
RESEARCH Open Access

Effectively processing medical term queries on
the UMLS Metathesaurus by layered dynamic
programming
Kaiyu Ren1,2, Albert M Lai1, Aveek Mukhopadhyay2, Raghu Machiraju2, Kun Huang1, Yang Xiang1*

From The 3rd Annual Translational Bioinformatics Conference (TBC/ISCB-Asia 2013)
Seoul, Korea. 2-4 October 2013

Abstract

Background: Mapping medical terms to standardized UMLS concepts is a basic step for leveraging biomedical
texts in data management and analysis. However, available methods and tools have major limitations in handling
queries over the UMLS Metathesaurus that contain inaccurate query terms, which frequently appear in real world
applications.

Methods: To provide a practical solution for this task, we propose a layered dynamic programming mapping
(LDPMap) approach, which can efficiently handle these queries. LDPMap uses indexing and two layers of dynamic
programming techniques to efficiently map a biomedical term to a UMLS concept.

Results: Our empirical study shows that LDPMap achieves much faster query speeds than LCS. In comparison to
the UMLS Metathesaurus Browser and MetaMap, LDPMap is much more effective in querying the UMLS
Metathesaurus for inaccurately spelled medical terms, long medical terms, and medical terms with special
characters.

Conclusions: These results demonstrate that LDPMap is an efficient and effective method for mapping medical
terms to the UMLS Metathesaurus.

Background
Efficiently processing and managing biomedical text data
is one of the major tasks in many medical informatics
applications. Biomedical text analysis tools, such as
MetaMap [1] and cTAKES [2], have been developed to
extract and analyze medical terms from biomedical text.
However, medical terms often have multiple names,
which make the analysis difficult. As an effort to stan-
dardize medical terms, the Unified Medical Language
Systems (UMLS) [3] maintains a very valuable resource
of controlled vocabularies. It contains over 200 million
medical terms (also known as “medical concepts”). Each
medical term is identified by a unique id known as a
Concept Unique Identifier (CUI). The UMLS also

records relations between medical terms. As a result,
mapping biomedical text data to the UMLS and mining
UMLS associated datasets often yield rich knowledge for
many biomedical applications [4-8].
In order to effectively query or use the UMLS, one of

the fundamental tasks is to correctly map a biomedical
term to a UMLS concept. Currently, there are a number
of publicly available tools to achieve this goal. One nota-
ble approach is to use the official UMLS UTS service
(UMLS Metathesaurus Browser) available on the UMLS
official website (https://uts.nlm.nih.gov). Users are able
to input a medical term and the system will return a
query result. MetaMap [1], which has been developed
and maintained by US National Library of Medicine, has
become a standard tool in mapping biomedical text to
the UMLS Metathesaurus. cTAKES [2] is an open-
source natural language processing system that can

* Correspondence: yxiang@bmi.osu.edu
1Department of Biomedical Informatics, the Ohio State University, Columbus,
OH 43210, USA
Full list of author information is available at the end of the article

Ren et al. BMC Medical Genomics 2014, 7(Suppl 1):S11
http://www.biomedcentral.com/1755-8794/7/S1/S11

© 2014 Ren et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

https://uts.nlm.nih.gov
mailto:yxiang@bmi.osu.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

process clinical notes and identify named entities from
various dictionaries, including the UMLS.
However, after having been using these tools in our

research, we found that they do not work well in mapping
medical terms that are just slightly different from the
terms in the UMLS. For example, the UMLS Metathe-
saurus Browser, MetaMap, and cTAKES fail to process the
query term “1-undecene-1-O-beta 2’,3’,4’,6’-tetraacetyl glu-
copyranoside” even if it has only one character different
(missing “-” between “beta” and “2”) from the official
UMLS concept “1-undecene-1-O-beta-2’,3’,4’,6’- tetraace-
tyl glucopyranoside”. This drawback makes it hard to han-
dle many real world data such as Electronic Health
Records, which contain a lot of noisy information includ-
ing missing and incorrect data [9]. In addition, they often
fail to handle long medical terms even if those terms are
identical to the terms in the UMLS. For example, the
Metathesaurus Browser cannot handle query terms with
more than 75 characters, and sometimes cannot even
accurately answer a query term that exactly matches a
concept name in the UMLS (see discussions in the result
section). MetaMap and cTAKES, on the other hand, often
breaks down a long medical term into several shorter
terms. For example, if we query MetaMap with a clinical
drug “POMEGRANATE FRUIT EXTRACT 150 MG
Oral Capsule”, we get several UMLS concepts such as
“C1509685 POMEGRANATE FRUIT EXTRACT”,
“C2346927 Mg++”, and “C0442027 Oral”, instead of this
drug concept which has a unique CUI C3267394 in the
UMLS. The situation becomes even worse when medical
terms contain special characters, i.e., characters other than
numbers or letters, such as “{”, “}”, “ (”,”)”,"-”, etc. For
example, MetaMap completely fails to find any relevant
CUI to the medical concept “cyclo(Glu(OBz)-Sar-Gly-(N-
cyclohexyl)Gly)2”. These drawbacks are very undesirable
when handling biomedical texts. By studying the UMLS
Metathesaurus, we found that a significant number of
medical terms are quite long. About 10.7% of UMLS con-
cepts contain at least 75 characters (including white
spaces), and about 50.9% of UMLS concepts contains at
least 32 characters. In addition, a large amount of medical
terms contain special characters. More than 61.3% of
UMLS concepts contain at least one special characters
and about 11% of UMLS concepts contains at least 5 spe-
cial characters. In fact, we found many special characters
are optional in a medical term. For example, term “Cyclic
AMP- Responsive DNA-Binding Protein” and term “Cyclic
AMP Responsive DNA Binding Protein” both refer to the
same concept “C0056695” in the UMLS Metathesaurus,
though the latter is missing two “-”. The UMLS handles a
medical term with different names by including multiple
common names in the Metathesaurus. Given the fact that
in many cases special characters are optional, it is practi-
cally impossible to let Metathesaurus contain all possible

