
RESEARCH Open Access

Identification of multiple gene-gene interactions
for ordinal phenotypes
Kyunga Kim1, Min-Seok Kwon2, Sohee Oh3, Taesung Park2,3*

From Second Annual Translational Bioinformatics Conference (TBC 2012)
Jeju Island, Korea. 13-16 October 2012

Abstract

Background: Multifactor dimensionality reduction (MDR) is a powerful method for analysis of gene-gene
interactions and has been successfully applied to many genetic studies of complex diseases. However, the main
application of MDR has been limited to binary traits, while traits having ordinal features are commonly observed in
many genetic studies (e.g., obesity classification - normal, pre-obese, mild obese and severe obese).

Methods: We propose ordinal MDR (OMDR) to facilitate gene-gene interaction analysis for ordinal traits. As an
alternative to balanced accuracy, the use of tau-b, a common ordinal association measure, was suggested to
evaluate interactions. Also, we generalized cross-validation consistency (GCVC) to identify multiple best interactions.
GCVC can be practically useful for analyzing complex traits, especially in large-scale genetic studies.

Results and conclusions: In simulations, OMDR showed fairly good performance in terms of power, predictability
and selection stability and outperformed MDR. For demonstration, we used a real data of body mass index (BMI)
and scanned 1~4-way interactions of obesity ordinal and binary traits of BMI via OMDR and MDR, respectively. In
real data analysis, more interactions were identified for ordinal trait than binary traits. On average, the commonly
identified interactions showed higher predictability for ordinal trait than binary traits. The proposed OMDR and
GCVC were implemented in a C/C++ program, executables of which are freely available for Linux, Windows and
MacOS upon request for non-commercial research institutions.

Background
Because most complex biological phenotypes are often
affected by multiple genes and environmental factors, the
investigation of gene-gene and gene-environment interac-
tions can be essential in understanding the genetic archi-
tecture of complex traits [1]. It has been pointed out that
focusing only on marginal effects of individual genes may
result in low power and a low replication rate in genetic
association studies of complex traits [2,3].
Many different methods have been proposed to analyze

gene-gene interactions in genetic association studies [4,5],
and can be categorized to methods based on regression
modeling [6-9], pattern recognition [10,11], and data
reduction [12-14]. Recently, machine learning approaches,

such as random forest [15], support vector machine [16]
and ensemble learning [17], were applied to gene-gene
interaction analysis.
While each method has its own advantages and disad-

vantages, the multifactor dimensionality reduction (MDR)
method, a data-reduction approach, is known to have the
advantages in examining high-order interactions and
detecting interactions without main effects [13,18-20], and
has been widely applied to detect gene-gene interactions
in many common diseases (see the related literature avail-
able on http://epistasis.org). In addition, because the mode
of genetic inheritance of a common complex trait is
usually unknown a priori, MDR can be more useful to
study a complex trait in that it does not require any
assumption on genetic model. Since the MDR method
was first introduced, it has been extended in many direc-
tions. Examples include family data [21], covariate adjust-
ment and quantitative traits [22], the quantitative measure
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of multi-locus genotype risk [23], and the selection of a
parsimonious genetic model [24]. However, the applicabil-
ity of existing MDR approaches is still restricted mainly to
binary traits.
In the MDR analysis for binary traits, multi-locus geno-

type combinations of a set of genetic variables/markers
(e.g., single nucleotide polymorphisms or SNPs) are
induced to two levels (e.g., high risk and low risk) of a new
binary variable, called an MDR classifier. The induction is
conducted via assessing odds of two phenotypic classes for
each genotype combination. Among MDR classifiers
representing specific marker sets, the single best MDR
classifier is selected by evaluating their classification per-
formances, such as cross-validation consistency (CVC). As
a result, the corresponding set of genetic markers is identi-
fied as having the strongest association with a trait of
interest.
While MDR was introduced for binary traits, there is no

existing approach that is applicable to ordinal categorical
traits. In many genetic association studies, examples of
traits having ordinal features are commonly available, such
as the obesity classification based on body mass index
(e.g., normal, pre-obese, mild obese and severe obese), the
diabetes diagnosis based on glucose level (e.g., normal,
impaired glucose tolerance and diabetes) and the severity
classification of metabolic syndrome. The current applica-
tion of MDR to these ordinal traits requires to dichotomi-
zation of traits by combining several categories, which
results in the loss of ordinal information and powers.
In this study, we propose an ordinal MDR (OMDR)

