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Abstract

Background: Non-coding sequences such as microRNAs have important roles in disease processes. Computational
microRNA target identification (CMTI) is becoming increasingly important since traditional experimental methods
for target identification pose many difficulties. These methods are time-consuming, costly, and often need
guidance from computational methods to narrow down candidate genes anyway. However, most CMTI methods
are computationally demanding, since they need to handle not only several million query microRNA and reference
RNA pairs, but also several million nucleotide comparisons within each given pair. Thus, the need to perform
microRNA identification at such large scale has increased the demand for parallel computing.

Methods: Although most CMTI programs (e.g., the miRanda algorithm) are based on a modified Smith-Waterman
(SW) algorithm, the existing parallel SW implementations (e.g., CUDASW++ 2.0/3.0, SWIPE) are unable to meet this
demand in CMTI tasks. We present CUDA-miRanda, a fast microRNA target identification algorithm that takes
advantage of massively parallel computing on Graphics Processing Units (GPU) using NVIDIA’s Compute Unified
Device Architecture (CUDA). CUDA-miRanda specifically focuses on the local alignment of short (i.e., ≤ 32
nucleotides) sequences against longer reference sequences (e.g., 20K nucleotides). Moreover, the proposed
algorithm is able to report multiple alignments (up to 191 top scores) and the corresponding traceback sequences
for any given (query sequence, reference sequence) pair.

Results: Speeds over 5.36 Giga Cell Updates Per Second (GCUPs) are achieved on a server with 4 NVIDIA Tesla
M2090 GPUs. Compared to the original miRanda algorithm, which is evaluated on an Intel Xeon E5620@2.4 GHz
CPU, the experimental results show up to 166 times performance gains in terms of execution time. In addition, we
have verified that the exact same targets were predicted in both CUDA-miRanda and the original miRanda
implementations through multiple test datasets.

Conclusions: We offer a GPU-based alternative to high performance compute (HPC) that can be developed locally
at a relatively small cost. The community of GPU developers in the biomedical research community, particularly for
genome analysis, is still growing. With increasing shared resources, this community will be able to advance CMTI in
a very significant manner. Our source code is available at https://sourceforge.net/projects/cudamiranda/.

Background
MicroRNAs (miRNAs) are single-stranded, small non-
coding RNAs that control the expression of gene [1].
Target genes are either degraded at the mRNA level or
inhibited at the protein level. With its ability to modulate

target genes, miRNA has been shown to be associated
with pathogenesis of several diseases such as cancer,
metabolic and neurodegenerative diseases, and heart dis-
ease, to name just a few [2]. For this reason, miRNAs are
biomarker candidates for diagnosis [3] and prognosis,
including treatment response [4]. Many efforts have been
made to develop prediction algorithms to identify
miRNA-mRNA interactions. Widely used tools for
miRNA target predictions are DNA-microT [5], miRanda
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[6], PicTar [7], PITA [8], RNA22 [9], and TargetScan
[10]. Although existing microRNA target prediction algo-
rithms such as TargetScan, PicTar and DIANS-microT
show high accuracy for plant microRNAs, they suffer
from low sensitivities and specificities [11]. In contrast,
miRanda achieved the highest sensitivity [12] among
them for experimentally validated mammalian targets [1].
The miRanda algorithm detects potential microRNA

target sites from genomic sequences in two steps. Firstly,
miRanda carries out sequence alignment of query
(miRNA) and reference (3UTR) sequences through
dynamic programming local- alignment based on
sequence complementarity. Then the minimum free
energy (MFE) score is calculated for each selected high
alignment miRNA-mRNA pairs. Lastly, targets exceeding
predetermined threshold MFE scores are selected as
potential targets. Although miRanda is accurate, it is
slow. For example, it takes more than three hours to run
2,000 queries against 30,000 references on an Intel Xeon
2.4 GHz CPU and 96 GB memory. Due to the quadratic
run time complexity of the underlying sequence align-
ment algorithm used in miRanda, there is a long compu-
tation time when comparing query sequences against a
large amount of reference sequences. This is challenging
to the investigator who wants to analyze multiple samples
of microRNA sequence data. The researcher typically has
to run a sequence of pre-target-prediction steps, includ-
ing short-read alignment to both genome and other
small RNAs, novel miRNA prediction, and statistical test
for differential expression [13]. Each of these individual
steps could take several hours. In miRanda, the total
execution time split of miRanda for alignment vs. MFE
determination is 85% vs. 15%, on average, although the
correct ratio will vary depending on the number of
queries, the user’s choices of threshold values, and hard-
ware specification. In this study, we focus on boosting
sequence alignment in miRNA target prediction, which is
a critical step in microRNA analysis.
Sequence alignment requires scoring of the similarity

