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Abstract

Background: Cytochrome P450 monooxygenases (CYPs) represent a large and diverse family of enzymes involved in
various biological processes in humans. Individual genome sequencing has revealed multiple mutations in human
CYPs, and many missense mutations have been associated with variety of diseases. Since 3D structures are not resolved
for most human CYPs, there is a need for a reliable sequence-based prediction that discriminates benign and disease
causing mutations.

Methods: A new prediction method (MutaCYP) has been developed for scoring de novo missense mutations to have a
deleterious effect. The method utilizes only five features, all of which are sequence-based: predicted relative solvent
accessibility (RSA), variance of predicted RSA among the residues in close sequence proximity, Z-score of Shannon entropy
for a given position, difference in similarity scores and weighted difference in size between wild type and new amino
acids. The method is based on a single neural network.

Results: MutaCYP achieves MCC = 0.70, Q2 = 88.52%, Recall = 93.40% with Precision = 91.09%, and AUC = 0.909.
Comparative evaluation with other existing methods indicates that MutaCYP outperforms SIFT and PolyPhen-2.
Predictions by MutaCYP appear to be orthogonal to predictions by the evaluated methods. Potential issues on
reliability of annotations of mutations in the existing databases are discussed.

Conclusions: A new accurate method, MutaCYP, for classification of missense mutations in human CYPs is
presented. The prediction model consists of only five sequence-based features, including a real-valued predicted
relative solvent accessibility. The method is publicly available at http://research.cchmc.org/MutaSense/.

Keywords: Human CYP variants, Human CYP polymorphism, Machine learning based prediction, Classification of
missense mutations, Relative solvent accessibility, Evolutionary information
Background
Cytochrome P450 monooxygenases (CYPs) are heme-
thiolate enzymes that catalyze a broad range of reactions,
including hydroxylation, epoxidation, dealkylation, and
heteroatom oxygenation [1]. In humans, CYPs participate
in various innate metabolic pathways, e.g., steroid hormone
biosynthesis or fatty acid metabolism, and are also involved
in biotransformation of xenobiotics, such as drugs and en-
vironmental pollutants [2]. Such considerable involvement
in a wide array of biological processes (organ development,
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hormone signaling, etc.) requires a fine tuning of CYPs to
function properly. Consequently, any imbalance in enzyme
availability or its malfunction, e.g., due to a genetic muta-
tion, may lead to a disease state in humans [3,4] or may
change the susceptibility of an individual to environmental
insults [5].
The human genome encodes 57 P450 genes grouped

into 18 mammalian families. Despite the significant se-
quence diversity between CYP families, all proteins display
common 3D structural elements shared with CYPs from
other biological kingdoms [6-8]. Substrate specificity is de-
termined by the size and shape of the active site cavity; by
the availability of the substrate access channel and its
physico-chemical characteristics; and by amino acid com-
position at the substrate recognition sites [9,10]. In
addition to structural elements mentioned herein, missense
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mutations altering enzyme activity can occur at the heme-
binding site, within the protein core, and at the protein
interface involved in electron transfer from the redox part-
ners, ferredoxin (FDX) and P450 oxidoreductase (POR)
[11,12]. However, not all missense mutations in CYPs have
functional implications and result in a disease phenotype.
To this end, individual genome sequencing has revealed a
considerable number of variants in CYP genes (see below),
and this number is expected to grow with time. On the
other hand, experimental assessment of the functional im-
plications of all identified mutations is impractical. As a
result, there is a growing demand from emerging person-
alized medicine for computational methods for the identi-
fication of disease causing mutations among the realm of
CYP variants as well as for prediction of changes in drug
metabolism by mutated CYPs.
There have been a number of attempts made to compile