approach that enables one to analyze a joint effect of mul-
tiple genetic variables on an ordinal categorical trait. The
proposed OMDR generates a classifier for each set of
genetic markers in the form of a categorical variable with
ordinal levels. The performance of each OMDR classifier
is evaluated to select the best OMDR classifiers. For per-
formance evaluation, we suggest the use of common ordi-
nal association measures, such as tau-b [25], which test for
the trend of directional association between two ordinal
variables. By using the ordinal association measures, the
performance of OMDR classifier can be evaluated by
the degree of tendency of positive association between the
observed categories of an ordinal trait and the estimated
categories by OMDR.
In addition, we propose a way to report multiple candi-

dates of gene-gene interactions in OMDR as well as MDR
analyses. The original MDR approach reports only a single
best candidate. This feature can be impractical and/or
unreasonable when causal gene-gene interactions are
searched for complex traits, especially in a genome-wide
scale. Because genome-wide association studies with up to
~1 million SNPs became common, there is a growing
need for more efficient criterion to report multiple candi-
dates of gene-gene interactions in the MDR analysis.

Thus, we propose a new evaluation measure, generalized
cross-validation consistency (GCVC), according to which
one can report multiple best gene-gene interactions asso-
ciated with the ordinal trait. Specifically, a pre-specified
number (K) of the best classifiers are selected via this
GCVC.
Simulations are conducted to investigate performance of

the proposed new OMDR method and GCVC. We apply
the proposed method to an ordinal obesity trait for body
mass index (i.e., normal, pre-obese, mild obese and severe
obese) of Age-Related Eye Disease Study data [26].

Methods
Overall procedure of OMDR
The OMDR procedure is same as the MDR procedure
for binary traits, and consists of multiple steps. First, the
dataset is partitioned into L (usually equal-size) subsets
for L-fold cross-validation (CV). For example, L = 10
hereafter. Out of 10 subsets, one subset is taken as an
independent testing dataset, and the remaining nine
subsets are assigned to a training dataset. As a result, a
total of 10 CV datasets are generated. Second, all possi-
ble OMDR classifiers are constructed for the corre-
sponding combinations of m SNPs, and the K best ones
are selected based on classification performance on a
training data for each CV set (see the following two sec-
tions for details). Third, the best OMDR classifiers are
chosen over all CV sets for the fixed m. The predictabil-
ity of the selected OMDR classifiers is evaluated via the
average value of the evaluation measure with a testing
dataset over all the 10 CVs. In addition, the selection
strength of a particular OMDR classifier is suggested via
GCVCK which is the number of times the classifier is
identified as one of the K best classifiers across all the
CVs. The best OMDR classifiers across the CVs are
chosen if having the maximum predictability and maxi-
mum GCVCK. Finally, the overall best OMDR classifiers
are selected based on the predictability and GCVCK

among the best ones for various values of m, which
result from the previous steps. For additional details,
refer to the original MDR procedure described in litera-
ture [13,27,28].

OMDR classifier construction
Let 1, 2,..., J be classes for an ordinal phenotype of inter-
est. For example, ‘low blood pressure (BP)’, ‘normal’ and
‘high BP’ classes can be viewed as classes 1, 2 and 3,
respectively, in the analysis of the BP classification trait.
Note that J = 2 for a binary trait (e.g., classes1 and 2
respectively for control and case).
Suppose that an m-way interaction is under considera-

tion. For the corresponding m SNPs, let nij be the num-
ber of individuals with the ith multi-locus genotype and
let n+j be the total number of individuals in phenotypic
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class j, where i = {1, 2,...,3m} and j = 1, 2,..., J. As in
MDR, the estimated OR of the class j against the class 1
is defined for the ith genotype as

θ̂ij =
nij

/
ni1

n+j
/

n+1
(1)

Then the OMDR classifier corresponding to the m
given SNPs will assign all individuals with the ith multi-
locus genotype into the class c(i) as follows:

c(i) = arg max
j∈{1,··· ,J}

θ̂ij = arg max
j∈{1,··· ,J}

(
nij

n+j

)
(2)

The final classification results of the OMDR classifier
can be described in a J×J confusion matrix. The (j, k)th
cell of the confusion matrix is denoted as xjk and indi-
cates the number of individuals in class j, who are clas-
sified as class k:

xjk =
∑

∀i:c(i)=k

nij (3)

For example, see Table 1 when J = 3. Because each of
all possible multi-locus genotypes of m given SNPs is
represented in a cell of an m-dimensional contingency
table, the construction of the corresponding OMDR
classifier allows one to reduce the m-dimensional space
to one dimensional space. Each constructed OMDR
classifier is evaluated by an ordinal association measure,
such as tau-b, which assesses concordance between true
classes and predicted classes [25].

