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Abstract

Obesity, a major public health concern, is a multifactorial disease caused by both environmental and genetic
factors. Although recent genome-wide association studies have identified many loci related to obesity or body
mass index, the identified variants explain only a small proportion of the heritability of obesity. Better
understanding of the interplay between genetic and environmental factors is the basis for developing effective
personalized obesity prevention and management strategies. This article reviews recent advances in identifying
gene-environment interactions related to obesity and describes epidemiological designs and newly developed
statistical approaches to characterizing and discovering gene-environment interactions on obesity risk.

Introduction
Obesity has become a major public health concern. The
number of overweight and obese adults has been esti-
mated to be 1.35 billion and 573 million respectively by
2030 [1]. Obesity is associated with increased risk of
chronic diseases and decreased health-related quality of
life and overall life expectancy [2]. It is also associated
with substantially elevated healthcare cost [3].
Obesity results from a complex interplay of many

genetic factors and environmental factors [4-8]. Numer-
ous epidemiological studies and clinical trials have
examined the roles of lifestyle/dietary and genetic
factors in the development of obesity. The body of evi-
dence on gene-environment interaction (GEI) has also
grown rapidly. However, preliminary results regarding
GEI on obesity are for the most part inconclusive. The
present review summarizes recent advances in identify-
ing GEI related to obesity, and examines the newly
developed approaches to testing GEI in the context of
GWAS for obesity risk.

Basic concepts
a) Nutritional genomics
Nutritional genomics is an emerging field that may
improve dietary guidelines for chronic disease prevention
[9]. It covers both nutrigenomics and nutrigenetics. Nutri-
genomics explores the effects of nutrients or other dietary
factors on the gene expression, DNA methylation,
proteome and metabolome [10], while nutrigenetics is
aimed to elucidate whether genetic variations modify the
relationships between dietary factors and risk of diseases
[11]. Nutrigenetics has the potential to provide scientific
evidence for personalized dietary recommendations based
on the individual’s genetic makeup for weight control [9].

b) Gene - environment interactions
In epidemiology, interaction is defined by estimating
whether the degree of risk attributable to the joint effects
of a genotype and an environmental factor on an outcome
is greater or less than would be expected if these joint
effects were additive [12]. Alternatively, GEI exists where
the risk conveyed by specific genotype depends on one or
more environmental exposure levels. This definition is
quite helpful in the context of intervention studies where
the environmental exposures can be intervened upon,
such as diet and physical activity, to offset genetic risk
[13-15]. Nutrigenetics is a special area of GEI research,
where the environmental exposure is consumption of
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specific foods or nutrients. Looking from a different
perspective, nutrigenetic studies also assess whether
genetic factors modify the effects of specific dietary factors
on diseases or related traits.

Approaches to studying GEI
a) Study designs for testing GEI
Over the past two decades, various study designs such as
prospective cohort studies, case-control studies, case-only
studies, randomized intervention trials, and twin studies
have been used to test GEI [12]. Each design has its own
advantages and disadvantages, and may be suitable for
different situations.
Case-control studies
In population-based case-control studies, incident or pre-
valent cases in the studied population are ascertained over
a certain time period, while the controls are randomly
selected from the same source population. For example, a
case-control design including 159 case subjects (BMI>30
kg/m2) and 154 controls (BMI<25 kg/m2) found that the
ADRB2 genotype modified the effect of carbohydrate con-
sumption on obesity risk [16]. This finding suggested that
high carbohydrate consumption was associated with an
increased risk of obesity only among women with the
Glu27 allele (OR 2.56, p=0.051). A Spanish case-control
study reported that dietary saturated intake modified the
effect of the FTO rs9939609 on risk of obesity among chil-
dren and adolescents. The risk allele carriers consuming
more than 12.6 % saturated fatty acids (of total energy)
had an increased obesity risk compared with TT carriers
[17], but the increased risk was not observed among those
with lower saturated fat intake.
Case-only studies
Case-only studies can be used if the interest is limited to
GEI, because the case-only design has the practical
advantage that there is no need to collect control sam-
ples. This design is based on the assumption that geno-
types and environmental exposures are independent of
each other, so that the exposures should not differ
among different genotypes. The case-only design is
more efficient than case-control design, but the inde-
pendence assumption may not hold. In addition, the
design is subject to bias and confounding, especially if
there is exposure misclassification [18]. For example, a
case-only study among 549 adult obese women observed
an interaction between fiber intake and the -514 C>T
polymorphism of the LIPC gene (p for interaction=0.01).
Similarly, the -11377G>C polymorphism of the ADIPOQ
gene and the -681 C>G polymorphism of the PPARG3
gene were found to modify the association of dietary fat
intake and obesity (all p for interaction<0.05) [19].
Cohort studies
The classic prospective cohort study follows subjects over
time, comparing the outcome of interest in individuals