available information about CYPs, including their polymor-
phisms and activity. The Cytochrome P450 Engineering
Database (CYPED) is a collection of all experimentally re-
solved 3D structures of CYPs retrieved from the Protein
Data Bank (PDB) and categorized by CYP subfamilies [13].
CYPED also provides a tool for prediction of conserved
modules in CYP structures [10]. However, no polymorph-
ism data are available in this database, and human enzymes
are underrepresented. Two databases provide information
about CYP variants and their corresponding activity fo-
cused on drug metabolism: SuperCYP [14] and The
Human Cytochrome P450 Allele Nomenclature Data-
base [15]. The former database is limited to the single
nucleotide polymorphism (SNP) data only and lacks in-
formation regarding clinical phenotypes. The latter data-
base contains information about only half of the human
CYPs (29 of 57 genes as of May 2013). More generalized
public databases can be used as a better source of CYP
variants: NCBI dbSNP [16] or UniProt humsavar [17].
These two databases can also contain associated disease
phenotypes, although the annotations are lagging the re-
cent publications.
There is a variety of methods for the prediction of func-

tional implications of missense mutations, each of which
utilizes a different heuristic (see recent reviews [18,19] as
well as examples of recent methods [20-22]). However,
there is no prediction method available designed specific-
ally for analysis of missense mutations in CYPs, despite
the importance of these enzymes in human health and
their direct clinical relevance. At the same time, models
generalized for the entire human proteome may not per-
form well with CYPs, as these enzymes have highly vari-
able regions – substrate recognition sites (SRSs) – that
cannot be recognized as critical functional spots by evolu-
tionary based methods. On the other hand, a fraction of
residues on the surface in CYPs are involved in the transi-
ent protein-protein interaction and electron transfer from a
redox partner, but these residues may not be recognized
as critical by the structure-based methods that consider
mutations on the surface as less influential on a protein
function. To fill this gap, we have developed a new method
(MutaCYP) dedicated to the prediction of deleterious ef-
fects of missense mutations specifically in CYPs. MutaCYP
combines evolutionary information and predicted structural
information in 5 non-redundant sequence-based features in
its prediction model. Our method was compared with two
representative and commonly used methods: SIFT and
PolyPhen-2. SIFT uses a prediction model based primarily
on evolutionary information [23], whereas PolyPhen-2 adds
protein structural data to the feature space [24]. MutaCYP
outperforms both methods. At the same time, raw predic-
tion scores by MutaCYP appear to be orthogonal to those
by other evaluated methods. Hence, there is a potential to
improve the accuracy of classification using a meta-
predictor that combines predictions from these methods.
MutaCYP is publicly available at http://research.cchmc.
org/MutaSense/.

Methods
Datasets
The UniProt humsavar database (release 2012_10 of 31
October 2012) was used for the training and cross-
validation of the prediction model. The release contained
information about 562 variants in 51 human CYPs. Pro-
teins containing only variants without disease association
were excluded. The reasoning was that these proteins
were most likely not yet annotated with respect to disease
phenotype, and thus might introduce noise in the training
as false negative instances. For example, according to
UniProt, all known missense mutations in CYP1A1 are
listed as benign. However, there is a solid body of evidence
that some mutations in CYP1A1 can be disease causing
[25,26]. Specifically, mutation I462V significantly increases
catalytic activity of CYP1A1 and is associated with
estrogen-related cancers and other physiological disorders
[27,28]. After applying this exclusion criterion, 15 CYPs
remained with 270 variants that were used to generate
vectors, including 73 benign (true negative) and 197 dele-
terious (true positive) mutations. This training dataset was
named TS270 (Additional file 1: Table S1). All excluded
CYPs and their variants (36 and 292, respectively) were
grouped as a separate blind set (named BS292; Additional
file 1: Table S2), where association with a disease is not
entirely clear, to see how predictions overlap and correlate
between all validated methods.
The control dataset was derived from recently published

