miRNA-lincRNA
expression relationship, we analyzed RNA-seq data from a
group of normal and malignant breast tissues. Random
primers were used in the reverse transcription step, and
the strands of the transcripts were preserved to aid in
identifying non-coding RNAs that are not poly-adenylated.
Due to their small size (~22nt), the mature miRNAs were
not included in the sequencing libraries. However, our
data suggested that we can detect precursor miRNAs (80-
120nt) from these RNA-seq data sets. For lincRNAs, the
sequence fragments across two exons of the transcripts
(junction reads) are able to reveal exon boundaries, espe-
cially novel ones. This feature helps us to understand the
splicing patterns of unannotated lincRNAs. Several tools
have been developed for mapping junction reads [40],
detecting the splicing events, assembling isoforms and esti-
mating expression [41,42].
In this study, for each putative miRNA-lincRNA pair, (1)

we required reverse correlation between the expression
levels of pre-miRNA and lincRNA within the 20 examined
tissue samples. This is due to the well-established roles of
miRNAs in facilitating RNA degradation on protein cod-
ing genes; and (2) we also required seed sequence of the
miRNA (positions 2-7 on the miRNA) should be present
in the exon regions of identified lincRNA, and the sur-
rounding sequences on the lincRNA should also favor
miRNA targeting conditions. We further examined the
evolutionary conservation of the identified miRNA seeds
in lincRNAs.

Results
Overall strategy
In order to investigate the potential relationships between
miRNA and lincRNA, we used RNA-seq data from 20
samples, including 10 breast tumor samples, and 10 breast
tissues from healthy pre-menopausal volunteers with no
history of disease; these normal tissues were obtained
from the Susan G. Komen for the Cure® Tissue Bank at
the IU Simon Cancer Center. As shown in Figure 1, our
analysis includes the following steps: (1) Sequence
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alignment. RNA-seq reads were aligned to the human gen-
ome (hg18) and transcriptome using a customized pipeline
by a TopHat-like strategy with BFAST as the primary
aligner [40,43]. (2) Candidate lincRNA identification.

LincRNA identification focuses on the noncoding regions
showing a K4-K36 signature from previous studies [2,3].
To ensure the key properties of lincRNAs (intergenic,
detectable transcription activities, and no coding
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Figure 1 The schematics of the overall study.
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potentials), the regions were further filtered by their
distance to the nearest known gene, signal levels from
RNA Polymerase II (RPolII) ChIP-seq data, and coding
substitution frequency (CSF) scores. (3) Reconstructing
lincRNA exonic structures. In these candidate lincRNA
regions, we reconstructed the lincRNA transcript by
searching the potential splicing events supported by RNA-
seq novel junction reads around the putative exons. (4)
MiRNA binding sites were predicted on lincRNA
sequences derived from transcript reconstruction. (5)
Expression levels of mRNAs, lincRNAs and miRNAs were
estimated based on the number of RNA-seq reads falling
into their respective genomic regions. (6) Relationships of
the expression levels of the mRNA/lincRNA-miRNA pairs
were estimated using a generalized linear model (GLM).
(7) The conservation features of the predicted miRNA
sites were evaluated on the pairs showed a significant
reverse correlation on their expression (Figure 1).

LincRNA annotation
Based on the RNA-seq data, the discovery of lincRNAs in
breast tissue includes the following steps: (1) Epigenetic
marks and comparative genetics. As reported previously,
thousands of lincRNAs have been discovered by searching
for the genomic regions with enhanced promoter marks
(H3K4me3, or K4) following the transcript marks
(H3K36me3, or K36). Our analysis started from 2,513
intergenic K4-K36 regions in the human genome (hg18)
and 1,665 intergenic K4-K36 regions in the mouse genome
(mm9) from previous studies [2,3]. We further mapped
the mouse intergenic K4-K36 regions to 1,502 genomic
loci in human genome using the liftOver tool in the UCSC
Genome Browser [44]. LiftOver can convert genomic
coordinates between selected assemblies of the same or
different species. After merging the two sources of K4-K36
regions and removing the ones near or overlapping with
known genes, 3,096 candidate lincRNA regions remained.
(2) Evidence of transcriptional activity in other breast

cancer cell lines. We have previously reported genome-
wide binding patterns of RNA polymerase II (RPolII) in
MCF7 cell lines [45], derived from chromatin immuno-
precipitation following high throughput sequencing
technology (ChIP-seq). Although not directly measure
the transcriptional activity for the tissues being
measured, the RPolII signals in the MCF7 provide fair
estimation in breast cells. We infer the lincRNA tran-
scriptional activity by counting the number of ChIP-seq-
derived RPolII tags falling into the lincRNA genomic
regions; these counts were further normalized by the
length of the lincRNA and the total number of reads for
the sample (similar to the RPKM measure in RNA-seq
studies [46-48]). Consistent to the results from previous
studies [45], the lincRNAs show intermediate transcrip-
tional activities between protein coding genes and