Top-K selection and generalized CVC
In order to report multiple causal SNP combinations, we
propose the generalized CVC based on top-K selection
(GCVCK). After constructing all possible MDR classi-
fiers, each classifier is evaluated respectively with train-
ing and testing datasets via a certain evaluation measure
of predictability (e.g., tau-b). Then, a pre-specified num-
ber (K) of the best classifiers having the largest values of
the evaluation measure with the training set are selected
as top-K classifiers for each CV dataset.
Next, the selection results are summarized across all

CV datasets in order to suggest multiple best classifiers.
The proposed GCVCK is defined as below and calcu-
lated for each MDR classifier:

GCVCK =
L∑

l=1

Il where Il =

⎧⎨
⎩

1 if the MDR classifier is identified
as one of top - K classifiers at lth CV dataset

0 otherwise
(4)

The GCVCK indicates how many of the training-test
sets support the classifier as the K best classifiers in L-
fold CV. When K = 1, GCVC1 is equal to the original
CVC. Note that the proposed GCVC is applicable to
both MDR and OMDR.
Via a certain criterion based on GCVCK, multiple candi-

dates of causal gene-gene interactions with the same order
can be reported along with their performance measures
(e.g., predictability for training and test datasets). A criter-
ion can be chosen appropriately according to the analysis
purpose. We demonstrate possible choices in practice with
the following three examples. First, all combinations with
GCVCK > 0 are reported to search all possible candidates
(i.e., exploratory purpose). In other words, every combina-
tion that was selected as the K best classifiers at least once
during CV will be reported. Second, one can report all
combinations with GCVCK ≥ 9 in 10-fold CV, intending
to identify candidates with high selection consistency (i.e.,
high confidence). This criterion means that these combi-
nations are likely selected with at least 90% chance. Third,
100 plausible candidates are listed up for further studies
by reporting top 100 combinations that have the largest
values of GCVCK.

Results
Simulation study
An ordinal trait was modeled with 3 classes (e.g., j = 1
for normal, j = 2 for low risk, j = 3 for high risk). Pro-
portion of each class in the population (i.e., pj = P(j)
‘prevalence’ of jth class) was set as p1 = 0.3, p2 = 0.4
and p3 = 0.3. A total of 50 SNPs were considered.
Among all the SNPs, one pair of SNPs were simulated
as a causal factor that has a two-way interaction asso-
ciated with the ordinal trait; and the remaining SNPs
were simulated as non-causal factors. For generating the
genotype data of the causal SNPs, five different interaction
patterns were developed for the ordinal trait (Figure 1).
While fixing minor allele frequencies (0.3 and 0.5), preva-
lences and interaction pattern, we simulated 3 different
sets of ORs of each class for each multi-locus genotype in
order to vary the strength of genetic effects. Based on
given ORs, probabilities of each class for each multi-locus
genotype (i.e., pj|i = P(j | the ith genotype) ‘penetrance’ of
jth class for ith genotype) were computed under the
Hardy-Weinberg equilibrium assumption for each SNP.
As a result, 15 different genetic models were developed
(Table S1 in Additional file 1). For each genetic model,
100 replicated datasets were generated. Each simulated
dataset consists of 1000 samples. For comparison, we
further generated a binary trait by assigning the first two
classes of the simulated ordinary trait (i.e., normal and low

Table 1 Confusion matrix for three-class ordinal
phenotype, constructed by an OMDR classifier