literature on the new missense mutations identified in dif-
ferent CYPs with disease association. Inclusion criterion
was the absence of the same mutation in the training set.
A literature search yielded 30 new variants (29 deleteri-
ous and 1 neutral) for 4 human CYPs: CYP7B1 [29,30],
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CYP21A2 [31,32], CYP11B1 [33], and CYP27B1 [34-36].
The control dataset was named CS30 (Table 1). All data-
sets are available for download from the home page of the
method.
Feature selection
With the goal of minimizing the feature space used for a
prediction model, all explored sequence-based character-
istics were evaluated using two inclusion criteria: (i) a
feature displays a maximally possible discriminatory
power quantified by F-score, which is defined below; (ii)
a feature needs to be non-redundant to other already in-
cluded features, with redundancy measured by Pearson
correlation coefficient (r). F-score is defined as follows
Table 1 Human CYP variants used for the control set CS30

UniProt ID/Gene Mutation Di

O75881|CYP7B1 T297A He

A394D He

R417C He

F470I He

R486C He

P08686|CYP21A2 V139E Co

T295N Co

W302R Co

L353R Co

G375S Co

F404S Co

L446P Co

T450P Co

A265V Ne

P15538|CYP11B1 M88I Co

W116G Co

P159L Co

A165D Co

R366C Co

R384Q Co

T401A Co

O15528|CYP27B1 G57V Ps

G73W Ps

L333F Ps

R432C Ps

R459C Ps

R492W Ps

G102E Vit

P143L Ps

D164N Ps
and was previously introduced for feature selection for
prediction of protein-protein interaction sites [37].

F ¼ �xn − �xdj j
σn þ σd

ð1Þ

where �xn and �xd are means of the feature over neutral
and deleterious mutations, respectively; σn and σd are
the corresponding standard deviations.
Evaluated features include physico-chemical properties

of amino acids and their changes due to mutation, pos-
ition specific similarity scores and Shannon entropy de-
rived from multiple sequence alignment (MSA), predicted
relative solvent accessibility (RSA). MSA was obtained
using PSI-BLAST with three iterations against the NCBI
sease Reference

reditary spastic paraplegia; Liver failure [29,30]

reditary spastic paraplegia; Liver failure [29,30]

reditary spastic paraplegia; Liver failure [29,30]

reditary spastic paraplegia; Liver failure [29,30]

reditary spastic paraplegia; Liver failure [29,30]

ngenital adrenal hyperplasia [31]

ngenital adrenal hyperplasia [31]

ngenital adrenal hyperplasia [31]

ngenital adrenal hyperplasia [31]

ngenital adrenal hyperplasia [31]

ngenital adrenal hyperplasia [31]

ngenital adrenal hyperplasia [31]

ngenital adrenal hyperplasia [31]

utral [32]

ngenital adrenal hyperplasia [33]

ngenital adrenal hyperplasia [33]

ngenital adrenal hyperplasia [33]

ngenital adrenal hyperplasia [33]

ngenital adrenal hyperplasia [33]

ngenital adrenal hyperplasia [33]

ngenital adrenal hyperplasia [33]

eudovitamin D-deficiency rickets [34]

eudovitamin D-deficiency rickets [34]

eudovitamin D-deficiency rickets [34]

eudovitamin D-deficiency rickets [34]

eudovitamin D-deficiency rickets [34]

eudovitamin D-deficiency rickets [34]

amin D-dependent rickets type 1 [35]

eudovitamin D-deficiency rickets [36]

eudovitamin D-deficiency rickets [36]
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nr database, following our previous protocol [38]. The
complete list of the explored features along with their de-
scriptions is available in Additional file 1: Table S3.
Feature selection is summarized in Additional file 1:

Table S4. The best performance was observed with the set
of features that have F-score ≥ 0.4 and r < 0.8. The final fea-
ture space used in subsequent evaluations and in MutaCYP
consists of 5 features: absolute difference between similarity
scores of wild type amino acid and mutation for a given
position (Abs_dSS); absolute difference between sizes of
wild type amino acid and mutation weighted by the differ-
ence of the corresponding similarity scores (ss_Abs_dSize);
Z-score for Shannon entropy at a given position based on a
window of 21 neighboring amino acids (zsEntropy21);
predicted RSA (predRSA); and variance of predicted
RSA for the window of 21 neighboring amino acids
(varPredRSA21). Figure 1 displays the distributions of
these five features for benign and disease causing muta-
tions; Table 2 contains the corresponding F-scores and
pairwise correlation coefficients.