names. Considering a UMLS concept with 20 special char-
acters, if each special character may be replaced by a white
space, then there are approximately 1 million aliases for
this concept alone, not to mention that more than 0.3% of
UMLS concepts contain 20 special characters or more.
This problem is in fact related to the classical spelling

correction problem in which a misspelled word will be
corrected to the most closely matched word. The classic
measurement of dissimilarity between two words based
on several distance functions, such as edit distance [10],
hamming distance [11], and longest common subse-
quence distance [12,13]. Thus the spelling correction is
essentially finding a valid word with the minimum dis-
tance to the misspelled word. Quite a few dynamic pro-
gramming algorithms have been proposed to solve this
problem. Readers can find a survey of these algorithms in
[14]. In recent years, spelling correction has evolved to
perform query corrections. This correction is often a task
of context sensitive spelling correction (CSSC), where
corrections will be geared towards more meaningful or
frequently searched words [15]. Thus, it is a good idea to
use the query log to assist the correction [16].
Unlike many query applications, it is not sufficient to

return a frequently searched medical term that best
matches the query based on search history, not to mention
that such history data is often not available. Accurately
identifying a specific biomedical term, such as a drug
name or a chemical compound, is demanded by many bio-
medical applications. Given this consideration, classical
spelling correction techniques are more preferable than
the CSSC for matching biomedical terms to UMLS con-
cepts. However, we found that the classical dynamic pro-
gramming algorithm is too slow for this task because of
the huge volume of terms in the UMLS Metathesaurus. In
addition, it is unable to effectively handle a term with
missing words (e.g., “gastro reflux” has a large distance to
“gastro oesophageal reflux” though the two terms usually
mean the same thing), or words not in their usual order
(e.g., “lymphocytic leukemia chronic” has a large distance
to “leukemia chronic lymphocytic”).
The background described above motivated us to

find an efficient and accurate medical term mapping
method for the UMLS. To tackle this challenge, in this
work we propose a Layered Dynamic Programming
Mapping (LDPMap) approach to query the UMLS
Metathesaurus.

Methods
We use Longest Common Subsequence (LCS) to mea-
sure the similarity between two words. Given two words
A and B, their similarity is defined as:

WordSimilarity(A,B) = 2 ∗ ∣∣LCS(A,B)
∣∣ /(|A| + |B|);

Ren et al. BMC Medical Genomics 2014, 7(Suppl 1):S11
http://www.biomedcentral.com/1755-8794/7/S1/S11

Page 2 of 12

This similarity measure is a variation of the longest
common subsequence distance [12]. We can observe
that WordSimilarity(A, B) ranges between 0 and 1. In
addition, WordSimilarity(A, B) =1 if and only if A and B
are identical, and WordSimilarity(A, B) = 0 if and only if
A and B share no common letters.
The function WordSimilarity(A, B) is the basic building

block for LDPMap. In the UMLS, each concept is a
sequence of words. We define the similarity between two
concepts an = (A1, A2, ..., An) and bm = (B1, B2, ..., Bm) as:

ConceptSimilarity(αn,βm) = max(
∑

(i,j)∈R
WordSimilarity(Ai,Bj));

Similar to word similarity, in our query we will nor-
malize the concept similarity by the number of words
contained in each concept. We can observe that normal-
ized concept similarity score ranges between 0 and 1. If
two concepts are identical then this score is 1.

NormConceptSimilarity(αn,βm) = 2 ∗ ConceptSimilarity(αn,βm)/(|αn| + |βm|);

The key issue in the above definition is R, which is a
matching relation between words in an and bm. We
have two constraints on R, which leads to two different
foci. Constraint 1: There do not exists two matching
pairs (i,j), (x,y) in R such that i=x or j=y.
Constraint 2: In addition to constraint 1, for any two

matching pairs (i,j), (x,y) in R, either i<x &&j<y, or x<i
&&y<j.
Constraint 1 converts the concept similarity problem

into a maximum weighted bipartite matching problem
[17]. Considering a bipartite graph built on two vertex sets
an and bm with word similarities being the edge weights,
finding a highest score for concept similarity under Con-
straint 1 is equivalent to finding a maximum weighted
matching for the bipartite graph. This model is particularly
helpful for identifying the similarity between two terms
regardless of their word ordering. We used this as one of
the measurements in our final query workflow (Figure 1)
and implemented this by maximal weighted matching.
In the following section, we will focus on concept simi-

larity calculation under constraint 2, which regulates that
the similarity comparison between two terms shall follow
the word orders in those terms, similar to the LCS pro-
blem in which matching between two words shall follow
the character orders. Thus, the concept similarity calcula-
tion problem can be considered as a macro level similarity
calculation where each unit is a word instead of a letter as
in the case of word similarity calculation. This model has
a lot of advantages as we will see in the following section.

