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Abstract

Background: Clinical statement alone is not enough to predict the progression of disease. Instead, the gene
expression profiles have been widely used to forecast clinical outcomes. Many genes related to survival have been
identified, and recently miRNA expression signatures predicting patient survival have been also investigated for
several cancers. However, miRNAs and their target genes associated with clinical outcomes have remained largely
unexplored.

Methods: Here, we demonstrate a survival analysis based on the regulatory relationships of miRNAs and their
target genes. The patient survivals for the two major cancers, ovarian cancer and glioblastoma multiforme (GBM),
are investigated through the integrated analysis of miRNA-mRNA interaction pairs.

Results: We found that there is a larger survival difference between two patient groups with an inversely
correlated expression profile of miRNA and mRNA. It supports the idea that signatures of miRNAs and their targets
related to cancer progression can be detected via this approach.

Conclusions: This integrated analysis can help to discover coordinated expression signatures of miRNAs and their
target mRNAs that can be employed for therapeutics in human cancers.

Background
As patterns of gene expression correlate with disease
phenotype and patient outcome, mRNA expression pro-
filing has been used to classify disease risks as well as
prediction of outcome[1-4]. In addition, survival analysis
with gene expression profiles is beneficial for identifying
new prognostic targets of diverse diseases.
Many miRNAs have been also found to be correlated

with clinical outcome in specific cancer types [5-10].
miRNAs are a class of small and endogenous RNA
molecules that regulate their target mRNAs through
translational repression or mRNA degradation [11]. In
tumors, many miRNAs can be aberrantly expressed,
leading to potentially abnormal regulation of their target
mRNAs. Although over 1,000 human miRNAs may be

encoded in human genome, the potential therapeutic
markers provided by miRNAs for a diverse spectrum of
diseases are still unexplored.
Recently, several investigations have put emphasis on

the integrated analysis of miRNAs and mRNAs in clini-
cal outcomes [12-17]. In general, there are different
approaches for the joint analysis of miRNA and mRNA
data. For example, several miRNAs associated with sur-
vival rate can be extracted by survival analysis and then
their relationship of inverse correlation can be identified
based on analyzing miRNA and mRNA expression pro-
files. Most approaches do not test the clinical outcome
by considering miRNA expression and mRNAs expres-
sion simultaneously. At minimum, this analysis requires
the size of the cohort to be large enough for statistically
significant measurement outcomes and the paired sam-
ples with both mRNA and miRNA expressions should
be given. The Cancer Genome Atlas (TCGA) [18] pro-
vides different types of genomic datasets and we
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systematically integrated multi-omics data for cancer
clinical outcome prediction [19].
Here, we present the survival analysis considering the

regulatory relationships of miRNAs and their target
genes. We tested clinical outcomes with the patient sur-
vival information, miRNA expression profiles and gene
expression profiles for ovarian cancer and glioblastoma
multiforme (GBM) through the integrated analysis of
miRNA-mRNA interaction pairs. We found the miRNA-
mRNA pairs with an inversely correlated expression
profile that have significant survival differences between
two patient groups. The results presented here suggest
that this analysis can help to discover expression signa-
tures of miRNAs and their target mRNAs that can be
employed for therapeutics in human cancers.

Methods
miRNA target dataset
We obtained the largest collection of human miRNA-
mRNA target relationships from the TarBase 6.0 [20]. All
targets in this collection were manually curated and experi-
mentally validated. We extracted a total of 12,879 interac-
tions consisting of 229 miRNAs and 6,699 target genes.

Gene and miRNA expression profile
The miRNA and gene expression data sets in ovarian
cancer and GBM are acquired from the Cancer Genome
Atlas (TCGA) [18]. Ovarian cancer and GBM data sets

consist of mRNA expression profiles and miRNA expres-
sion profiles for 496 and 425 patients, respectively. We
transformed the expression values into a Z-score for each
miRNA or each gene. If the Z-score of miRNA (or
mRNA) is greater (less) than zero, its expression level is
defined to be high (low). We excluded miRNA-mRNA
pairs from the expression datasets that were not listed in
the TarBase in order to avoid unnecessary calculations.
Expression matrices for ovarian cancer composed of 137
miRNAs × 496 patients and 5,707 target genes × 496
patients. Among all possible 776,016 miRNAs and
mRNA pairs, the number of validated interactions
presented in TarBase 6.0 is 10,574 composed from
137 miRNAs and 5,707 mRNAs. Expression matrices for
GBM consist of 144 miRNAs × 425 patients and 6,700
target genes × 425 patients. Among all possible 964,800
miRNA-mRNA pairs, the number of validated interac-
tions is 9,073 from 144 miRNAs and 6,700 mRNAs.