between a short query sequence against a set of reference
sequences. While the global alignment performs end-to-
end matching of two sequences, the local alignment aims
to find the highest scoring alignment of sub-sequences of
the query and the reference sequences [14]. Thanks to nat-
ural selection, most microRNA target recognition sites are
well preserved during evolution, and the task of prediction
falls in the latter category. For high accuracy, Smith-
Waterman (SW) [15] is the most widely used algorithm
for local alignment. As SW has time complexity O(n2) due
to the underlying dynamic programming, it has been mod-
ified through the addition of heuristic techniques to accel-
erate run time, as in BLAST [16] and FASTA [17]
algorithms, at the cost of decreased sensitivity. Recently,
an alternative solution for high-accuracy and high-speed

SW algorithm was introduced by leveraging Field Pro-
grammable Gate Array (FPGA) [18], SIMD (Single
Instruction Multiple Data) parallelisation on CPU [19,20]
and Graphics Processing Unit (GPU) [21-28]. Since the
cost of FPGA is high and the performance of CPUs is lim-
ited by the power constraints [29], GPUs became a very
powerful and cost-effective platform for highly demanding
scientific computing [30] that previously could only be
performed using a supercomputer. GPU utilizes graphical
pipelines to perform computation in applications tradi-
tionally handled by the CPU. Their highly parallel struc-
ture makes them more effective than CPUs for a range of
complex algorithms. GPUs have been increasingly used in
biomedical informatics applications [21-28,31] physics [32]
and other research areas [33,34]. These existing SW
implementations for GPU are designed for long sequences,
usually for proteins and not for DNA or RNA. Also their
CUDA implementation focused on calculating alignment
scores only, as their main goal is optimizing database
query, not the alignment itself [25]. This additional step is
achieved through a backtracking routine in the alignment
matrix, with has an extra quadratic time complexity.
However, microRNAs are very short (around 22bp)
and the problem requires backtracking between query
and reference pair. We believe ours is the first CUDA-
implementation of the SW algorithm for short sequence
alignment with extended heuristics to identify microRNA
targets.

Methods
The miRanda algorithm
The first version of miRanda was published in 2003, and
the results were validated with microRNA targets in
Drosophila melanogaster [6]. The most recently release
is v3.3a from August 2010, which is available as open-
source under the General Public License (GPL) [35].
The algorithm consists of two main parts. First, highly
complementary regions are identified by using a
dynamic programming algorithm that is based on the
modified SW algorithm. Moreover, some heuristic rules
are included to improve the prediction accuracy, where
the most important one is the position- specific weight-
ing schemes, which indicate the importance of the
microRNA seed region. For the identified target sites,
the minimum free energy of the microRNA-mRNA
duplex is calculated using folding routines from the
Vienna RNA secondary structure-programming library
(RNAlib) [36-38]. Predictions that pass both thresholds
of alignment score and minimum free energy are
reported as possible target sites.
Modified Smith-Waterman algorithm: miRanda is

based on a modified SW algorithm. We remind the
readers of its main characteristics next so that they can
follow the same notation in the CUDA section.
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First, let us define the following notations.
• qk and rl are the k-th query and l-th reference

sequences with length Lqk and Lrl , respectively.
• Di,j is the alignment score of the base pair qk(i) and

rl(j) at the position i of qk and the position jof rl, respec-
tively, where 0 ≤ i < Lqk and 0 ≤ j < Lrl .
• Ai,j is a partial alignment score for diagonal

continuation.
• Bi,j is a partial alignment score for horizontal gap

extension.
• Ci,j is a partial alignment score for vertical gap

extension.
• d(qk(i), rl(j), i) is the scoring function for match or

mismatch, where i indicates whether the location is
within the seed region or not.
• Oi is the cost for opening a gap, where its value

depends on whether i is within the seed region or not.
• ei is the cost for extending a gap, where its value

depends on whether i is within the seed region or not.
where the seed region is defined as 2 <i < 8 by default.
Then, the boundary conditions for alignment scores

are defined as D0,l = Dk,0 A0,l = Ak,0 = B0,l = Bk,0 = C0,l

= Ck,0 = 0. Given the boundary conditions, the align-
ment scores can be updated as

Di,j = max

⎧⎪⎨
⎪⎩
Ai,j

Bi,j

Ci,j

(1)