Suboptimal structure of the concept similarity under
constraint 2
Our next question is how to perform the concept simi-
larity calculation. Unlike word similarity calculation in

which each match outcome is a binary result (i.e., the
same letter or a different letter), each match in the con-
cept similarity calculation is a word similarity value
between 0 and 1. The algorithm for the word similarity
calculation cannot be applied to the concept similarity
calculation. However, we find the concept similarity cal-
culation also has a suboptimal structure as follows:
if i=0 or j=0

ConceptSimilarity(ai, bj) = 0

else

ConceptSimilarity(ai, bj) = max(ConceptSimilarity(ai-

1, bj-1) + WordSimilarity(Ai, Bj), ConceptSimilarity
(ai, bj-1), ConceptSimilarity(ai-1, bj));

The above suboptimal structure is true because for
any two words Ai ε ai, Bj ∊ bj, there are at most three
possible cases:
(1) (i, j) ∊ R, i.e, Both Ai and Bj are used in the match-

ing. Then ConceptSimilarity(ai, bj) = ConceptSimilarity
(ai-1, bj-1) + WordSimilarity(Ai, Bj);
(2) Bj is not used in the matching, then ConceptSimi-

larity(ai, bj) = ConceptSimilarity(ai, bj-1);
(3) Ai is not used in the matching, then ConceptSimi-

larity(ai, bj) = ConceptSimilarity(ai-1, bj).
Note that we do not consider it a valid case that

neither Ai nor Bj is used in the matching. In this case,
we can always choose to make them matching without
violating Constraint 1 and result in a higher or at least
equal concept similarity score.

Main algorithms
Given the suboptimal substructure, we can design a
dynamic programming algorithm to calculate the con-
cept similarity score between two terms, on top of the
LCS dynamic programming algorithm for calculating
word similarity. The two layers of dynamic program-
ming not only result in a method less affected by miss-
ing words or words in different orders, but also
significantly increase the query speed as we will see
below. These enable our searching method practically
applicable to many biomedical applications.
The UMLS Metathesaurus (version used in this work:

2012AB) contains around 11 million records in its
MRCONSO.RRF files. Each record is a medical term.
For query purposes, we discard duplicate terms and
non-English terms and result in about 6.87 million
records. A term is considered duplicate if both its CUI
and name are identical to another term. However,
among these 6.87 million records, there are only
1,874,573 unique words (white space is the delimiter).
Thus concept similarity on a word basis saves a huge
amount of redundant calculation otherwise needed by
classic methods on a character basis. Correspondingly,

Ren et al. BMC Medical Genomics 2014, 7(Suppl 1):S11
http://www.biomedcentral.com/1755-8794/7/S1/S11

Page 3 of 12

in our method, we first pre-process the UMLS Metathe-
saurus into a word vector of unique words, and convert
each UMLS concept, which consists of a list of words,
into a list of indices with regard to the word vector.
Procedure LDPMap-Preprocessing is the pseudo code.
Procedure LDPMap-Preprocessing ()
1: for i=1: length (Metathesaurus)
2: Word_Vector = Word_Vector ∪ Metathesaurus [i];
3: endfor
4: for i=1: length (Metathesaurus)
5: for j = 1: length (Metathesaurus[i])

WordIndex_vector [i, j] = the index of Metathe-
saurus[i, j] in Word_Vector;
6: endfor
7: endfor
8: return Word_Vector, WordIndex_vector;
We process a query using the Algorithm LDPMap_

Query. When a query process starts, we first build a
word similarity matrix between the query term and the
word vector (Line 1-5), using the WordSimilarity

function defined above. Then we build a concept score
vector between the query term and 6.87 million UMLS
Metathesaurus concepts (Line 6-8). The construction of
the concept score vector uses the WordSimilarityMatrix
built previously so that there are no more word similar-
ity calculations. In addition, it adopts a dynamic pro-
gramming approach in Function ConceptSimilarityScore,
owing to the suboptimal structure of the ConceptSimi-
larity function.
Algorithm LDPMap_Query (query_term)
1: for i=1: length (query_term)
2: for j=1: length (Word_Vector)
3: WordSimilarityMatrix[i, j] = WordSimilarity(query_

term[i], Word_Vector[j]);
4: endfor
5: endfor
6: for i=1:length(Metathesaurus)
7: ConceptScore_Vector[i] = ConceptSimilarityScore

(WordIndex_vector[i]);
8: endfor

Figure 1 A Comprehensive Query Workflow Using LDPMap.

Ren et al. BMC Medical Genomics 2014, 7(Suppl 1):S11
http://www.biomedcentral.com/1755-8794/7/S1/S11

Page 4 of 12

9: return Concepts in Metathesaurus corresponding to
top scores in ConceptScore_Vector;
Function ConceptSimilarityScore (WordIndex)
1: for i=2:x+1
2: for j=2:y+1
3: S(i, j) = WordSimilarityMatrix[i-1, WordIndex [j-1]];
4: if S(i, j)+S(i-1, j-1) >max (S(i-1, j), S(i, j-1));
5: S(i, j)= S(i, j)+S(i-1, j-1);
6: else if S(i-1, j) >S(i, j-1)
7: S(i, j)=S(i-1, j);
8: else
9: S(i, j)=S(i, j-1);
10: endif
11: endfor
12: endfor
13: return 2*S(x+1, y+1) / (x+y) ;

A running example
To facilitate the understanding of our method, we provide
a simple running example of our method in Tables 1 and
2. Assume the input query term is “gastro reflux”. The
Algorithm LDPMap_Query will first build a WordSimilari-
tyMatrix between this query term and the word vector of
Metathesaurus. Results were partially shown in Table 1.
After the WordSimilarityMatrix is available, the Algo-

rithm LDPMap_Query will calculate the concept similarity
scores between the query term and UMLS concepts by
dynamic programming. The calculation will refer to
WordSimilarityMatrix for word similarity score instead of
calculating it again. An example of a concept similarity
calculation is given in Table 2.