random genomic regions (Figure 2a). We focused our
further analysis on the 2,120 lincRNAs (out of 3,096)
whose RPolII signal intensities were more than 0.1
RPKM.
(3) Coding potential. We evaluated coding potentials of

the identified lincRNA regions using the methods pre-
sented in [49,50]. By modeling the mammalian Codon
Substitution Frequency (CSF) of transcript regions and
random genomic regions, a CSF score was calculated for
each region to represent the codon substitution pattern of
the region. A higher CSF score indicates higher potential
for being a protein coding gene. The coding potentials of
the lincRNA regions are slightly but significantly higher
than the ones in random genomic regions (p < 5.4e-07,
Wilcoxon test on CSF scores), while the coding potential
of protein-coding genes is much higher than lincRNA
regions (Figure 2b). For further analysis, we excluded 47
regions with high CSF scores >20; these regions may
represent protein-coding genes that are not included in
the current annotation database.
We used Scripture [42] for reconstructing lincRNA exon

structures from RNA-seq data. Scripture scans read-
enriched regions as putative exons and finds exon bound-
aries supported by the reads across potential junctions.
Scripture identified 525 lincRNAs in the 2,073 candidate
regions; this percentage is comparable with the lincRNAs
identified by previous studies in other tissues. The geno-
mic coordinates of these lincRNAs are listed in Additional
file 1. The average lincRNA length is 1201.7 bases, 75.2%
of which are shorter than 1000 bases. The longest
lincRNA has 32,178 bases. The lincRNAs are composed
by 7.12 exons on average. The mean exon length is 168.8
bases. Almost half (46.7%) of the exons are shorter than
100 bases, with the longest has 5,242 bases. The annotated
lincRNAs show a very similar expression patterns compar-
ing with exons and introns with protein-coding genes (Fig-
ure 2c). Although lincRNAs are less conserved comparing
to protein coding genes, their exons are significantly more
conserved than introns (p < 0.0035) and random genome
regions (p < 1.35e-14) (Figure 2d). These results provide
strong evidence that the lincRNA is functional.

Target prediction
We employed TargetScan [51] and PITA [52] to predict
putative miRNA target sites on the exonic regions of
lincRNAs by 7-mer and 8-mer seed matching (default
parameters). We identified 44,887 putative binding sites
that belong to 39,384 pairs of miRNA and lincRNA. All
525 lincRNAs and 677 miRNAs are involved in these pre-
dicted results. The same seed sequence could be shared
in a miRNA family. A miRNA can also bind to multiple
sites of a single lincRNA. We also downloaded conserved
target prediction of miRNAs and genes for further analy-
sis from the website of TargetScan, including 110,284
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predicted pairs of 9,448 genes and 249 conserved human
miRNAs.

Expression reverse correlation
We quantified the expression levels of mRNA, lincRNA
and precursor miRNAs using RPKM measures (reads per
kilo-base exon model per million mappable reads). In
total, there are 15,381 genes, 303 lincRNAs and 286 miR-
NAs expressed more than 0.5 RPKM in more than 15
samples. Our further analysis focuses on these sets of
genes whose expression levels are detectable.
A generalized linear model (GLM) was used for model-

ing the potential effects of miRNA in down-regulating the

expression levels of genes and lincRNAs in tumor and
normal breast samples. Among the expressed mRNA,
lincRNAs and miRNAs, 38,828 pairs are predicted to have
regulatory relationships by miRNA target prediction algo-
rithms. Among these potential target pairs, 1,742 and 213
mRNA-miRNA and lincRNA-miRNA pairs also showed
significant reverse correlation, as derived from the GLM
model (FDR<0.2).
Among the 213 lincRNA-miRNA pairs, there are 315

predicted miRNA target sites (Additional file 2). Statisti-
cally, these sites are more conserved than other predicted
target sites that did not show reverse correlation relation-
ship (p < 7.24e-05, Wilcoxon test). They are also more
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conserved (p < 0.005, paired Wilcoxon test) than the
regions 100bp upstream of the predicted target sites
(Figure 3).
We further examined whether miRNAs showed differ-
ence in expression relationship with their potential tar-
get genes/lincRNAs in tumor and normal tissues. Of the
predicted gene/lincRNA-miRNA pairs, 814 (~42%) show
differences in expression relationships with a significant
p-value for the GLM interaction factor (p < 0.05),

including 121 (~57%) lincRNA-miRNA pairs (one exam-
ple is shown in Figure 4a). Interestingly, only 336 pairs
of gene-miRNA and 33 pairs of lincRNA-miRNA
showed consistent regulatory relationship in both tumor
and normal breast tissues (Figure 4b).