Ai,j = max

{
0

Di−1,j−1 + d(qk(i), rl(j), i)
(2)

Bi,j = max

{
Ai,j−1 + oi
Bi,j−1 + ei

(3)

If i is in the seed region (e.g., 2 <i < 8 by default),
Ci,j = -1, otherwise

Ci,j = max

{
Ai−1,j + oi
Ci−1,j + ei

(4)

Specific scoring matrix: The scoring function d(qk(i), rl
( j),i) in miRanda algorithm is defined by two specific scor-
ing matrices with following heuristic rules. Since target
recognition between microRNA and mRNA is the end-
goal, the complementary matching is imposed in miRanda,
where the default value for A-U or G-C pairs is +5. More-
over, for G:U wobble pairs, a positive score is set to +1. All
other nucleotide pairs have a default score of −3 (see
Table 1). According to the observations of known micro-
RNA targets, all scores and penalties have a higher
weight in the microRNA seed region (default positions

from 2 to 8), where a default scaling factor is set to 4. In
addition, the positions 1, Lqi − 1 and Lqi are always scored
0, where Lqi is the i-th microRNA query length.
Alignment score thresholding: In miRanda, instead of

just reporting the best match, all alignments between
the microRNA query and the reference that exceed a
given score threshold will be considered as candidate
outputs, where the threshold is set to 140 by default.
When two duplexes share matched region longer than
six nucleotides, then miRanda will discard the one with
smaller matching score. This criteria is achieved through
sorting by the scores as primary key and the end posi-
tions as secondary keys of all alignments followed by the
overlap comparisons among the sorted candidates. In
the miRanda algorithm, the n-th valid alignment Kn

qk,rl
between query qk and rl is represented by a tetrad
Kn
qk,rl = {Di∗,j∗,n, i∗, j∗}, where i*, j* are the end positions

of query and reference, respectively, and Di,j are the cor-
responding alignment scores. Backtracking: miRanda
provides both alignment scores and results obtained
from the backtracking routine as output, together with
the energy calculation. The idea of backtracking for an
alignment Kn

qk,rl = {Di∗,j∗,n, i∗, j∗} is that the algorithm
looks backward starting at the location (i*, j*) in the
alignment score matrix D until reaching the termination
criteria (i.e., Di′ ,j′ = 0), where the direction of a backward
move follows the path in which the score matrices B, C
and D are built up, as illustrated in equations 1 to 4. In
the backtracking algorithm, an up move (i.e., (i - 1, j))
or a left move (i.e., (i, j - 1)) corresponds to a gap inser-
tion in the query or reference, respectively. Besides, a
diagonal move (i.e., (i - 1, j - 1)) indicates a match
between reference and query at corresponding locations.
The implementation of backtracking routine will be illu-
strated in details in the GPU implementation section.
Free energy calculation: For the identified target sites,

the minimum free energy of the micro RNA-mRNA
duplex is calculated using folding routines from the
Vienna RNA secondary structure programming library
(RNAlib) [36]. An energy threshold can be set for
further filtering potential target sites, where only a pre-
diction that passes both alignment score and energy
thresholds is reported as an output. In the current ver-
sion of CUDA-miRanda, the RNAlib is also included for

Table 1 Default miRanda scoring function.

A C G T/U

A -3

C -3 -3

G -3 5 -3

T/U 5 -3 1 -3

In the microRNA seed region, all vaules are multiplied by a scaling factor (the
default is 4).
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completeness, but it has not been implemented on GPU.
This is because the energy calculation function is not
the bottleneck of the miRanda algorithm (e.g., it takes
less than 15% of the total execution time in the worst
cases). Moreover, the energy calculation function is
implemented in a recursive way, which is not suitable
for General-Purpose computing on Graphics Processing
Units GPGPU on NVIDIA’s Fermi GPUs. With the
recently release of NVIDA’s Kepler GPU, dynamic ker-
nel execution and recursion are partially supported in
the hardware. Although it would be interesting to accel-
erate the energy calculation on GPU, we will leave this
for future work. In this article, we focus on the GPU
implementation for the alignment step.
Evolutionary conservation: miRanda applies predefined

thresholds to select miRNA-target pairs having high align-
ment score and low minimum free energy of the duplex
structure. Among these, miRanda keeps the miRNA-target
pairs that are also found in other species. More specifi-
cally, the hits found in D. melanogaster are considered
conserved if they are also found in D. pseudoobscura and
A. gambiae. However, it has been reported that about half
of the predicted miRNA target sites in human are not con-
served in other organisms based on the experimentally
validated data [39]. Also, the original miRanda paper,
which focused on the analysis of D. melanogaster, has
reported that its conservation rate with A. gambiae is only
60%. This version of CUDA-miRanda did not include the
scoring of conservation.