Complexity analysis
The LDPMap method is much faster than the classic
LCS-based word similarity calculation by treating the
query term and each UMLS concept as one single word,
as demonstrated in our empirical study. The classic LCS-
based word similarity calculation uses dynamic program-
ming on a character basis while we use two layers of
dynamic programming, one on a character basis and the
other on a word basis. To understand the analytical rea-
son behind this speedup, let us make some simple
assumptions. Assume the UMLS Metathesaurus contains
M unique concepts, and each concept or query term

contains t words, and each word has d characters. Also
assume UMLS Metathesaurus contains K unique words.
Then, the classic LCS-based word similarity calculation
takes approximately O(t2d2M) time to handle a query.
However, LDPMap method takes approximately O(td2K
+t2M) time to handle this query. It is easy to observe that
K<<tM. This explains why LDPMap is much more effi-
cient. In the following, we will see that our LDPMap
approach can be further sped up with the pipeline
technique.

Speeding up LDPMap with the pipeline technique
In building the WordSimilarityMatrix and ConceptScore_
Vector, the dynamic programming method has been used
for around 1.87 million times and 6.87 million times,
respectively. It is interesting to find out if there are
repeated calculations that can be reused to speed up the
LDPMap method. By studying both the word vector and
the Metathesaurus, we found the former has a lot of
repeated prefixes among words (e.g. words “4-Aminophe-
nol”, “4-Aminophenyl”), and the latter has a lot of repeated
prefix words among concepts (e.g. C1931062 ectomycor-
rhizal fungal sp. AR-Ny3, C1931063 ectomycorrhizal fun-
gal sp. AR-Ny2). Thus, by lexicographically sorting the
word vector and the Metathesaurus, we can use this infor-
mation to save a lot of calculation in the LDPMap
approach as follows:
(1) In calculating WordSimilarityMatrix, Given a word

A, if it has p common prefix letters with the previous
word B, the dynamic programming only needs to start
from p+1 iteration because the previous p+1 columns of
the dynamic programming table are exactly the same as
the previous results.
(2) In calculating ConceptSimilarityScore, Given a con-

cept a, if it has q common prefix words with the previous
concept b, the dynamic programming only needs to start
from q+1 iteration because the previous q+1 columns of
the dynamic programming table are exactly the same as
the previous results. That means, the for loop in Line 2 of
Function ConceptSimilarityScore shall start with j=q+2.
The mechanism of the speedup technique can be

described as a pipeline technique because a computation

Table 1 An example of WordSimilarityMatrix constructed
for query term “gastro reflux”.

Word Vector of Metathesaurus

... gastro (at i) ... Oesophageal (at
j)

... reflux
(at k)

...

Query
term

gastro ... 1 (gastro) ... 0.235294 (so/ga) ... 0.166667
(r)

...

reflux ... 0.166667 (r) ... 0.235294 (el) ... 1(reflux) ...

Table 2 An example of calculating the concept similarity
score between the query term “gastro reflux” and the
UMLS concept “gastro oesophageal reflux” for the
ConceptScore_Vector construction.

UMLS concept gastro oesophageal reflux

word index i k j

query term order 0 0 0

gastro 1 0 1 1 1

reflux 2 0 1 1.23594 2

The calculation will refer to the WordSimilarityMatrix as shown in Table 1. The
normalized final similarity score is 2*2/(2+3)=0.8.

Ren et al. BMC Medical Genomics 2014, 7(Suppl 1):S11
http://www.biomedcentral.com/1755-8794/7/S1/S11

Page 5 of 12

result can be passed down and partially reused by the
subsequent computation. In the empirical study, we will
see that the pipeline technique significantly improves
the LDPMap speed.

A comprehensive query workflow using LDPMap
approach
Given the above solutions to the concept similarity pro-
blem under Constraints 1 and 2, we will design a compre-
hensive query workflow for mapping a query term to
UMLS concepts. Our query workflow needs to consider
multiple types of input variations and errors. Other than
missing words and words in different orders that can be
properly handled by concept similarity problem formula-
tion, we need to consider another situation when two
words are merged together. In this situation, the concept
similarity modelling does not fit well because it is on a
word basis. Therefore it is preferable to use the classic
LCS method. However, as we pointed out above, the clas-
sic LCS method is too slow for the UMLS Metathesaurus.
Fortunately, we found that we can leverage concept simi-
larity solutions, outputting a list of concepts with similarity
score greater than a threshold. When we set the threshold
to be 0.35, in most cases it is able to output concepts that
are similar with the query term regardless of the word
merging issues. The number of outputted concepts is
much smaller than the size of UMLS Metathesaurus; thus
applying the LCS method on this small subset is much fas-
ter than on the whole UMLS Metathesaurus. The query
workflow is illustrated in Figure 1.
In the query workflow, we first calculate concept simi-

larity scores under Constraint 2 between the query term
and all UMLS concepts. If there are concepts with scores
higher than threshold T1, we output the results and the
query completes. Otherwise, we save any concepts with
scores higher than threshold T2 as SET(T2), and then per-
form two additional queries: (1) calculate word similarity
between the query term and each concept in SET(T2) by
treating the query term and each concept as one single
word; (2) calculate the concept similarity scores under
Constraint 1 between the query term and all UMLS con-
cepts. Finally, we merge and output the results from (1)
and (2). The number of results outputted is adjustable.
An application can choose to output concepts with
scores higher than a threshold, or only the top ranked
concepts.