Models and validation
Two models, linear and non-linear, were used in this
work. The former model was based on linear discrimin-
ant analysis (LDA) as implemented in the TOOLDIAG
package [39]. The LDA-based models were employed for
feature selection. The non-linear model is based on
Figure 1 Distribution of the features used in the final prediction mod
difference between similarity scores of wild type amino acid and mutation fo
wild type amino acid and mutation weighted by the difference of the corresp
at a given position based on a window of 21 neighboring amino acids. D. pre
the window of 21 neighboring amino acids. Whiskers indicate minimal and m
neural networks (NN) as implemented in the SNNS
package [40]. Multiple NN architectures were evaluated.
All NNs were trained using standard backpropagation
(StdBP) and resilient backpropagation (Rprop) learning
algorithms. Comparative analysis of the performance of
different NNs can be found in Additional file 1: Table
S5. The best performing NN appeared to be a feed for-
ward network with 5 input nodes, 2 hidden layers with
10 and 5 hidden nodes, and 2 output nodes, trained
using the Rprop learning algorithm.
All models herein were evaluated using 5-fold cross-

validation on the training set. In case of NN-based
models, additional 20% of vectors were withdrawn from
each training subset to be used as a validation subset
for choosing the best performing NN in each fold,
which is then evaluated using a corresponding test subset.
The final model employed in MutaCYP is a single NN that
showed the best generalization from the validation to test
subsets (Additional file 1: Table S5). A flowchart depicting
the protocol for building a prediction model used in Muta-
CYP can be found in supplementary materials (Additional
file 2: Figure S1).
Accuracy measures
The following measures of prediction accuracy were
used in this work: the two-class classification accuracy
el over benign and deleterious mutations. A. Abs_dSS – absolute
r a given position. B. ss_Abs_dSize – absolute difference between sizes of
onding similarity scores. C. zsEntropy21 – Z-score for Shannon entropy
dRSA – predicted RSA. E. varPredRSA21 – variance of predicted RSA for
aximal values of a given feature.



Table 2 Features passed the inclusion criteria and used for the final prediction model

Feature F-score Correlation, r

ss_Abs_dSize zsEntropy21 predRSA varPredRSA21

Abs_dSS 0.73 0.73 −0.72 −0.38 −0.32

ss_Abs_dSize 0.61 −0.50 −0.28 −0.31

zsEntropy21 0.49 0.39 0.14

predRSA 0.47 0.42

varPredRSA21 0.45
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(Q2), recall (R), precision (P), and Matthews correlation
coefficient (MCC).

Q2 ¼
TP þ TN

TP þ TN þ FP þ FN
⋅100% ð2Þ

R ¼ TP
TP þ FN

⋅100% ð3Þ

P ¼ TP
TP þ FP

⋅100% ð4Þ

MCC ¼ TP⋅TN − FP⋅FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TP þ FPð Þ TN þ FPð Þ TN þ FNð Þp ð5Þ

where TP are true positives (deleterious mutations), TN –
true negatives (benign mutations), FP – false positives, and
FN – false negatives. MCC was used as the objective func-
tion to be maximized during feature selection, and as a
measure of generalization during selection of NN for the
final prediction model (Additional file 1: Tables S4 and S5).