Survival analysis of miRNA and target mRNA
We performed the survival analysis for patient groups using
the Kaplan-Meier estimator. Each group was constructed
based on the expression profiles of a miRNA-mRNA pair.
There are four possible combinations of expression profiles
(Figure 1(A)). One is a group with low expression of a
miRNA and high expression of a mRNA. We defined this
group as LH. On the other hand, a second group is HL
that is high expression of miRNA and low expression of

Figure 1 Scheme of survival analysis with miRNA and mRNA. Scheme of survival analysis with miRNA and mRNA A. The grouping method
according to miRNA and mRNA expression profiles for survival analysis. The survival analysis based on the combination of expression levels of
miRNA and mRNA. B. The survival curve between LH group and HL group.
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mRNA. The other groups, HH and LL, denote both
high and both low expression of miRNA and mRNA,
respectively.
We carried out the survival analysis of each miRNA-

mRNA pair for six possible pairwise sets (HL:LH, HH:LL,
HL:LH, HH:HL, LL:LH and LL:HL). Among these sets,
our focus was on the survival test between LH and HL
(Figure 1(B)) as they are inversely related to the level of
expression. The group HL indicates that high expression
of miRNA causes low expression of mRNA through the
mechanism that a miRNA represses or cleaves its target
mRNA, while the group LH states that the low expression
of miRNA results in the high expression of mRNA.

Results
We investigated if the comparison between the two
groups, HL:LH, showed any distinguishing characteristics
compared to the other relationships between pairs in sur-
vival analysis. Thus, we performed the survival analysis of
each miRNA-mRNA for six possible pairwise sets. Here,
HH, HL, LH or LL indicates a patient group classified
according to low or high expression level of a miRNA and
mRNA. For example, HL means a patient group with high
expression of a miRNA and low expression of mRNA. We
performed the log-rank test of survival scores for all possi-
ble miRNA-mRNA pairs and then extracted the validated
pairs whose interactions were shown in TarBase 6.0.
Table 1 shows the number of significant pairs with p-value
of log-rank test <0.01 for both total pairs and validated
pairs in each pairwise set. As the table indicates, there was
not a substantial difference between the results. For exam-
ple, in ovarian cancer, although the number of significant
validated pairs in HL:LH is 261, which is higher than other
pairs, the background number, 22,575 is higher as well. As
a result, the number of pairs associated with survival in
HL:LH might be less than we expected.
Therefore, we extracted miRNA-mRNA interaction pairs

that showed significant difference between the HL group
and LH group in survival rate using more stringent criteria.
In Figure 2(A), we plotted the distribution of p-values cor-
responding to survival tests for 10,574 validated pairs in
the ovarian cancer dataset. Each test was conducted from
two groups containing different patients based on the
expression values of miRNA and mRNA (Figure 2(B)).

We obtained the threshold (corresponding to p-value <
3.66e-3) by calculating the false discovery rate (0.01) from a
null model with a total of 776,016 pairs including most
non-target relations. A total of 163 significant pairs with
validated interactions were selected and they contained 22
miRNAs and 156 mRNAs. Expression patterns of all pairs
are shown in Figure 2(C). The list of all significant interact-
ing pairs for ovarian cancer is described in Additional file 1
Supplemental Table 1 and the list for GBM is also shown
in Additional file 1 Supplemental Table 2. The survival
difference between HL group and LH group suggests that
the selected miRNA and its target mRNA might affect the
progression of cancer in a coordinated fashion.
Among top 20 ranked miRNA-mRNA interaction pairs,
the roles of four targets including PLAGL1, MTUS1,
MEF and IFNGR1 have been reported in ovarian cancer
(Table 2). miR-148a was down-regulated in ovarian can-
cer cell lines and might be involved in the carcinogenesis
of ovarian cancer [21,22]. Previous research reported that
overexpression of miR-148b in ovarian cancer tissues was
not associated with any of the pathological features of
patients with ovarian cancer. It suggested that miR-148b
might be involved in the early stage of ovarian carcino-
genesis [23]. Although other miRNAs including miR-
196a, miR-374b, miR-124, and miR-98 have not been
reported for associations with ovarian cancer, they are
related with the oncogenic phenotype or their expression
of other cancers [24-27].
Several miRNAs are dominated in significant miRNA-