Results
To understand the actual performance of LDPMap, we
implemented it in C++, and subjected it to two sets of
empirical studies. In summary, the results demonstrate
that LDPMap method performs much better than available
methods in terms of query speed and effectiveness. All
experiments were carried out on Linux cluster nodes with

2.4GHz AMD Opteron processors. For the LDPMap query
workflow, we set two parameters T1 = 0.8 and T2 = 0.35.

Query speed comparison
We would like to know how fast LDPMap handles query
in comparison with the standard LCS method which
treats the query term and each UMLS concept as a single
word, and how effective the pipeline technique for the
LDPMap is. Therefore, we test the three algorithms, LCS
standard, LDPMap (LDPMap_Query Algorithm) without
the pipeline technique, and LDPMap algorithm with the
pipeline technique, on four sets of medical concepts ran-
domly chosen from the UMLS Metathesaurus. The first
set consists of 1000 single-word medical concepts. The
second, third and fourth sets consist of 1000 two-word,
1000 three-word, and 1000 four-word concepts, respec-
tively. The results are shown in Figure 2.
From Figure 2 we can observe that the LDPMap algo-

rithm is much faster than the standard LCS. In addition,
the standard LCS method is susceptible to the word num-
bers in a query term while the LDPMap method is much
more stable. This result is consistent with the above com-
plexity analysis. In addition, the LDPMap with the pipeline
technique significantly speeds up the basic LDPMap
method. This confirms our intuition that the pipeline
technique saves huge amounts of redundant computation
thus improving the efficiency of the LDPMap method. As
a result, we can see that in this set of experiments
LDPMap with pipeline techniques on average answers a
query in less than 1 second. However, the standard LCS
method takes about 1 to 2 minutes in answering a query,
which makes it virtually unacceptable for many biomedical
applications, which can require near real-time responses,
or when processing large amounts of data. In addition to
the slow query time, the standard LCS is not good at pro-
cessing query terms with missing words or words in differ-
ent orders, as we have discussed above.
It is worthwhile to note that even for one word query,

LDPMap method is significantly faster than LCS, though
the concept similarity is exactly the same as the word
similarity in this case. This is because the LDPMap pre-
processed the UMLS terms on a word basis and built an
efficient index. The similarity measurement is not
directly on the UMLS terms but on words and the index
which saves a lot of computational cost. In contrast, the
LCS will handle the similarity measurement directly over
every UMLS term. This can also be explained by our
complexity analysis above. When t=1 (t is the number of
words in a query), LCS complexity is O(d2M) while the
LDPMap is O(d2K+M). Since K<<M, we conclude that
LDPMap is much faster than LCS.
Next, we would like to know how effective LDPMap han-

dles queries, especially when the query terms are slightly
different than the terms in the UMLS Metathesaurus.

Ren et al. BMC Medical Genomics 2014, 7(Suppl 1):S11
http://www.biomedcentral.com/1755-8794/7/S1/S11

Page 6 of 12

Query effectiveness comparison
To understand how effective LDPMap (referring to
LDPMap query workflow in this set of experiments) han-
dles queries with name variations and errors, we used two
available methods, UMLS Metathesaurus Browser and
MetaMap as benchmarks. In a cursory examination of
cTAKES, we found that it exhibited similar characteristics
to MetaMap in its ability to handle name variations and
errors and therefore we have excluded it from comparison.
Since the study on UMLS Metathesaurus Browser requires
manually inputting terms and checking the results, we
have to limit the query test to manageable numbers. In
addition, since the UMLS Metathesaurus Browser cannot
accept a query term with more than 75 characters, we limit
all query terms in our test to be no more than 75 charac-
ters. Given the above situations, and considering the fact
that more than 50% of UMLS concepts contain at least
32 characters, we randomly chose 100 medical concepts
with 32-75 characters from the UMLS Metathesaurus.
The 100 medical concepts are divided into two

groups. The first group consists of 50 concepts with no
special characters (i.e., characters other than letters and
numbers), and the second group contains 50 concepts
with 5 or more special characters. The two groups are
for two different testing purposes.
Group 1: We will use group 1 to test how effective the

query workflow handles pure English name terms, and
English name terms with input errors, variations, and
typos. Thus, in addition to querying the original names,
we also query the names with 1, 2, 3, and 4 character var-
iations. Character variations are generated randomly in
this study, including (1) deleting a character, (2) replacing

a character, (3) merging two words, i.e., deleting the
white space between two words.
Group 2: We will use group 2 to test how effective the

query algorithm is in handling many professional medi-
cal terms, which may contain a good number of special
characters, such as chemical compounds and drugs. To
simulate the name variations that frequently appear in
these terms, we randomly apply 1, 2, 3, and 4 character
variations, including (1) deleting a special character, (2)
replacing a special character by a white space.
To complement the above test groups, we use the fol-