Predicted class True class 1 2 3

1 x11 x12 x13
2 x21 x22 x23
3 x31 x32 x33
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risk) to ‘control’ and the third class (i.e., high risk) to ‘case’.
Thus the prevalence of case is expected to be 0.3 for the
binary trait. The proposed OMDR and the original MDR
were applied to the simulated datasets. The 10-fold CV
and tau-b were employed to assess the performance of
classifiers. All possible single-, two- and three-locus classi-
fiers were evaluated. Different choices of K = 1, 2, 3 were
considered to examine the effect of choice on GCVCK.
The performances of the new OMDR method were

investigated in terms of power, fitness, predictability, and
selection stability. The empirical power was defined as
the proportion of 100 replicated datasets in which the
true causal SNP combination was detected as the best
classifier. The fitness and predictability were measured
respectively via average training tau-b (TRTB) and testing
tau-b (TSTB) values across 100 replicated datasets. Aver-
age GCVC was used to assess selection stability. First, we
observed fairly good empirical power across various
genetic models (Table 2). Especially two-locus OMDR
classifiers show high empirical power of about 90% on
average, and 100% for two third of genetic models. Sec-
ond, the overall predictability of two-locus classifiers
(average TSTB = 0.285) was slightly higher than or simi-
lar to three-locus classifiers (average TSTB = 0.276)
while single-locus classifiers had relatively low predict-
ability (average TSTB = 0.139). Therefore, the proposed

OMDR tends not to choose lower-order interactions
than the order of the true causal interaction. Third, two-
locus classifiers were most stably selected (average
GCVC = 92.0%) compared to others, especially three-
locus classifiers (average GCVC = 48.3%). Thus the
OMDR selected two-locus classifiers as a final best
model more likely than three-locus ones. This indicates
that the OMDR would choose true causal interactions
while avoiding over-fitting. As expected, higher-order
classifiers showed higher fitness (average TRTB = 0.162,
0.304 and 0.336, respectively, for single-, two-, and three-
locus classifiers), and that the difference in average TRTB
between two- and three-locus classifiers was not great.
We compared the performance between the OMDR

method and the original MDR method. Overall, the
OMDR showed better performance than the MDR
across all performance measures (Figure 2). Especially,
we observed higher empirical power and better selection
stability for the OMDR than for the MDR. Also, predict-
ability and fitness indicated that the OMDR (on average,
TSTB = 0.285, TRTB = 0.304) outperformed the MDR
(on average, TSTB = 0.209, TRTB = 0.247) across all
genetic models.
The effect of K on the OMDR was examined with dif-

ferent K = 1, 2 and 3. Because we simulated with a single
causal two-way interaction, selected classifiers must

Figure 1 Simulated patterns of 2-way interactions. White, light grey and dark grey colors indicate respectively three classes (e.g., normal, low
risk, high risk) of an ordinary trait.
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Table 2 Performance of OMDR

Single-locus classifier Two-locus classifier Three-locus classifier

EP (SEP) GCVC TSTB TRTB EP GCVC TSTB TRTB EP (TEP) GCVC TSTB TRTB

Model 11 0.38 (0.25) 0.689 0.055 0.097 1.00 1.000 0.444 0.443 1.00 (0.05) 0.514 0.429 0.455

Model 12 0.27 (0.14) 0.667 0.043 0.093 1.00 1.000 0.264 0.278 1.00 (0.05) 0.518 0.256 0.315

Model 13 0.26 (0.16) 0.615 0.046 0.095 0.93 0.883 0.139 0.174 0.87 (0.05) 0.458 0.128 0.224

Model 21 1.00 (0.55) 0.883 0.159 0.175 1.00 1.000 0.395 0.401 1.00 (0.04) 0.480 0.388 0.417

Model 22 0.99 (0.53) 0.881 0.150 0.167 1.00 1.000 0.297 0.306 1.00 (0.05) 0.432 0.267 0.330

Model 23 0.95 (0.54) 0.874 0.115 0.134 0.99 0.993 0.230 0.249 1.00 (0.08) 0.504 0.224 0.292

Model 31 1.00 (1.00) 1.000 0.225 0.229 1.00 1.000 0.514 0.513 1.00 (0.03) 0.507 0.505 0.527

Model 32 1.00 (1.00) 0.997 0.192 0.197 1.00 1.000 0.373 0.375 1.00 (0.06) 0.531 0.356 0.397

Model 33 0.44 (0.31) 0.714 0.061 0.099 1.00 0.997 0.194 0.208 0.99 (0.05) 0.537 0.185 0.245

Model 41 1.00 (0.56) 0.904 0.131 0.144 1.00 0.999 0.252 0.264 1.00 (0.06) 0.544 0.255 0.300

Model 42 1.00 (0.55) 0.887 0.149 0.164 0.90 0.883 0.204 0.217 0.94 (0.05) 0.454 0.189 0.247