mRNA pairs. miR-98 and miR-148b-3p have more than
446 and 187 target genes, respectively. miR-98 or miR-
148b-3p itself shows a significant survival difference
between high and low expression (pvalue < 0.0077 and
pvalue < 0.0014), while miR-124-3p with 979 targets genes
shows a borderline significance (pvalue < 0.0051).
LOT1(PLAGL1/ZAC1) is known to possess anti-prolif-

erative effects and is frequently silenced in ovarian cancer
and breast cancer [28]. Previous studies suggest that a
shortage of the PLAGL1 protein might impair its role in
regulating the cell cycle and interfere with apoptosis. Con-
sequently, cells may grow and divide too quickly in an
uncontrolled manner. Mitochondrial tumor suppressor 1
(MTUS1) is a newly identified candidate tumor suppressor
gene [29]. Previous studies have shown that MTUS1

Table 1 Comparison of the number of significant pairs.

Num of Significant Pairs (p-value < 0.01) HH:LL HL:LH HH:HL HH:LH LL:LH LL:HL

Ovarian
Cancer

Validation Pair 257 261 113 200 143 248

Total Pair 22,685 22,575 9,408 18,739 10,299 21,332

GBM Validation Pair 234 250 229 171 161 229

Total Pair 47,706 51,217 22,180 36,023 22,835 42,735

Comparison of the number of significant pairs (p-value <0.01) in total and validation for six pairwise survival test sets.
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expression levels are down-regulated in cancers of the
colon, ovary, pancreas, head and neck, and breast cancer
[30]. MEF (myeloid ELF1-like factor, also known as ELF4)
is expressed in a significant proportion of ovarian carcino-
mas [31]. The oncogenic activity of MEF was shown by
the ability of MEF to transform NIH3T3 cells, and induce
the formation of tumors in nude mice. The expression
level of IFNGR1 in a typical ovarian cancer population
varies, with 22% of them displaying a complete loss of the
IFNg receptor [32]. Low levels of receptor expression seem
to have a negative effect on survival and are unrelated to
other pathologic variables. Therefore, low expression of
IFNGR1 could be regarded as an independent prognostic
marker in ovarian cancer. Although we have found only
several previously reported functional roles related to

ovarian cancer, they hint at the possibility that other target
genes might be associated with ovarian cancer develop-
ment and progression.
From the analysis of GBM dataset, we could find func-

tional evidences of four targets including CDKN1A,
MTAP, KIT and ATM among top 20 ranked miRNA-
mRNA interaction pairs have been reported in GBM can-
cer (Table 3). The roles of most top-ranked miRNAs in
GBM have been reported in previous literatures. miR-34a
is a transcriptional target of p53 and it also suppresses
brain tumor growth by targeting c-Met and Notch[33].
The significant correlation between miR-106a expression
levels and overall survival was observed in a large set of
FFPE GBM specimen and it could be used as an indepen-
dent prognostic biomarker in GBM patients[34]. Previous

Figure 2 Selecting significant miRNA-mRNA pairs from HL:LH (high miRNA & low mRNA expression group vs. low miRNA & high mRNA
expression group) type. Selecting significant miRNA-mRNA pairs from HL:LH (high miRNA & low mRNA expression group vs. low miRNA & high
mRNA expression group) type. A. Distribution of significances by Log-rank test with HL:LH type in ovarian cancer. The dashed line indicates the
threshold that the false discovery ratio is 0.01. B. The scatter plot of expression values for miR-98 and PLAGL1 pair among miRNA and mRNA
pairs. Each point indicates a patient with HL:LH expression pattern. C. The heatmap of average expression values of miRNA and mRNAs for all
significant pairs. Each cell indicates average expression value of a miRNA or mRNA in a group (i.e. HL or LH)
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Table 2 Top 20 ranked miRNA-mRNA interaction pairs (OV).