GPU implementation of the miRanda algorithm
GPGPU using CUDA
In GPU computing, CPU and GPU are used together in a
heterogeneous co-processing computing model. Computa-
tionally intensive parts can often be accelerated by paralle-
lization. This part of code is applied to the GPU while the
sequential part of the application runs on the CPU. With

the availability of the Compute Unified Device Architecture
(CUDA) by NVIDIA, developers can now write code for
both a CPU and a GPU in a similar way by using the
instruction set of CUDA [40]. With CUDA, developer can
bypass the need of direct working with low- level graphics
API, so that GPU can be programmed using a high-level
programming language for general purpose computing. In
CUDA, the GPU is viewed as a computing device with
massively parallel capability (e.g., supporting tens of thou-
sands of concurrent threads). Moreover, the GPU (i.e.,
device) can be used as a coprocessor to the main CPU (i.e.,
host), where both host and device have their own dedicated
memory space (i.e., host and device memory, respectively).
The data transfer between host and device is achieved
through the optimized API calls using the PCI-E bus.
In CUDA, the thread hierarchy within a kernel is

organized by the thread, the block of threads and the
grid of blocks as shown in Figure 1, where different
thread hierarchies have different memory scopes. An
important best practice when programming CUDA is to
make efficient use of various types of memory to maxi-
mize the memory throughputs. The device memory can
be categorized as read/write per-thread registers and
local memory, read/write per-block shared memory,
read/write per-program global memory, read-only per-
program constant memory and texture memory. In
NVIDIA’s GPU, registers and shared memory are
embedded on the chip, which offers the fastest memory
access. Moreover, threads within a block can communi-
cate with each other by using the fast shared memory.
In contrast, local and global memory are off-chip, where
the accesses of such types of memory are very expensive
(e.g., about 400 clock-cycle latency). However, such
latency can be minimized by carefully scheduling the
CUDA thread execution (e.g., assign sufficient arith-
metic operations before/after each global memory tran-
sition) and following the most optimal access pattern

Figure 1 CUDA thread and memory hierarchy. Here, N/A and HD stand for not applicable and hardware dependent, respectively.
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[40]. Although the read-only constant and texture mem-
ories are also off-chip, the built-in caches can efficiently
hide the latency, as long as the most memory accesses
are within the cached memory locations. In addition, to
achieve the best performance, branch in the program
and bank conflicts in shared memory within a warp
should be kept to a minimum, where a warp is a group
of 32 parallel threads that execute the same instruction
at a time.
CUDA Implementation of the modified SW algorithm
First, all the query and reference sequences are loaded
from the input files in fasta format. In the preprocessing
step, the queries and references are sorted by the length,
so that tasks within a block have roughly equal complex-
ity. Moreover, the original row-wise sequences are also
stored into an optimized column-wise data structure in
texture memory, by which sequence data can be cached
and sequentially read by 32 threads in a warp within a
single memory transaction. Moreover, instead of only
reading a single nucleotide (i.e., 32 bytes per transaction),
each thread reads a group of four nucleotides stored in a
cha 4 type, which results in a bandwidth of 128 bytes per
transaction. Such procedure can significantly increase the
memory throughput and reduce the number of accesses
to the global memory.
Understanding the data dependencies in SW algorithm

is another key factor for designing the parallelization. As
shown in Figure 2(a), the update of each cell only depends
on its upper, left and diagonal neighbors according to the
update rules described in equations 1 to 4. Therefore, cells
on the same anti-diagonal direction can be updated in par-
allel. For CUDA-miRanda, the maximum query length is

set to 31, which is sufficient to fit the lengths of all micro-
RNAs in our problem. Moreover, to improve the overall
performance, memory accesses should be coalesced, which
means a higher memory throughput can be achieved when
memory access is consecutive and bank conflicts during
shared memory access are avoided. To this end, a row
shifting representation of the alignment table is used in
our implementation as illustrated in Figures 2(b) and (c),
where the i-th row is shifted to the left by i cells. Then, by
observing the dependencies, for the calculation of align-
ment score D in the current column (as indicated in green
in Figure 2(c)), at most two preceding columns (as indi-
cated in orange in Figure 2(c)) are needed. Moreover, for
the update of partial alignment scores A, B and C, only
one preceding column is required. In our implementation,
these intermediate scores are mapped to the fast shared
memory instead of the global memory to reduce the mem-
ory access latency.
To enable traceback, it is necessary to store the whole