Results and discussion
Feature selection
Missense mutations in CYPs may cause a disease pheno-
type due to many reasons including impediment of
heme binding; misfolding or destabilizing of the protein; a
change in the binding affinity to a substrate leading to re-
duced or increased enzymatic activity; alteration of the
substrate/product turnaround in and out of the active site
cavity; hindrance or abolishment of the binding to a redox
partner (affecting the electron transport rate); and an al-
tered ability to reside at the membrane such that the pro-
tein cannot properly localize within the cell.
Structure-based features, while being the most inform-

ative, cannot be used to full advantage, as most of the hu-
man CYPs are not structurally resolved. For example, it is
difficult to map SRSs using sequence homology because
they are highly variable regions. Moreover, some enzymes
have a well-defined substrate access channel, whereas
others do not. The protein-protein interaction interface
with a redox partner is also not defined for human CYPs
and cannot be mapped directly from remote homologs.
Hence, a fraction of missense mutations on the surface
cannot be discarded from the pool of potential effectors,
as some prediction methods are inclined to do. The model
for the prediction method presented herein utilizes
sequence-based characteristics only.
Since many considered features are evolutionary based,

the influence of MSA quality on these features was ex-
plored. In addition to a full sized NCBI nr database, two
reduced nr versions were used to generate MSA, where
redundant sequences with 90% and 70% identity were
removed. Sequence clustering was performed using CD-
HIT [41]. Changes in discriminatory power (F-scores) of
the evolutionary based features depending on the se-
quence database used are summarized in Additional file 1:
Table S3. Features based on MSA derived from the nr
database, reduced by removing redundant sequences with
over 90% identity (nr90), appear to provide the best dis-
tinction between benign and deleterious mutations
(Additional file 1: Table S3, Fb column). Hence, the fol-
lowing results and the final prediction model are based
on the nr90 sequence database.
As expected, evolutionary-based features indicate that

disease causing mutations occur in CYPs primarily at con-
served sites and have unfavorable similarity scores for mu-
tation amino acids. In this respect, the distribution of
Abs_dSS displays the tendency for deleterious mutations
to have a wider difference in similarity scores between the
mutation and a wild type amino acid (Figure 1A, F = 0.73).
Similar considerations were used as a basis for the SIFT
and PolyPhen-2 methods. The former computes the prob-
ability of the occurrence of a given mutation at a given
position based on MSA [23], whereas the latter method
uses the dSS feature in its prediction model (see supple-
mentary to [24]). Concordantly, ss_Abs_dSize shows a lar-
ger weighted change in size of an amino acid for
deleterious mutations (Figure 1B, F = 0.61). Furthermore,
Figure 1C shows that entropy for positions with deleteri-
ous mutations is shifted from the average entropy across
neighboring residues towards negative direction, indicat-
ing a higher conservation (zsEntropy21, F = 0.49). Of note,
entropy itself for deleterious mutations is closer to 0 than
for benign mutations and has high F-score equal to 0.66.
However, it is highly correlated with absolute difference
between similarity scores, r(Abs_dSS, Entropy) = −0.82,
and hence it was removed from the final feature space as
a redundant feature (Additional file 1: Table S4).