lowing group to test how effective the query algorithm
handles short terms which may be queried commonly in
real situation.
Group 3: We randomly picked 100 medical concepts

with 5-31 characters. Since many of these concepts are
quite short, we only apply 1 and 2 random character
variations, including (1) deleting a character, (2) repla-
cing a character, (3) merging two words.
In these experiments, we found that MetaMap often

output multiple matching results but there are no ranks
of these results. In contrast, the UMLS Metathesaurus
Browser usually outputs a list of ranked concepts, and
LDPMap can be configured to output the top k (k>=1)
ranked concepts.
Thus, to be as fair as possible, we use two criteria to

measure the correctness of a query:
Criterion 1: A query is correct if the original term

appear (1) in top 25 ranked concepts (i.e., in the first
page of the result) by the UMLS Metathesaurus Brow-
ser; (2) in the top 25 ranked concepts by LDPMap; (3)
in the result of MetaMap.

Figure 2 Query time of LCS, LDPMap and LDPMap pipeline on randomly chosen 1000 medical concepts.

Ren et al. BMC Medical Genomics 2014, 7(Suppl 1):S11
http://www.biomedcentral.com/1755-8794/7/S1/S11

Page 7 of 12

Criterion 2: A query is correct if the original term
appears (1) as the top ranked concept by UMLS
Metathesaurus Browser; (2) as the top ranked concept
by LDPMap.
Criterion 1 indicates if the query processing mechan-

ism is able to handle the query with reasonable accuracy.
Criterion 2 is much stringent and it indicates whether a
method can be applied to applications require high
accuracy.
Figures 3 and Figure 4 are the error rate for the two

groups of experiments, under Criterion 1. From both
figures, we can clearly see that the LDPMap approach
has very few errors among all tests. In comparison, the
UMLS Metathesaurus Browser and MetaMap’s error
rate are quite high especially when multiple characters
changes are present. MetaMap has a considerable error
rate even when querying the original terms (0 characters
changes). This may owe to the text processing mechan-
ism of MetaMap. Since MetaMap is targeted at finding
medical terms from a biomedical text, it leverages a
combination of part-of-speech tagging, shallow parsing,
and longest spanning match against terms from the
SPECIALIST Lexicon before matching terms against
concepts in the UMLS. Therefore, it tends to decom-
pose longer spans of text and medical terms into several
shorter medical terms.
Figure 5 and Figure 6 are the error rates for the two

groups of experiments, under Criterion 2. Since Meta-
Map usually outputs multiple concepts without ranking,
we exclude MetaMap from the Criterion 2 measurement.
From these two figures, we can observe that the error
rate of the UMLS Metathesaurus Browser is much higher
in comparison with the measurement of Criterion 1.

Quite surprisingly, there are some errors even when
querying a few original terms (such as “ Distal radioulnar
joint”). This suggests that UMLS Metathesaurus Browser
is not suitable for query processing for applications that
have a high-accuracy demand. In contrast, the LDPMap
still has a very low error rate, on average less than 5%
across the 0-5 character changes, and free of errors in
querying the original terms.
From Figure 7 and Figure 8, we can see that the general

performances of LDPMap, UMLS Metathesaurus
Browser, and MetaMap on short query terms are similar
to their performances on long query terms. LDPMap still
has a clear advantage over UMLS Metathesaurus
Browser, and MetaMap. However, we noticed that
LDPMap error rate reaches 27% for 2 character changes
under Criterion 2. This is understandable because gener-
ally short terms contain fewer words than long terms, and
the concept similarity measurement is less favoured.
However, the parameter T1 can be used as an adjustment
of preference between the concept similarity measurement
and the word similarity measurement. By increasing T1

from 0.8 to 0.85, we observed that this error rate reduces
from 27% to 20%. This demonstrates that LDPMap is
flexible in handling both long and short term queries.
To provide some details on the medical concepts we

used in this set of experiments, and the character changes
applied. We list a few of them in Table 3. From this table,
we can see that it contains concepts of different lengths.
The randomly generated character variations cover sev-
eral common cases of text data inaccuracy, including,
misspellings, merging of two words, and special character
omissions. From Table 4 we can see that MetaMap can-
not handle them properly. Instead, it finds some concepts

Figure 3 Correctness comparison on LDPMap, UMLS Metathesaurus Browser, and MetaMap for Group 1 using Criterion 1.

Ren et al. BMC Medical Genomics 2014, 7(Suppl 1):S11
http://www.biomedcentral.com/1755-8794/7/S1/S11

Page 8 of 12

related to individual words in the query term. The UMLS
Metathesaurus Browser does not do any better on
them. In contrast, LDPMap correctly answered all these
queries except for “AlbunexIectable Product”. Although
“Injectable Product” is not correct, it is at least closer to
the original term than those returned by the UMLS
Metathesaurus Browser and MetaMap. By reviewing the
LDPMap approach, we conclude that this error can be
eliminated if we increase the threshold T1 to a value such
that word similarity (LCS) is used to measure the two
terms. To confirm this, we increase T1 from 0.8 to

0.85, and LDPMap successfully returns the original
term. However, a high T1 implies that LDPMap gives
more preference to LCS-based similarity measurement
than to concept similarity measurement defined above.
Consequently, LDPMap will be less productive in hand-
ling real-world queries that contain incomplete medical
terms (i.e., medical terms with missing words). It is
quite evident that there does not exist one set of T1

and T2 that fits all situations. As a result, we will fine
tune these parameters to leverage LDPMap in our
future applications.