path (i.e., backtracking matrix) from which the alignment
scores are calculated. Thus, the backtracking matrix with
size (Nq × Nr × Lq* × Lr* × sizeo (track)) is the most mem-
ory consuming part in CUDA-miRanda, where Nq, Nr, L

q*

and Lr* are the number of queries and references, and the
maximum length of queries and references, respectively.
Moreover, sizeo (track) is the number of bits that are
required to represent the backtracking path in each cell. It
turns out that a large number of Nq and N - r is desired
for maximizing the parallelization, and Lq* and Lr* are data
dependent. Therefore, to minimize the memory usage, we
need to optimize the number of bits used for representing

Figure 2 Different representations of the alignment table. (a) Original representation of the alignment table, where the update of each cell
only depends on its upper, left and diagonal neighbors; (b) an example of the original representation of the alignment table; (c) the row
shifting representation of the alignment table in the anti-diagonal direction to fit contiguous memory blocks and avoid bank conflicts.
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the track information. In our implementation, each track
information is represented by 4 bits as follows:
• If the current cell is the starting point, the lowest 2

bits of track can represent the step of backtracking path
as 0 for the end of backtracking, 1 for diagonal, 2 for up
and 3 for left. And the same applies to the case when
previous move is also from a diagonal direction.
• If the previous move is from a horizontal direction,

the third bit of track can represent the step of back-
tracking path as 0 for diagonal and 1 for left.
• If the previous move is from a vertical direction, the

fourth bit of track can represent the step of backtrack-
ing as 0 for diagonal and 1 for up.
Here, we introduce notations to be used in later for-

mula. ‘T1:2 = track &mask1’ extracts the lowest 2 bits
from track variable, where mask1 = 3 and ‘&’ is a bitwise
and operation. ‘T3 = (track >> 2) &mask2’ and ‘T4 =
(track >> 3) &mask2’ extract the third and forth bits
from track variable, where mask2 = 1 and ‘>>’ is a left
bit-shift operation.
The rules for filling the backtracking array are as follows:

T1:2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if Di,j == 0

1 if Di,j == Ai,j

2 if Di,j == Bi,j

3 if Di,j == Ci,j

(5)

T3 =

{
0 if Ci,j == Ci−1,j + ei
1 else

(6)

T4 =

{
0 if Bi,j == Bi,j−1 + ei
1 else

(7)

Therefore, in the proposed representation, the size of
(track) is equal to 0.5 byte (i.e., 4 bits) and the back-
tracking matrix with 128 queries of length 32 and 100
references of length 30K only requires 128 × 100 × 32 ×
30,000 × 0.5 bytes (i.e., 5860 MB), which can be easily
fitted into a Tesla GPU with 6GB memory. For a dataset
with a large number of queries and references, we can
split the dataset into multiple batches, where each batch
can be executed sequentially on GPU. We use an
unsigned short type with 16 bits to store the track infor-
mation of a group of four cells, so that we can improve
the memory throughput when reading and writing the
backtracking matrix. Moreover, as illustrated in the
Alignment Score Thresholding section, there are multiple
candidate alignments for each query and reference pair.
The starting positions for both query and reference, the
alignment score, and the index of each candidate are
stored in an ushort4 type array in the global memory.

The organization of blocks in the modified SW align-
ment kernel is shown in Figure 3, where the dimen-
sions of a block and a grid are 32 × 8 × 1 and⌊
Nq−1
32 − 1