miRNA Gene p-value (HL:LH) Gene Description

hsa-miR-124-3p PACSIN3 4.02E-05 Protein Kinase C And Casein Kinase Substrate In Neurons Protein

hsa-miR-124-3p SLC43A3 5.19E-05 Solute carrier family 43, member 3

hsa-miR-148b-3p EYA4 5.45E-05 Eyes Absent (Drosophila) Homolog 4

hsa-miR-148a-3p GAS1 7.66E-05 Growth arrest-specific 1

hsa-miR-374b-5p TAF7 1.38E-04 TAF7 RNA Polymerase II, TATA Box Binding Protein (TBP)-Associated Factor

hsa-miR-124-3p SDF2L1 1.63E-04 Stromal Cell Derived Factor 2 Like Protein 1

hsa-miR-98 SLC35D2 1.83E-04 Solute carrier family 35, member D2

hsa-miR-98 PLAGL1* 1.91E-04 Pleomorphic adenoma gene-like 1

hsa-miR-124-3p SERP1 2.09E-04 Stress-associated endoplasmic reticulum protein 1

hsa-miR-196a-5p LGR4 3.36E-04 Leucine-Rich Repeat Containing G Protein-Coupled Receptor 4

hsa-miR-148b-3p APBB2 3.86E-04 Amyloid beta (A4) precursor protein-binding, family B, member 2

hsa-miR-98 FNDC3A 3.90E-04 Fibronectin type III domain containing 3A

hsa-miR-98 MTUS1* 4.03E-04 Microtubule associated tumor suppressor 1

hsa-miR-98 CDKAL1 4.47E-04 CDK5 regulatory subunit associated protein 1-like 1

hsa-miR-98 ZBED4 4.59E-04 Zinc finger, BED-type containing 4

hsa-miR-124-3p FCHSD2 5.28E-04 FCH and double SH3 domains 2

hsa-miR-98 UST 5.69E-04 Uronyl-2-Sulfotransferase

hsa-miR-124-3p ELF4* 6.22E-04 E74-Like Factor 4 (Ets Domain Transcription Factor)

hsa-miR-98 GNA12 6.52E-04 Guanine Nucleotide Binding Protein (G Protein) Alpha 12

hsa-miR-98 IFNGR1* 6.69E-04 Interferon gamma receptor 1

Top 20 ranked miRNA-mRNA interaction pairs associated with survival difference from the ovarian cancer dataset.

* The functional roles in ovarian cancer have been known.

Table 3 Top 20 ranked miRNA-mRNA interaction pairs (GBM).

miRNA Gene p-value (HL:LH) Gene Description

hsa-miR-19b-3p GPATCH8 8.37E-06 G Patch Domain Containing 8

hsa-miR-19b-3p CLIP1 2.01E-05 CAP-GLY domain containing linker protein 1

hsa-miR-19b-3p CTR9 2.21E-05 Ctr9, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)

hsa-miR-34a-5p HIST3H2A 3.11E-05 Histone cluster 3, H2a

hsa-miR-106a-5p CDKN1A* 4.43E-05 Cyclin-dependent kinase inhibitor 1A (p21, Cip1)

hsa-miR-145-5p FAM3C* 6.87E-05 Family with sequence similarity 3, member C

hsa-miR-19b-3p PRKAA1 8.53E-05 Protein kinase, AMP-activated, alpha 1 catalytic subunit

hsa-miR-34a-5p MTAP* 8.94E-05 Methylthioadenosine phosphorylase

hsa-miR-20a-5p CDKN1A* 9.77E-05 Cyclin-dependent kinase inhibitor 1A (p21, Cip1)

hsa-miR-148a-3p HOXC8 1.20E-04 Homeobox C8

hsa-miR-221-3p TFAP2A 1.28E-04 Transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha)