Table 3 Performance of the prediction models on the
training set TS270

Model MCC Q2, % R, % P, %

LDA 5-fold CV 0.54 ± 0.04 82.96 ± 3.19 94.47 ± 1.65 84.17 ± 4.96

NN 5-fold CV 0.46 ± 0.10 79.26 ± 4.12 87.24 ± 6.58 84.87 ± 2.20

LDA-cons 0.53 82.59 92.89 84.72

NN-cons 0.53 81.85 89.34 86.27

MutaCYP 0.70 88.52 93.40 91.09

PolyPhen2/HumVar 0.61 84.07 86.80 90.96

PolyPhen2/HumDiv 0.58 83.70 90.36 87.68

SIFT 0.49 76.33 77.70 85.71

LDA – linear model based on linear discriminant analysis.
NN – non-linear model based on neural networks.
LDA-cons and NN-cons – consensus models based on simple majority voting
of 5 LDA or NN based models.
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More interestingly, predRSA appears among the stron-
gest sequence-based characteristics capturing the disease
causing mutations (F = 0.47). As follows from the name,
RSA measures the extent of surface exposure (or con-
versely, a burial state) for a given residue in a given protein
conformation normalized to a maximal possible exposure
for a given kind of amino acid. The use of predicted RSA
in the prediction of deleterious mutations is not entirely
novel to this study. Two other studies reported prediction
models that include predicted RSA [42,43]. However,
those models used a 2- or 3-state definition of solvent ac-
cessibility (e.g., buried, half-buried, and exposed), which
limits its applicability. In this regard, we previously devel-
oped our own method for RSA prediction (SABLE) and
showed that this structural characteristic is more mean-
ingful and useful when considered as a continuous value
[38]. Furthermore, with the overall accurate prediction of
RSA by SABLE, we showed that the method is prone to
over-prediction in terms of burial state for residues that
are located in trans-membrane regions [44], at protein-
Table 4 Performance of the evaluated methods on the trainin

Dataset Methoda Confusion scoresb

B-B B-D D-B D

TS270

MutaCYP 55 18 13

PolyPhen-2 HumVar 56 17 26

PolyPhen-2 HumDiv 48 25 19

SIFT 50 18 31

CS30

MutaCYP 1 0 0

PolyPhen-2 HumVar 1 0 3

PolyPhen-2 HumDiv 0 1 1

SIFT - - 5
aSIFT predictions miss 63 mutations in TS270 (58 deleterious and 5 benign) and 9 m
bConfusion scores notation: B-B – the number of benign mutations predicted as be
D-B – deleterious as benign.
Confusion scores are computed for binary classification. Pearson correlation coeffici
protein interaction interfaces [37], and within structurally
restrained regions [45]. These are exactly the places where
one would expect deleterious missense mutations most
likely to occur. Therefore, a certain bias in predicted RSA
towards the burial state is expected to correlate with such
mutations (Figure 1D). To this end, variance in predicted
RSA (varPredRSA21) is a complementary, yet orthogonal,
feature to predRSA (F = 0.45, r = 0.42). It describes local
sequence environment in terms of surface exposure and
appears to be lower for positions with deleterious muta-
tions (Figure 1E), indicating a homogeneous environment
(for example, most of the neighboring residues are pre-
dicted to be buried).
Evaluation of the model
Table 3 contains the summary of evaluations of the pre-
diction models using the training set TS270. First, we
assessed which of our models performs better, linear
(LDA) or non-linear (NN). In 5-fold cross validation
(Table 3; lines 1–2), the linear model appears to perform
better, MCC = 0.54, compared to the NN-based model
(MCC = 0.46). Second, we probed whether a consensus
based model can improve the performance. Predictions
by the five individual models derived from cross valid-
ation were combined using simple majority voting. NN-
cons model shows the improvement over 5-fold cross
validation, but both LDA-cons and NN-cons perform
similarly yielding MCC = 0.53 (Table 3; lines 3–4). Next,
in the efforts of simplifying the final prediction model, a
single NN was chosen from cross validation that showed
the best generalization from the validation to test sub-
sets (see Additional file 1: Table S5 and Methods for de-
tails). Line 5 of Table 3 (highlighted with bold face)
shows performance of the final model used for Muta-
CYP, which appears to be the best across all other
models evaluated (MCC = 0.70).
g (TS270) and control (CS30) sets

Correlation, r

-D PolyPhen-2 HumVar PolyPhen-2 HumDiv SIFT

184 0.69 0.67 0.58

171 0.96 0.66

178 0.67

108

29 0.38 0.19 0.12

26 0.94 0.58

28 0.67

16

utations in CS30 (8 deleterious and 1 benign).
nign; B-D – benign as deleterious, D-D – deleterious as deleterious;

ent is computed for real valued predictions.



Figure 2 ROC curves for predictions by the evaluated methods
on the TS270 dataset.