⌋
× 1 × Nr, respectively. Here, * function

takes the largest integer that is smaller than *, and Nq

and Nr are the number of queries and references that
can be fitted in the device memory, respectively. More-
over, the organization of threads in each block is
shown in Figure 4. The modified SW algorithm is per-
formed for a group of 32 query sequences in the x
direction in parallel. As the query length is limited up
to 32 nucleotides, 32 independent cells can be calcu-
lated at a time using 8-thread parallel update of groups
of 4 nucleotides in the y direction. The above thread
organization scheme makes sure that all 32 threads
within the same warp can operate on the same nucleo-
tide location, which enables minimization of the intra-
warp branch and bank conflict in shared memory. The
pseudocode of the modified SW alignment kernel is
shown in Figure 5. As mentioned in the miRanda
Algorithm section, the gap opening and extension
costs, scoring matrices and alignment score update are
different for the inside and outside seed regions. More-
over, the miRanda algorithm is based on the reversed
order of each query. Therefore, the start and end posi-
tions for query sequences with different lengths are
not the same. In our implementation, we pre- calculate
the seed region for each query and store such informa-
tion in a 32 bit int type array in the constant memory,
as the length of the microRNA is bounded by 32 in
our problem. Additionally, a value of 1 at a given bit
indicates that the position is in the seed region. More-
over, the function isValidCell(i, j) in the kernel func-
tion is used to check the boundary condition in the
row shifting representation. Finally, the if conditions in
equation 5 are replaced through carefully designed bit
and shift operations to avoid the branch within a warp
as shown in Figure 5.
The second stage of the CUDA-miRanda algorithm is

to filter out the invalid alignment candidates as shown
in Figure 6. The second kernel function uses almost 48
KB shared memory, which is used to allow the fast stor-
ing of candidates. For a single candidate, the data type
ushort4 with 8 bytes is used to store score, index, and
the alignment positions for query and reference
sequences. As the shared memory size is 48 KB and we
have reserved 128 bytes (i.e., 32 queries × 4 bytes) for
the counts of a candidate, the maximum number of can-
didates per query-reference pair is bounded to 191 and
can be calculated as follows:⌊

48KB−128B
sizeof (ushort4)×32 queries

⌋
= 191 (8)

Wang et al. BMC Medical Genomics 2014, 7(Suppl 1):S9
http://www.biomedcentral.com/1755-8794/7/S1/S9

Page 6 of 13



Figure 3 The organization of blocks in the modified SW alignment function. The dimensions of a block and a grid is 32 × 8 × 1 and

(
⌊
Nq−1
32

⌋
+ 1) × 1 × Nr, respectively. Here, the ⌊*⌋ function takes the largest integer that is less than *, and Nq and Nr are the number of

queries and references that can be fitted in device memory, respectively. For example, Nq = 128 and Nr = 9 in this case.

Figure 4 Organization of threads in a block of the modified SW alignment function. The modified SW algorithm is performed for a group
of 32 query sequences in the x direction in parallel. As the query length is limited up to 32 nucleotides, 32 independent cells can be calculated
at a time using 8-thread parallel update of groups of 4 nucleotides in the y direction. The above thread organization scheme makes sure that all
32 threads with in the same warp can operate on the same nucleotide location, which is able to minimize the intra-warp branch and bank
conflict in shared memory.
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Subsequently, the parallelism is limited by the number
of query and reference sequences, where the dimensions
of a block and a grid are 32 × 1 × 1 and

(
⌊
Nq−1
32

⌋
+ 1) × 1 × Nr, respectively. The step to filter

candidate alignments is straightforward, as it is inherited
from miRanda and applied to our data structures.

Blazewicz et. al. [25] were the first to perform the back-
tracking procedure inside a kernel function. Unlike most
other SW alignment algorithms, where only one alignment
needs to be reported, in CUDA-miRanda, the backtracking
of multiple alignments is desired for each query and refer-
ence pair. Moreover, in our implementation, we proposed
a new backtracking strategy, which has taken the heuristic

Figure 5 Pseudocode for the modified SW alignment kernel.

Figure 6 Pseudocode for the score update kernel.
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rules in the miRanda algorithm into account. The third
stage of CUDA-miRanda algorithm for backtracking is
illustrated in Figure 7. The logic and the workflow of back-
tracking were discussed in detail at the beginning of this
subsection.

Results
Experimental setup
Hardware: All tests were performed on a 64-bit Linux
workstation having two Intel Xeon E5620@2.4 GHz,
96GB RAM and four NVIDIA Tesla M2090 GPUs with
6 GB RAM each without ECC configuration.
Test data: To test the performance with as most appli-

cation-related data as possible, real data sources for both
queries (microRNA) and reference (3’ UTRs) were used.
MicroRNAs were downloaded from miRBase (databased
release 18). FASTA files containing different numbers of
known human microRNA sequences were created. These
references comprise a set of 3’ UTR sequence from
http://www.targetscan.org (TargetScanHuman Release
6.1: March 2012). Only human transcripts were consid-
ered and brought into the FASTA file format so that they
could be used as a reference input for miRanda. The raw
reference dataset had 17,720 unique sequences and an
average length of 1,167, ranging from 1 to 22,502. To test
the performance in different conditions, we sampled
multiple reference datasets with different average lengths
from the Target Scan database.