Model 43 0.73 (0.41) 0.816 0.083 0.107 0.28 0.485 0.068 0.146 0.23 (0.02) 0.346 0.061 0.197

Model 51 1.00 (0.51) 0.865 0.341 0.355 1.00 1.000 0.478 0.484 1.00 (0.05) 0.480 0.477 0.512

Model 52 1.00 (0.51) 0.885 0.247 0.263 1.00 0.998 0.334 0.344 1.00 (0.05) 0.473 0.325 0.377

Model 53 0.91 (0.46) 0.860 0.092 0.117 0.38 0.557 0.086 0.153 0.47 (0.04) 0.426 0.099 0.204

Average 0.80 (0.50) 0.836 0.139 0.162 0.90 0.920 0.285 0.304 0.90 (0.05) 0.483 0.276 0.336

It is presented with EP (empirical power), average GCVC (K = 1), average TSTB (testing tau-b), average TRTB (training tau-b), and their average values over
models. Note that true causal factor was a two-locus classifier (i.e., two-way interaction). SEP indicates EP of single-locus classifier whose EP is largest among all
single-locus classifiers included in the true causal interaction. TEP indicates EP of three-locus classifier whose EP is largest among all three-locus classifiers
containing the true causal interaction.

Figure 2 Comparison between OMDR and MDR. Performance of OMDR and MDR is compared via EP (empirical power), average GCVC (K =
1), average TSTB (testing tau-b), average TRTB (training tau-b), and their average values over models. Note that true causal factor was a two-
locus classifier (i.e., two-way interaction), and all two-locus classifiers were searched by both methods.
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include false positives when K = 2 or 3 were chosen for
top-K selection. In most genetic models, the causal inter-
action was identified as the best classifiers (i.e., true posi-
tives). Thus the second best or the third best classifiers
were falsely identified (i.e., false positives). We compared
the selection stability and predictability between true and
false positives. While true positives were selected with
high stability (average GCVC = 92.0~94.7%), false posi-
tives were selected with very low stability (average GCVC
= 3.4~43.5%). These limited results imply that one can
avoid false positives, which the OMDR produces with
large K, by further screening out the selected classifiers
with low GCVC. Thus incorrect choices of K would not
fail the OMDR although further investigation on the
choice of K is required. Note that predictability was
higher for true positives (average TSTB = 0.285~0.288)
that for false positives (average TSTB = 0.106~0.133).

Analysis of AREDS body-mass index data
In order to demonstrate the proposed OMDR, we applied
it to a body-mass index (BMI) category phenotype from
the National Eye Institute Age-Related Eye Disease Study
(AREDS). While the AREDS was originally designed to
investigate the clinical course of age-related macular
degeneration (AMD), the data contains other information
on medical history, clinical status, life condition, and phy-
sical measurements, including BMI. A total of 313 subjects
with and 149 without AMD were genotyped on Affymetrix
100K genotyping platform. The detailed information on
this data is available in Maller et al. [26]. Prior to the ana-
lysis, we conducted a pre-process on a total of 109,924
SNPs by excluding SNPs whose total genotyping rate <
99.5%, minor allele frequency < 0.05, or p-value from
Hardy-Weinberg equilibrium test ≤ 10-3. As a result, a
total of 87,260 SNPs remained for the analysis.
According to the international BMI classification [29],

an adult person can be classified as normal when 18.5 ≤
BMI < 25, and as overweight when BMI ≥ 25. The over-
weight class is further divided into pre-obese, obese class
I, obese class II and obese class III (Table 3). Using this
classification, we defined a four-class ordinal phenotype
‘OD’ (i.e., normal, pre-obese, mild obese and severe obese)
to identify genes and gene-gene interactions associated

with obesity via the proposed OMDR. The sample sizes
are 141, 194, 87 and 38 for normal, pre-obese, mild obese
and severe obese classes, respectively. In addition, two bin-
ary phenotypes ‘B1’ and ‘B2’ (i.e., normal and overweight;
non-obese and obese) were defined and analyzed via the
current MDR for dichotomous phenotypes for the com-
parison purpose.
For the ordinal phenotype (OD) and two binary pheno-