Figure 4 Correctness comparison on LDPMap, UMLS Metathesaurus Browser, and MetaMap for Group 2 using Criterion 1.

Figure 5 Correctness comparison on LDPMap and UMLS Metathesaurus Browser for Group 1 using Criterion 2.

Ren et al. BMC Medical Genomics 2014, 7(Suppl 1):S11
http://www.biomedcentral.com/1755-8794/7/S1/S11

Page 9 of 12

Conclusions
In the work we proposed LDPMap, a layered dynamic pro-
gramming approach to efficiently mapping inaccurate med-
ical terms to UMLS concepts. As a main advantage of the
LDPMap algorithm, it runs much faster than classical LCS
method therefore makes it possible to efficiently handle
UMLS term queries. When similarity is counted on a word
basis, LDPMap algorithm may yield a more desirable result
than LCS. In other cases (such as word merging), it is pos-
sible that LCS query results are more preferable. Thus, in
the comprehensive query workflow of LDPMap, the
LDPMap method is complemented by LCS and adjustable
by parameter T1. Different from using LCS alone, the
LDPMap query workflow only applies LCS (when needed)
to a very limited number of candidate terms thus achieves
a very fast query speed.

In query effectiveness comparison, we observed that
LDPMap has a very high accuracy in processing queries
over the UMLS Metathesaurus involving inaccurate
terms. In contrast, the UMLS Metathesaurus Browser
has a very limited ability in handling these queries,
though it can handle queries of accurate terms fairly
well. Throughout the study, we also observed that Meta-
Map, in general, is not suitable for mapping long medi-
cal terms to the UMLS concepts as it focuses on
extracting short medical terms from the query text.
Although LDPMap is very efficient in handling UMLS

term queries, it has two major limitations. First, it cannot
handle synonyms and coreferences. Fortunately, UMLS
Metathesaurus often list a concept preferred names and
synonyms so that LDPMap can work effectively in most
cases, though the list may still not be complete. Second, it

Figure 6 Correctness comparison on LDPMap and UMLS Metathesaurus Browser for Group 2 using Criterion 2.

Figure 7 Correctness comparison on LDPMap, UMLS Metathesaurus Browser, and MetaMap for Group 3 using Criterion 1.

Ren et al. BMC Medical Genomics 2014, 7(Suppl 1):S11
http://www.biomedcentral.com/1755-8794/7/S1/S11

Page 10 of 12

is not able to perform syntax-level processing as MetaMap
does, such as extracting medical terms from an article.
Whether it is possible to extend the LDPMap approach to
overcome the two limitations remains an open question.

In the future we would like to investigate this question
and plan to use LDPMap as an efficient pre-processing
tool to map medical terms to the UMLS concepts, and use
the results in our knowledge discovery applications.

Figure 8 Correctness comparison on LDPMap and UMLS Metathesaurus Browser for Group 3 using Criterion 2.

Table 3 Original terms and their randomly generated character variations

CUI Name Randomly generated 4 character variations

C3267394 POMEGRANATE FRUIT EXTRACT 150 MG Oral Capsule POMGRAATE FRUIT EXTRdCT 150 MG Oral Casule

C3228202 Albunex Injectable Product AlbunexIectable Product

C0505183 Lateral branch of dorsal ramus of fifth thoracic spinal nerve LateMa branch of dorsal ramus of ifth thoracic gpinal nerve

C1459293 Sinorhizobium americanus Sinokhizrbimamericanus

C1541607 gp100/IL-7/ISA-51/MART-1 gp100 IL 7ISA-51/MART1

C1352046 danthron 1.5 MG/ML / Pantothenic Acid 2.5 MG/ML Oral
Suspension

danthron 15 MGML Pantothenic Acid 25 MG/ML Oral Suspension

C0040372 Benzenesulfonamide, N-(((hexahydro-1H-azepin-1-yl)amino)
carbonyl)-4-methyl-

Benzenesulfonamide, N-((hexahydro1H- azepin-1-yl amino)
carbonyl-4-methyl-

C2714409 1-undecene-1-O-beta-2’,3’,4’,6’-tetraacetyl glucopyranoside 1-undecene1-O-beta2,3’,4’,6-tetraacetyl glucopyranoside

Table 4 Query results for Table 3.

CUI UMLS Metathesaurus
Browser (concept ranked 1st by approximate
match)

MetaMap LDPMap

C3267394 C0030054 Oxygen C0016767 Fruit, C2346927 Mg++, and 4 others correct

C3228202 C1514468 product C1704444 Product (Multiplicative Product)
[Quantitative Concept] C1514468 product [Entity]

C0086466
Injectable
Product

C0505183 C0007965 Chediak-Higashi Syndrome C1706131 Branch(Branch(group)), C2700383 Branch(Branch of plant),
and 6 others

correct

C1459293 No result No result correct

C1541607 C1512807 Integrated Learning System C0020898 IL (Illinois (geographic location)),
C1522481 MART-1 (MART-1 Tumor Antigen), and 2 others

correct

C1352046 C0029383 Osmium C1129294 danthron 25 MG,
C0439526 /mL [Quantitative Concept], and 3 others

correct

C0040372 C0265215 Meckel-Gruber syndrome C0053169 benzenesulfonamide,
C0441922 N+ (N+ (tumor staging)), and two others

correct

C2714409 C0030011 Oxidation C0470206 +1 [Q uantitative Concept]
C1417683 BETA2 (NEUROD1 gene), and 7 others

correct

Ren et al. BMC Medical Genomics 2014, 7(Suppl 1):S11
http://www.biomedcentral.com/1755-8794/7/S1/S11

Page 11 of 12

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KR implemented the LDPMap algorithm, carried out the experiments, and
edited the manuscript. AL, AM, RM, and KH analyzed comparable methods,
participated in the design of the study, and revised the manuscripts. YX led
the project including development of the idea, design of the algorithms,
and writing of the manuscript.