Parameter selections: All test runs were performed using
the default alignment parameters and the options -quiet,
-outfile, -keyval, -noenergy unless specifically mentioned.
This means that the output was configured to write only
aligned query- reference pairs into a file in key-value for-
mat, where the I/O cost for outputting the results was not
considered. All the results were obtained over an average
of ten trials, and we have verified that the exact same tar-
gets were predicted in both CUDA- miRanda and the ori-
ginal miRanda implementations through multiple testing
datasets. Finally, the energy calculation was deactivated for
these tests, as the focus was on the most time consuming
part, the alignment.

Performance evaluation
In order to show the performance of CUDA-miRanda, the
total execution time of the single and multi-GPU setups
were compared to the original CPU-only version miRanda
3.3a on different datasets. CUDA-miRanda emerged from
a specific use case where targets with hundred putative
novel microRNA sequences should be predicted. Due to
the parallel grouping of microRNA sequences in warps,
the best alignment performance can be achieved for multi-
ples of 32 queries. Table 2 presents the total execution
times for various query sizes (i.e., 1, 32, 64, 128, and 256)
against a reference dataset containing 256 references with
the average length of 20K. References in the dataset are
grouped by the reference batch size (RBS) of 32 in this

Figure 7 Pseudocode for the backtracking kernel.
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test. For example, a dataset with 256 references and RBS =
32 will be split into 8 groups. The rightmost columns
show the gained speed of CUDA-miRanda on 4 GPUs
over the original miRanda on CPU. The single-GPU
implementation can achieve a speed-up of more than 55x,
and 2 and 4 GPUs setup can achieve a speed-up of 102x
to 166x in the best cases. Moreover, we can see that the
performance gain of CUDA-miRanda increases as the
number of queries increases. This is because that the full
computational power of GPU can be exploited only if
there exists sufficient data that need to be executed.
Finally, the scalability of the multi-GPU execution is also
shown in Table 2, where the performance ratios of 4 vs. 1
and 2 vs. 1 GPUs are 2.98 and 1.83, respectively. The per-
formance loss in scalability is due to the communication
and scheduling overhead between host and devices.
The impact of different average reference lengths on

GPU performance was also investigated and the results
are shown in Table 3, where both the reference and query
dataset contained 256 sequences. In Table 3, we can see
that a longer average reference length in the dataset always
showed a better performance of CUDA- miRanda in terms
of both execution times and GCUPs. The speed-up of 4
GPUs vs. 1 CPU is also shown in Table 3 for reference.
Moreover, we can see that the 4 GPUs performance is
worse than that of 1 and 2 GPUs in the case of an average
reference length of 1000. This is because the additional
communication and scheduling overhead between host
and devices overtake the performance gain by adding
more computational resources for the limited computa-
tional tasks. This also demonstrated that the full computa-
tional power and the concealment of scheduling and
communication overhead are only achieved if sufficient

tasks are available on GPUs. Moreover, other two tests
were performed to investigate the impact of different
reference batch sizes (RBSs) on GPU performance in
Tables 4 and 5, where 256 and 32 queries were used,
respectively. For both tests, the size of the reference data-
set was fixed at 256. Various settings for the reference
batch size (i.e., 8, 16, 32 and 64) were used to analyze the
impact on the algorithm performance. The resulting
execution times and GCUPs are depicted in Tables 4 and
5. We can see that the GPU performance was stable for
different RBS settings when sufficient number of queries
(e.g., 256) was available in the test as shown in Table 4. In
contrast, when only a limited number of queries (e.g., only
32) were available on the GPU, the GPU performance was
sensitive to the selection of RBS. Table 5 showed that bet-
ter performance could be achieved when a larger RBS was
used. This also demonstrated that GPU is designed for
computational intensive tasks, where full advantage in
terms of speed is only achieved if sufficient data and
operations can be fed into the GPU. Finally, we tested the
proposed tools with an additional utr3prime_NM_hg19
data, which has 33,727 reference sequences with average
length of 1361, ranging from 1 to 22,561. By using 256 test
queries, CUDA-miRanda reduced the execution time from
+120 minutes on a CPU to less than 2 minutes on GPUs
as shown in Figure 8. Similarly, for the targetScan data
with 256 input queries, the proposed CUDA- miRanda
completes in about 1 minute on the GPU versus 1 hour
on the CPU.

Conclusion
Although there are many existing GPU-based imple-
mentations of the SW algorithm [21-28], most of them

Table 2 Execution time in seconds for various numbers of microRNA sequences against a reference dataset.