types (B1 and B2), the proposed OMDR and the current
MDR were respectively applied to identify SNPs asso-
ciated with obesity. We used K = 300 to select multiple
best MDR classifiers for each of 1~4-way interactions.
The 10-fold CV and tau-b were employed to assess the
performance of classifiers. All 87,260 SNPs were first
searched for one-way effects on obesity. Then, to reduce
the computational burden, we examined all pairwise
combinations of the top-300 SNPs with main effects.
Similarly, three- and four-way combinations were
searched only for the SNPs that were selected with top-
300 two- and three-way interactions, respectively.
For the top-300 SNPs identified with main effects, the

average GCVC was 6.67 for OD while it was 5.98 and
5.96, respectively for B1 and B2. We also observed that
more SNPs were identified with high GCVC for OD than
B1 and B2. For example, the number of SNPs showing
GCVC = 10 is 58, 22 and 26 respectively for OD, B1 and
B2. The number of SNPs with GCVC ≥ 9 for OD is also
about twice the number of those for B1 and B2. These pat-
terns are stronger for 2~4-way interactions (Figure S1 in
Additional file 2). While the binary MDR method identi-
fied most interactions with low GCVC, the OMDR
approach detected a higher number of interactions with
high CVC. Among top-300 two-way interactions, 111 have
GCVC of 10 for OD while 7 and 10 do for B1 and B2,
respectively. Similarly, 92 three-way and 49 four-way inter-
actions show GCVC of 10 for OD while only a few do for
the binary phenotypes. These results indicate that, with a
high level of selection consistency, the proposed OMDR
would detect more interactions than the original MDR for
binary phenotypes.
While no SNP was selected with main effect across all

three phenotypes, two SNPs were commonly identified
by OD and B1. Fourteen SNPs identified for OD were

Table 3 Obesity phenotypes based on BMI classification

WHO classification Ordinary Category
OD

Binary Category

B1 B2

Normal 18.5 ≤ BMI < 25 Normal Normal Non-obese

Pre-obese 25 ≤ BMI < 30 Pre-obese Overweight

Obese class I 30 ≤ BMI < 35 Mild obese Obese

Obese class II 35 ≤ BMI < 40 Severe obese

Obese class III BMI ≥ 40
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also selected for B2. For these commonly selected SNPs,
we investigated average tau-b values on training and test
datasets as well as GCVC (Table 4). All of these SNPs
show better performance both on model fitting and pre-
diction for the ordinal phenotype (average tau-b = 0.365
and 0.317 for training and testing datasets on average
across the commonly selected SNPs) than for the binary
phenotypes (average tau-b = 0.175 and 0.081 for training
and testing datasets on average across the commonly
selected SNPs). Furthermore, we observed higher GCVC
for OD than for B1 and B2. In other words, the SNP
selection was more strongly supported by 10-fold CV
for the ordinal phenotype than for the binary pheno-
types. These results would imply that the proposed
OMDR provides more consistent results than the origi-
nal MDR for binary phenotypes.
In order to examine the biological significance, we

further investigated whether the top-300 SNPs with main
effects are mapped to one of the known obesity-related
genes that were represented on Affymetrix 100K genotyp-
ing platform. For each phenotype, only three SNPs were
identified in the known obesity-related genes. However,
those obesity-related SNPs were identified more consis-
tently by the OMDR (average GCVC = 7.33 for OD) than
by the original MDR (average GCVC = 5 and 6.33 for B1
and B2, respectively). Note that the famous obesity-asso-
ciated gene FTO was detected only via OMDR. Also, we
found that the ARL6 gene was detected with larger tau-b
for OD than for B2 (see rs3856570 in Table 4).

In addition, various values of K (K = 1, 2,..., 1000) were
further used to search for possible causal SNPs with main
effects via the OMDR and the original MDR methods. As
we increased K (i.e., considered to select a larger number
of possible causal SNPs), we identified more obesity-
related SNPs using the OMDR approach than using the
current MDR, and the gap seems increasing. For example,
with K = 1000, we identified four more SNPs in known
obesity-related genes for OD than for B1 and B2.