Table 5 Performance of the evaluated methods on the
blind set (BS292)

Methoda Predicted mutation
status

Correlation, r

Benign Deleterious PolyPhen-2
HumVar

PolyPhen-2
HumDiv

SIFT

MutaCYP 115 177 0.48 0.48 0.34

PolyPhen-2
HumVar

170 122 0.96 0.47

PolyPhen-2
HumDiv

162 130 0.48

SIFT 161 124
aSIFT predictions miss 7 mutations.

Figure 3 Overlap of predictions by the evaluated methods in
TS270, CS30, and BS292 datasets.

Fechter and Porollo BMC Medical Genomics 2014, 7:47 Page 7 of 9
http://www.biomedcentral.com/1755-8794/7/47
Comparison with other methods
First, MutaCYP was compared with the SIFT and PolyPhen-
2 methods using the TS270 set (Table 3, last three lines).
Table 4 presents a confusion table for binary predictions
and correlation between raw scores. Figure 2 presents ROC
curves for all methods along with AUC values. Collectively,
MutaCYP outperforms the other methods by all accuracy
measures showing MCC= 0.70, Q2 = 88.52%, R = 93.40%,
P = 91.09%, and AUC= 0.909. The SIFT method appears to
perform the worst (MCC= 0.49, AUC= 0.824), and it does
not provide predictions for CYP21A2 (UniProt ID: P08686;
Ensembl ID: ENSP00000403721), probably due to the lack
of MSA for this CYP in its pre-computed database. This ex-
cluded 63 mutations from evaluation of SIFT.
Next, we compared the methods using the CS30 dataset,

where 29 mutations are deleterious and not included in the
UniProt humsavar database (see Methods for details). Again,
SIFT did not provide prediction for CYP21A2, thus exclud-
ing 8 deleterious and 1 benign mutations from CS30. Muta-
CYP correctly predicted all mutations in CS30 (Table 4).
PolyPhen-2 trained on the HumVar dataset correctly pre-
dicted the benign mutation (CYP21A2: A265V) and mis-
classified 3 deleterious mutations as benign (CYP11B1:
M88I,T401A; CYP27B1:P143L). PolyPhen-2 trained on
the HumDiv dataset wrongly predicted the benign mutation
as deleterious, but confused only one disease causing muta-
tion (CYP11B1:M88I). Of 21 deleterious mutations, SIFT
predicted 5 mutations to be benign (CYP7B1:T297A;
CYP11B1:M88I,A165D; CYP27B1:G57V,G102E), thus show-
ing the highest confusion rate. Of note, all three compared
methods predicted M88I in CYP11B1 as benign, whereas
only MutaCYP correctly assigned it as deleterious.
Additional comparison of the methods has been
conducted using the BS292 set (Table 5), where all
mutations are assigned by UniProt as benign. Seven
mutations were missing in SIFT prediction for BS292.
All evaluated methods predicted considerable fraction of
these mutations to be deleterious (61%, 42%, 45%, and 44%
by MutaCYP, PolyPhen-2/HumVar, PolyPhen-2/HumDiv,
and SIFT, respectively). These results further support our
hypothesis that some missense mutations in BS292 are not
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fully annotated in the UniProt database. This goes in line
with the previously published study, where similar concerns
were raised about quality of UniProt annotations for mis-
sense mutations in cancer genes [46].
Finally, we measured the correlation in predictions be-

tween the four methods by looking at the raw prediction
scores (Tables 4 and 5). For TS270, MutaCYP yields mod-
erate correlation with other methods, with Pearson correl-
ation coefficients ranging between 0.58 and 0.69. Two
PolyPhen-2 methods have the highest correlation reaching
r = 0.96, and moderate correlation with prediction scores
by SIFT (r = 0.66-0.67). In CS30 predictions, MutaCYP
has low to moderate correlation with the other methods
(r = 0.12-0.38). Despite the similar performance, MutaCYP
has only r = 0.38 with PolyPhen-2 (HumVar). Again, pre-
dictions by the two PolyPhen-2 methods have the highest
correlation (r = 0.94), and they both moderately correlate
with prediction scores by SIFT (r = 0.58-0.67). For BS292,
MutaCYP shows moderate correlation with other methods
(r= 0.34-0.48), whereas PolyPhen-2 methods mutually cor-
relate with r = 0.96, and moderately correlate with SIFT
predictions (r = 0.47-0.48). Figure 3 illustrates the overlap
between predictions by the evaluated methods using Venn
diagrams. 56%, 47%, and 56% of missense mutations in the
TS270, CS30, BS292 datasets, respectively, were unani-
mously classified by all methods.
Since MutaCYP appears orthogonal to other evaluated