# of queries 1 GPU 2 GPUs 4 GPUs miRanda on CPU 4GPUs vs. CPU

Time GCUPs Time GCUPs Time GCUPs Time Speedup

1 2.48 0.06 1.44 0.1 1.25 0.12 7 5x

32 2.59 1.8 1.92 2.44 1.39 3.38 177 127x

64 5.08 1.79 2.86 3.17 1.97 4.62 288 146x

128 9.89 1.79 5.58 3.17 3.63 4.89 580 159x

256 19.25 1.8 10.49 3.3 6.47 5.36 1076 166x

The reference dataset contained 256 sequences with average length of 20K. The orignial miRanda 3.3 on CPU and our proposed CUDA-miRanda on GPUs were
compared.

Table 3 Impact of different average reference lengths on performance.

Average Reference Length 1 GPU 2 GPUs 4 GPUs miRanda on CPU 4GPUs vs. CPU

Time GCUPs Time GCUPs Time GCUPs Time Speedup

1000 1.55 0.99 1.42 1.08 1.6 0.96 54 33x

5000 4.83 1.59 3.17 2.43 2.57 3.01 240 93x

10000 8.8 1.72 5.19 2.92 3.66 4.14 556 151x

22000 19.25 1.8 10.49 3.3 6.47 5.36 1076 166x

Both reference and query datasets have 256 sequences, and the execution time was measured in seconds.
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are focusing on the problem of database search with the
report of the best matching score. The work reported in
[25] is most relevant to our own, which takes the back-
tracking of pairwise alignments into account. However,
all aforementioned implementations were unable to
meet the high demands of the microRNA target identifi-
cation tasks, which requires specific scoring schemes
with heuristic rules, multiple alignment outputs within a
single query and a reference sequence pair, alignment
traceback, and a short query sequence against a long
reference sequence alignment. Therefore, in this work,
we have presented CUDA-miRanda, a fast microRNA
target identification algorithm that takes advantage of
the massively parallel computing on a GPU using
CUDA. Speeds of more than 5.36 GCUPs were achieved

on a server with 4 NVIDIA Tesla M2090 GPUs. In com-
parison with the original miRanda algorithm, evaluated
on an Intel Xeon E5620@2.4 GHz CPU, the experimen-
tal results show up to 166 times performance gain in
terms of execution times. The results demonstrate that
massively parallel computing on GPU can significantly
expedite studies of computational microRNA target
identification. The gains in speed should translate into
the completion of more experiments and potentially the
acceleration of new discoveries. We are currently plan-
ning to use this implementation for the prediction of
targets for differentially expressed microRNAs in chil-
dren affected with Kawasaki disease and controls and
have made our code and examples available so that
others could use on their data as well. The cost of an

Table 4 The impact of different RBSs on the GPU performance.

RBS 1 GPU 2 GPUs 4 GPUs miRanda on CPU 4GPUs vs. CPU

Time GCUPs Time GCUPs Time GCUPs Time Speedup

8 19.56 1.77 10.74 3.23 6.56 5.28 1076 164x

16 19.25 1.8 10.57 3.28 6.48 5.35 166x

32 19.25 1.8 10.49 3.3 6.47 5.36 166x

Both reference and query datasets have 256 sequences and the execution time was measured in seconds.

Table 5 Another sample table title.

RBS 1 GPU 2 GPUs 4 GPUs miRanda on CPU 4GPUs vs. CPU

Time GCUPs Time GCUPs Time GCUPs Time Speedup

8 8.87 0.52 4.7 0.99 2.94 1.59 177 60x

16 4.49 1.04 2.48 1.88 1.62 2.88 109x

32 2.59 1.8 1.92 2.44 1.39 3.38 127x

64 2.57 1.82 1.63 2.87 1.27 3.68 139x

The impact of different RBSs on the GPU performance, where reference and query datasets have 256 and 32 sequences, respectively. Time was measured in
seconds.

Figure 8 Performance comparisons in terms of execution time (seconds) between CUDA-miRanda and miRanda. We use Target Scan
and HG_19 datasets with different number of queries.
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entry-level GPU-enabled hardware to run these tests is
around $1,000 today, a fraction of the cost that would
take us to buy time on an HPC facility. For example,
the current rental price of Cluster GPU (NVIDIA Tesla)
is about $2.1 per hour. By including the provisioning
and data transfer costs, one could conduct the same
analysis with less than $20. Additionally, we have the
advantage of keeping these human sequences private
within our HIPAA-compliant environment.
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