Discussion
As a class of newly discovered non-coding RNA, geno-
mic loci of lincRNAs are not well annotated. As an ab
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initio study, we inferred their sequences, strands, exon
positions, and regulatory elements from RNA-seq data.
At the current stage, the functions and regulatory
mechanisms of most lincRNAs are unexplored. Several
well-characterized lincRNAs are involved in the estab-
lishment of the chromatin state and it is believed that
many lincRNAs execute their functions by closely asso-
ciating with chromatin-modifying proteins [3]. This sug-
gests trans-acting may be the primarily method for the
affects of lincRNAs on gene expression [16].
Several recent studies revealed that thousands of lincR-

NAs exist in the cell [2,3,37,42]. As a transcript, the nature
of lincRNAs are quite similar to mRNA, for instance, at
least a fraction of lincRNAs are poly-adenylated and have
exonic structures. This as evidence of the possibility that
miRNA could bind to lincRNAs and trigger degradation.
The repression of lincRNAs could be an unknown part of
miRNA regulation. Since some lincRNAs have been
observed to be differentially expressed in tumor cells com-
pared to normal tissues [53], the miRNA-derived dysregu-
lation of lincRNA expression can be another potential
mechanism of tumorigenesis.
In addition to the data from RNA-seq experiments, two

factors were considered for lincRNA identification, the
transcriptional activity, and coding potential. ChIP-seq sig-
nals of RNA polymerase II (RPolII) were used to quantify
transcription activity. One potential drawback of this strat-
egy is that the RPolII data is from MCF7 cells due to the
lack of measurement for the breast and tumor samples.
This may cause bias in estimation. To ensure the RPolII
data is representative of the transcript activity in breast,
we surveyed the correlation between RPolII signal of
MCF7 cell line and the RNA-seq levels of the breast

tissues. We observed a very strong correlation (p < 6.8e-
186, Spearman correlation) between RPolII signal in
MCF7 cells and RNA-seq data from normal breast sam-
ples (Figure 5a~5b).
MiRNAs regulate degradation of its target mRNA

through binding on the 3’-un-translated regions. Since
the entire noncoding RNA is un-translated, the whole
mature transcript can serve as potential miRNA target
sites. We therefore predicted miRNA binding sites on
the entire exonic regions of the identified lincRNAs.
One advantage of RNA-seq data is that it can simulta-

neously measure the expression level of both mRNAs/
lincRNAs and precursor miRNAs in the same sample.
This provides opportunity for revealing the relationship of
the mRNA/lincRNA-miRNA in their expression levels. As
a precursor stage of mature miRNA, pre-miRNA expres-
sion levels can be different from their final functional
form. Therefore, major conclusions from this analysis are
subject to further experimental validation.
Among 30,069 mRNA-miRNA pairs whose relationships

were established based on target prediction alone, 31 pairs
were experimentally validated, based on the records docu-
mented in the miR2Disease database and TarBase database
[54,55]. Ten of these 31 (32.3%) pairs were among the
1,742 mRNA-miRNA pairs showed significant reverse cor-
relation. Reported in 5 previous studies [56-60], these
validated mRNA-miRNA pairs involve 5 miRNAs (hsa-
miR-155, hsa-miR-29c, hsa-let-7b, hsa-miR-17, and
hsa-miR-222) and 10 genes. In addition, we found many
miRNAs showed difference in expression relationship with
their potential target lincRNAs in tumor and normal tis-
sues (Figure 4). This suggests that miRNA-lincRNA target
can be specific to different cellular states.
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Methods
RNA-seq data analysis
cDNA libraries from 10 normal breast tissues from the
Susan G. Komen Tissue Bank at the IU Simon Cancer
Center and 10 triple-negative breast cancer tumors were
sequenced on an Applied Biosystems (ABI) SOLiD3
sequencer. We used a customized pipeline for RNA-seq
data analysis, which includes three steps, QC filtering,
sequence alignment, and gene expression quantification.
1) QC filtering. We first used SOLiD™ Instrument Con-
trol Software (ICS) and SOLiD™ Experiment Tracking
System (SETS) software for the read quality recalibration.
Sequences containing more than two ‘N’ or wildcards
were discarded. Each sequence was scanned for low qual-
ity regions, and if a 5 base sliding window had an average
quality score less than 20, the read would be truncated at
that position. Any read with a length of less than 35 bases
was discarded. Our experience suggests that such strategy
effectively eliminates low quality reads while retaining
high quality regions. 2) Alignment. We used BFAST [43]
as our primary alignment algorithm, because it has high
sensitivity for color space data [61]. We used a TopHat-
like strategy [40] to align the sequencing reads that cross
splicing junctions. After aligning the sequence reads to a
filtering index including repeats, rRNAs (ribosomal RNA),
and other sequences not of interest, we conduct sequence
alignment on three levels: genomic, known junctions, and
novel junctions (based on the enriched regions identified
in the genomic alignment). 3) Gene expression level quan-
tification. The expression levels of protein-coding genes
and pre-miRNAs were quantified based on the total