hsa-miR-19a-3p HOXA5 1.29E-04 Homeobox A5

hsa-miR-200b-3p RIN2 1.37E-04 Ras and Rab interactor 2

hsa-miR-26b-5p CLEC5A 1.43E-04 C-type lectin domain family 5, member A

hsa-miR-19b-3p PSMD9 1.77E-04 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 9

hsa-miR-19b-3p LPHN2 1.91E-04 Latrophilin 2

hsa-miR-34a-5p ATXN2L 2.08E-04 Ataxin 2-like

hsa-miR-17-5p CDKN1A* 2.44E-04 Cyclin-dependent kinase inhibitor 1A (p21, Cip1)

hsa-miR-222-3p KIT* 2.50E-04 V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog

hsa-miR-19b-3p ATM* 2.54E-04 Ataxia telangiectasia mutated

Top 20 ranked miRNA-mRNA interaction pairs associated with survival difference from the GBM dataset.

* The functional roles in GBM cancer have been known.
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study has reported that miR-221/222 cluster is involved in
regulation of cell cycle progression and cell proliferation
by targeting p27 and p57 [35]. Real-time PCR experiment
revealed that the expression level of miR-26b was inversely
correlated with the grade of glioma[36]. Thus it suggests
that miR-26b may act as a tumor suppressor in GBM.
miR-17 expression was higher in glioma tissue and it is
significantly related to poor overall survival [37].
Previous quantitative real-time PCR revealed overex-

pression of CDKN1A in primary GBM[38]. This result
suggests that CDKN1A expression is regarded as a puta-
tive marker to distinguish primary GBM from secondary
GBM. The gene for methylthioadenosine phosphorylase
(MTAP) is located closely to the gene CDKN2A.
MTAP-deficiency in many tumors that have been most
resistant to treatment occurs commonly. Especially 70%
of glioblastoma lack MTAP. Amplification of KIT in 17
(4.4%) glioblastomas was reveled from screening of 390
glioblastomas[40]. A borderline positive association
(p=0.0579) between KIT amplification and TP53 muta-
tion was also observed. ATM expression is correlated
with radioresistance in primary GBM cells in culture.
Genes encoding components of the DNA-damage
response (DDR) pathway are frequently altered in
human GBM patients and the ATM/Chk2/p53 cascade
suppresses GBM formation[41].

Figure 3 displays the network of miRNA-target mRNA
interactions that are associated with the difference of
clinical outcome of OV cancer patients. It shows that
many target genes in the network, indicated by high-
lighted nodes, are associated with neoplasm or cancer-
related conditions. Some are interaction pairs where HL
groups show good outcomes while others are when LH
groups have good outcome. This network implies that
the increased expression of miR-148b is significantly
associated with survival rate for ovarian cancer, which
agrees with the previous observation [23]. In contrast,
the low level of expression of miR-124 is shown to have
strong association with survival rate. The complete net-
work of interactions can be found in Additional file 1
Supplementary Figure 1.

Conclusions
We have introduced the integrated analysis of survival test
with datasets of miRNA and mRNA expression profiles, as
well as clinical information in ovarian cancer and GBM.
We have seen that the combined expression patterns
between miRNAs and mRNAs can distinguish between
risk groups related to co-regulation of both. In addition,
we have presented supporting evidence for functional
roles of miRNA and their targets in specific cancer from
the literature. Our approach can be utilized to detect

Figure 3 Network visualization of miRNA-mRNA interaction pairs in terms of clinical outcome in ovarian cancer patients. Network
visualization of miRNA-mRNA interaction pairs in terms of clinical outcome in ovarian cancer patients. Highlighted nodes indicate genes that are
associated with Neoplasm/Cancer-related condition.
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clinical and therapeutic miRNAs and their targets related
to outcome of several cancers.

Additional material

Additional file 1: Survival analysis of six different test set and
network of significant miRNA-mRNA interaction pairs. Supplemental
Table 1. Survival analysis of six different test sets or validated miRNA-
mRNA interactions with ovarian cancer dataset. Supplemental able 2.
Survival analysis of six different test sets for validated miRNA-mRNA
interactions with GBM dataset. Supplemental Figure 1. Network
visualization of all significant iRNA-mRNA interaction pairs in terms of
clinical outcome in ovarian cancer patients.
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