Acknowledgements
AL and AM were supported by award number R01LM011116 from the
National Library of Medicine. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the National
Library of Medicine or the National Institutes of Health.
KH was supported in part by the Department of Defense CDMRP Grant
(CA100865).

Declarations
Publication of this article was funded by the Department of Biomedical
Informatics, The Ohio State University, USA.
This article has been published as part of BMC Medical Genomics Volume 7
Supplement 1, 2014: Selected articles from the 3rd Translational
Bioinformatics Conference (TBC/ISCB-Asia 2013). The full contents of the
supplement are available online at http://www.biomedcentral.com/
bmcmedgenomics/supplements/7/S1.

Authors’ details
1Department of Biomedical Informatics, the Ohio State University, Columbus,
OH 43210, USA. 2Department of Computer Science and Engineer, the Ohio
State University, Columbus, OH 43210, USA.

Published: 8 May 2014

References
1. Aronson A: Effective mapping of biomedical text to the UMLS

Metathesaurus: the MetaMap program. AMIA Symposium 2001, 17.
2. Savova G, Masanz J, Ogren P, Zheng J, Sohn S, Kipper-Schuler K, Chute C:

Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES):
architecture, component evaluation and applications. Journal of the
American Medical Informatics Association 2010, 17(5):507-513.

3. Bodenreider O: The unified medical language system (UMLS): integrating
biomedical terminology. Nucleic Acids Res 2004, 32(Database):D267-D270,
January.

4. Xiang Y, Lu K, James S, Borlawsky T, Huang K, Payne P: k- neighborhood
Decentralization: A Comprehensive Solution to Index the UMLS for
Large Scale Knowledge Discovery. Journal of Biomedical Informatics 2012,
45(2):323-336.

5. Payne P, Borlawsky B, Lele O, James S, Greaves A: The TOKEn project:
knowledge synthesis for in silico science. Journal of the American Medical
Informatics Association 2011, 18(Suppl 1):i125.

6. Melton GB, Parsons S, Morrison FP, Rothschild AS, Markatou M, Hripcsak G:
Inter-patient distance metrics using SNOMED CT defining relationships.
Journal of Biomedical Informatics 2006, 39(6):697-705.

7. McInnes BT, Pedersen T, Pakhomov SVS: UMLS-Interface and UMLS-
Similarity: Open source software for measuring paths and semantic
similarity. AMIA Annual Symposium Proceedings 2009, 431.

8. Ghali W, Hall R, Rosen A, Ash A, Moskowitz M: Searching for an improved
clinical comorbidity index for use with ICD-9-CM administrative data.
Journal of Clinical Epidemiology 1996, 49(3):273-278.

9. Denny J: Mining Electronic Health Records in the Genomics Era. PLoS
computational biology 2012, 8(12):e1002823.

10. Levenstein V: Binary codes capable of correcting spurious insertions and
deletions of ones. Problems of Information Transmission 1965, 1(1):8-17.

11. Sankoff D, Kruskal J: Time warps, string edits, and macromolecules: the
theory and practice of sequence comparison. 1983.

12. Needleman S, Wunsch C: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of
molecular biology 1970, 48(3):443-453.

13. Apostolico A, Guerra C: The longest common subsequence problem
revisited. Algorithmica 1987, 2(1-4):315-336.

14. Navarro G: A guided tour to approximate string matching. ACM
computing surveys (CSUR) 2001, 33(1):31-88.

15. Cucerzan S, Brill E: Spelling correction as an iterative process that exploits
the collective knowledge of web users. Proceedings of EMNLP 2004,
4:293-300.

16. RU L, WANG C, WU Y, MA S: Search Query Correction based on User
Intent Analysis. Journal of Computational Information Systems 2013,
9(6):2157-2166.

17. West D: Introduction to graph theory 2. 2001.

doi:10.1186/1755-8794-7-S1-S11
Cite this article as: Ren et al.: Effectively processing medical term
queries on the UMLS Metathesaurus by layered dynamic programming.
BMC Medical Genomics 2014 7(Suppl 1):S11.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Ren et al. BMC Medical Genomics 2014, 7(Suppl 1):S11
http://www.biomedcentral.com/1755-8794/7/S1/S11

Page 12 of 12

http://www.biomedcentral.com/bmcmedgenomics/supplements/7/S1
http://www.biomedcentral.com/bmcmedgenomics/supplements/7/S1
http://www.ncbi.nlm.nih.gov/pubmed/11825149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11825149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20819853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20819853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22154838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22154838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22154838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21984589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21984589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16554186?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20351894?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20351894?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20351894?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8676173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8676173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23300414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Suboptimal structure of the concept similarity under constraint 2

	Main algorithms
	A running example
	Complexity analysis
	Speeding up LDPMap with the pipeline technique
	A comprehensive query workflow using LDPMap approach
	Results
	Query speed comparison
	Query effectiveness comparison

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