number of RNA-seq reads falling into their genomic
regions. The data were further normalized as RPKM
(reads per kilo-base exon model per million mappable
reads) based on their length and sequencing depth.
In potential lincRNA regions, we systematically

searched regions with short read enrichment as putative
lincRNA exons. A putative exon must contain at least 8
reads. If the distance between two exons was less than 10
bases, the two exons would be merged together. To
define the exact exon boundaries, we searched for poten-
tial splicing sites around the putative exons. Splicing
donor/acceptor (GT-AG or CT-AC for RNAs on Watson
or Crick strand respectively) sites within 25 bases from
the 5’- and 3’- ends of two putative exons would be con-
sidered as possible splicing sites. A lincRNA junction
library was constructed by connecting all the possible
donor and acceptor sites within the 100,000 bases span.
The minimum intronic length is set to be 70 bases. After
aligning the remaining unmapped reads to the new
lincRNA junction library, we used Scripture [42] for pre-
dicting the lincRNA exonic structures with default set-
tings. Similar as for mRNAs and pre-miRNAs, the
expression levels of lincRNAs were further quantified by
the total number of sequencing reads falling into the
lincRNA exonic regions. RPKM values were calculated
for each lincRNA.

Conservation, protein coding potential, and miRNA
target prediction
We calculated the conservation score across placental
mammals using Siphy [62] on various genomic regions,
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including exons and introns for protein coding genes,
lincRNA exons and introns, random genomic regions,
and predicted miRNA binding sites on lincRNAs.
We used the ω as the conservation score, which models
the overall mutation rates across placental mammals
[42]. The input of Siphy is a multiple alignment file
(MAF) and a placental mammals model file. All known
gene annotations (RefSeq), genome sequences (hg18 and
mm9), liftOver tool, multiple alignment files, and pla-
cental mammals’ model file were downloaded from the
UCSC Genome browser.
We used the Codon Substantial Frequency (CSF)

score to measure the coding potential of candidate
lincRNA regions [49,50,63]. We set a 90 bases (30
Amino Acids) sliding window across the candidate
lincRNA regions. The maximum score of any window of
all six possible reading frames were used as the CSF
score of the whole region [2]. A higher CSF score indi-
cates higher potential for encoding protein-coding
genes.
The mature and precursor miRNA annotations were

extracted from miRBase [64]. The target prediction was
conducted using the code downloaded from the Tar-
getScan website [51].

Generalized linear model, Wilcoxon test, and false
discovery rate
We used a generalized linear model (GLM) to characterize
the relationship between the expression levels of genes,
lincRNAs and miRNAs, by treating gene/lincRNA and
microRNA as dependent and independent variables,
respectively. Assuming the number of the reads falling into
a genomic region follows a Poisson distribution, a natural
logarithm function was chosen as the link function:

ln
(
y
)
= β0 + β1 · x1 + β2 · x2 + β3 · x1 · x2 + ln(M) + ε (1)

In which y denotes the number of reads that fall into
the regions of gene/lincRNA; x1 denotes pre-miRNA
expression, represented by the natural logarithm value
of reads number normalized by total mapped reads,
x2; x2 is a categorical variable having two possible values,
indicating normal or tumor status; x1 · x2 is an interac-
tion factor that represents the influence of the biological
conditions to miRNA regulation patterns; ln(M) is the
natural logarithm value of the total reads number as an
offset; β0, ...,β3 are intercept and slopes of the predictors
and their combinations; ε denotes the variation that can-
not be explained by the independent factors.
To allow over-dispersion, in practice, we employed a

quasi-Poisson distribution. For the significance tests on
the global gene/lincRNA-miRNA expression correlation,
we employed a t-test on the miRNA expression coeffi-
cient β1. If a gene/lincRNA-miRNA pair did not show

significance for β3, which means the relationship
between miRNA and its target is not affected by the cel-
lular states (tumor or normal), we conducted GLM
model by removing the interaction term.
To correct for multiple hypothesis testing, false dis-

covery rate (FDR) was calculated based on Benjamini-
Hochberg correction [65]. All statistical models and
tests (GLM, Wilcoxon test, Chi-square test) were imple-
mented in R: http://www.r-project.org/.

Additional material

Additional file 1: Genomic coordinates of 525 lincRNAs showed
expression evidence in breast tissues.

Additional file 2: Genomic coordinates of the 315 predicted
microRNA binding sites on lincRNAs.
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