Conclusions and discussion
In this paper, we developed the OMDR approach that
facilitates the MDR analysis for an ordinal phenotype. The
construction process for OMDR classifiers is a straightfor-
ward extension of the process for the existing MDR classi-
fiers. For selecting good classifiers, the performance of the
OMDR classifiers has to be evaluated via an evaluation
measures. We proposed the use of an ordinal association
measure, specifically tau-b, for some reasons. First, tau-b
along with likelihood ratio and normalized mutual infor-
mation has been known to outperform other evaluation
measures in MDR, including balanced accuracy, misclassi-
fication error, specificity and sensitivity [28,30]. Second,
tau-b and other ordinal association measures would be
natural choices to assess the association between the true
and the predicted classes (see Table 1), both of which are
ordinal, in that they utilize the information on positive
trend in classification results. In addition, tau-b can
be readily employed to OMDR without modification.
While designed for the analysis of genuine ordinal cate-

gorical traits, the OMDR method can also be used to ana-
lyze a continuous trait by approximating it as an ordinary
category trait. Currently, the MDR analysis for a continu-
ous trait is conducted mostly by binarizing it with a certain
cut-off. Compared to binary approximation, the ordinary
approximation can be more powerful because it preserves
more information on the continuous trait. The empirical
study with a real data demonstrated that the OMDR
approach would produce more consistent results and be
more powerful than the original MDR approach for binary
traits, in terms of GCVC and the number of the classifiers
identified with high selection consistency, respectively.
Nowadays, the genome-wide association studies with the

genotype data produces up to ~1 million SNPs. Reporting
one single best candidate is impractical and/or unreason-
able when causal gene-gene interactions are searched for
complex traits in a genome-wide scale. Thus, we proposed
GCVC with the top-K selection to report multiple candi-
dates of gene-gene interactions in OMDR as well as MDR
analyses. When one searches for few but possibly strong
candidates for gene-gene interactions, a small value of K
would be appropriate. On the other hand, a large value of
K can be used for detecting many candidates including
ones with mild effects on traits. Note that the choice of K

Table 4 Commonly identified SNPs with main effects on
obesity.

SNP OD B1/B2

GCVC Average tau-b GCVC Average tau-b

Train Test Train Test

rs1975743* 9 0.371 0.352 9 0.184 0.144

rs10504852* 9 0.357 0.345 7 0.165 0.109

rs3856570 10 0.402 0.397 10 0.237 0.233

rs166315 10 0.369 0.367 5 0.169 0.035

rs997682 10 0.369 0.363 6 0.192 0.246

rs1980774 10 0.367 0.361 6 0.192 0.245

rs354935 9 0.387 0.376 9 0.175 0.155

rs10515827 9 0.360 0.341 4 0.162 0.061

rs2006709 8 0.361 0.330 7 0.166 0.100

rs959175 7 0.367 0.319 4 0.158 -0.066

rs2000862 7 0.359 0.289 5 0.166 0.008

rs4780469 7 0.353 0.284 5 0.165 0.018

rs1009829 5 0.361 0.298 4 0.169 -0.002

rs4779937 5 0.355 0.261 4 0.166 0.029

rs9297682 4 0.358 0.205 5 0.164 0.019

rs10508706 4 0.353 0.192 6 0.166 0.071

SNPs with * were identified for OD and B1; SNPs with no * were identified for
OD and B2.
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would be critical for both power increase and false-positive
control, which requires a further investigation. However,
our simulations suggested that false positives can be
screened out with very low GCVC values and low predict-
ability values. We also investigated the null distribution of
GCVCK with different K = 1, 2, 3, based on a small simula-
tion, and found that the choice of K did not dramatically
affect the null distribution of GCVCK (data not shown).
The original MDR for binary traits (e.g., disease status)

compares the estimated ORs between two classes (e.g.,
case vs. control), and determines the class with larger esti-
mated OR as the predicted class. When the estimated ORs
are same for both classes, one class is usually specified for
the prediction purpose (e.g., high risk). Similarly, more
than one class can happen to have the same maximum
value of the estimated OR (i.e., a tie in the estimated OR
among classes; multiple values of c(i)) in the OMDR
approach. There might be many possible options to
address this tie problem. For examples, the class with the
smallest or largest K can be used as the predicted class
among the tied classes. In our analysis, we chose the lar-
gest class for prediction in tied cases following the original
MDR approach.

Additional material

Additional file 1: Simulation settings based on 15 genetic models.
ORj1 is presented as odd ratio of class j against class 1 for each two-locus
genotype along with the corresponding penetrance (pj|i in parentheses.
Minor allele frequencies (MAFs) of 0.5 are used in models with patterns 1
and 2; MAFs of 0.3 are used in models with other patterns.)

Additional file 2: GCVC value distribution of top-300 OMDR
classifiers for 2~4-way interactions from real data analysis.
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