methods by showing only moderate correlation in raw pre-
diction scores, there is possibility in improvement of overall
prediction by combining two or more methods in a
consensus-based classifier. Additional file 1: Table S6 shows
the results of predictions by combinations of the considered
methods using the simple majority voting and union ap-
proaches for consensus. While most of combinations do
not show any improvement compared to MutaCYP alone,
a consensus of MutaCYP and PolyPhen-2 trained on the
HumVar data does slightly increase accuracy yielding
MCC=0.71. Perhaps, further improvement may be achieved
by developing a consensus-based model using machine
learning techniques, but it is beyond the scope of this study.

Conclusions
Cytochrome P450 monooxygenases constitute a large
superfamily and are represented by 57 genes in the human
genome. CYPs play important roles in human health via
endogenous functions and interaction with environment.
A special attention is required in the analysis of missense
mutations in these genes to understand their role in the
disease development and individual susceptibility to envir-
onmental cues. The new method called MutaCYP was de-
veloped along with the entailing web-server to address the
need in the tailored interpretation of mutations in human
CYPs. With five sequence based features, MutaCYP out-
performs SIFT and PolyPhen-2. Predictions by the new
method appear to be orthogonal to predictions by the
evaluated methods and hence can be included in a meta-
predictor to further improve the accuracy of classification.
The large scale analysis of missense mutations in human
CYPs using 4 different prediction methods supports the
notion that not all mutations in the UniProt humsavar
database have reliable annotations as neutral and must be
carefully used in the training and validation protocols.

Additional files

Additional file 1: Tables S1-S6. Mutation data from the UniProt
humsavar database used for the training dataset (TS270). Table S2. Mutation
data from the UniProt humsavar database used for the blind dataset
(BS292). Table S3. Features considered for inclusion in the prediction model
and their discriminatory power (F-score, F). Evolutionary based features were
derived from the PSI-BLAST position specific scoring matrix (PSSM) gener-
ated after 3 iterations. Features highlighted with bold face were selected for
the final model. Table S4. Performance of prediction models using features
from Table S3. The accuracy in terms of MCC is based on 5-fold cross-
validation of a linear model (LDA). Highlighted with bold face is the final fea-
ture space selected for MutaCYP. Table S5. Performance of neural network
(NN)-based prediction models using the best feature set from Table S4.
Highlighted with bold face is the final NN architecture selected for MutaCYP.
Table S6. Performance of consensus-based prediction models on the training
set TS270.

Additional file 2: Figure S1. Flowchart of the protocol for developing
and validating MutaCYP. The entire training dataset (TS270) was used for
feature selection. A linear model (LDA) was used with 5-fold cross-validation
to evaluate performance of different combinations of features. The neural
network (NN) based model was used with 5-fold cross-validation to evaluate
performance of different NN architectures and training algorithms. White
bars represent vectors used for the training of a given model (training
subset). Light grey bars represent 20% of vectors from the corresponding
training subset used for choosing the best performing NN in a given training
procedure (validation subset, 5f-VS in Table S5). Dark grey bars represent 20%
of vectors from TS270 used for evaluation (test subset, 5f-TS in Table S5) in a
given fold. A single NN that showed best accuracy on 5f-VS and generalization
on 5f-TS was chosen for MutaCYP, which was subsequently evaluated using
the whole training set (TS270), control set (CS30), and blind set (BS292).
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