who are exposed or not exposed at baseline [5]. Because
exposure is assessed before the outcome, the cohort
design is less susceptible to selection bias and differential
recall bias between cases and noncases when compared
to a case-control design. However, cohort studies of
chronic conditions with low incidence are expensive, and
require large sample size and long follow-up. A nested
case-control study within a large prospective cohort can
improve efficiency and reduce cost [20]. In recent years,
several cohort studies have investigated the GEI on obe-
sity. For example, Qi et al. calculated weighted genetic
risk score (GRS) on the basis of 32 BMI variants and
demonstrated that the genetic association with adiposity
was stronger among participants with higher intake of
sugar-sweetened beverages than among those with lower
intake in the Nurses’ Health Study (NHS) and the Health
Professionals Follow-up Study (HPFS) cohorts, and these
findings were replicated in the Women’s Genome Health
Study (WGHS) cohort [8]. A similar interaction between
regular consumption of fried food and GRS in relation to
obesity was observed among these three cohorts [6]. In
the combined analysis, the differences in BMI per 10 risk
alleles were 1.1 (SE 0.2), 1.6 (SE 0.3), and 2.2 (SE 0.6) for
fried food consumption less than once, one to three
times, and four or more times a week (p<0.001 for inter-
action). These findings suggested that the genetic asso-
ciation with adiposity was strengthened with higher
consumption of fried foods. Furthermore, it was docu-
mented the genetic association with BMI was strength-
ened with increased hours of TV watching in 7740
women and 4564 men from the NHS and HPFS. In
contrast, the genetic association with BMI was wea-
kened with increased levels of physical activity. These
findings suggest that sedentary lifestyle may enhance
the predisposition to elevated adiposity, whereas
greater leisure time physical activity may mitigate the
genetic association [21].
Clinical trials
Randomized controlled trial (RCT) is widely considered
to be the most reliable design because of the randomized
allocation of the exposures. However, RCT is often infea-
sible to test the long-term effects of dietary exposures on
obesity or obesity-related chronic diseases due to cost
and logistic considerations. Several randomized dietary
intervention trials of weight loss have been analyzed to
provide unique insights into individualized dietary
response to weight loss diets based on specific genetic
variants (Table 1). The Preventing Overweight Using
Novel Dietary Strategies Trial is the largest and longest-
term (2-years) randomized intervention trial comparing
the effects of four weight-loss diets of varying macronu-
trient compositions [22]. The results from this trial
showed that individuals carrying the C allele of
the branched-chain amino acid/aromatic amino acid

Huang and Hu BMC Medical Genomics 2015, 8(Suppl 1):S2
http://www.biomedcentral.com/1755-8794/8/S1/S2

Page 2 of 6



ratio-associated variant rs1440581 might benefit less in
weight loss than those without this allele when undertak-
ing an energy-restricted high-fat diet [23]. For FTO var-
iant rs1558902, a high-protein diet was found to facilitate
weight loss and improvement of body composition in
individuals with the risk allele of the FTO variant
rs1558902, but not in other genotypes [24]. Several other
intervention studies also demonstrated gene-diet interac-
tion on obesity (Table1). For example, Alsaleh et al
found that higher consumption of n-3 polyunsaturated
fatty acids modified the effects of ADIPOQ rs2241766 on
risk of obesity [25]. Improvement in metabolic markers
secondary to weight loss was greater in FTO rs9939609 A
allele carriers with a low-fat hypocaloric diet [26]. The
FAAH rs324420 AA/AC was not associated with weight
loss in a 1-year lifestyle intervention for obese children
and adolescents [27]. These results need to be validated
in further studies.

b) Evolving Approaches to GEI: GWEI
The GWAS approach has made impressive progress in
identifying common obesity genetic variants. However,
GWAS analysis of main effects only might miss impor-
tant genetic variants restricted to exposure subgroups of
the population. Several approaches to assessing genome-
wide environment interaction (GWEI) have been devel-
oped recently. These approaches also have the potential

to identify novel SNPs that are not detected in genome
wide scan. However, no study has reported the GWEI
for obesity. In this section, we summarized the newly
developed methods for GWEI that has the potential to
detect GEI on obesity (Table 2):
1) 2-step analysis
The 2-step approach incorporates a preliminary screening
step to efficiently use all available information in the data
[28]. In the first step (screening test), for each of the SNPs,
a likelihood ratio test of association between genetic var-
iant and environment was performed using a logistic
model. The second step uses an unbiased traditional GEI
test of the SNPs that passed the screening step to ensure
an overall valid procedure. It was demonstrated that two-
step approach reduced the number of SNPs tested for
interactions and substantially improved the power of
GWEI. Recently, an improved two-step screening and test-
ing method (the screening step included exposure-geno-
type and disease-genotype information; EDG×E) was
proposed. A software program which implements this new
method and other GWEI approaches is now available
(G×E scan, http://biostats.usc.edu/software) [29].
2) Gene- or pathway-based approaches
Both gene-and pathway-based analytic approaches have
been used to integrate prior biological knowledge into asso-
ciation and interaction analyses [30], by combining associa-
tions of genetic variants in the same gene or biological

Table 1 Summary of selected intervention and cohort studies on gene-diet interactions during the past two years

Author Study design Genetic
markers

Main findings

Qi et al. 2011
[42]

Two years,
intervention, n=738

IRS
rs2943641

IRS1 genetic variants modified effects of dietary carbohydrate on weight loss

Mattei et al.
2012 [43]

Two years,
intervention, n=591

TCF7L2
rs7903146

Dietary fat intake modified effect of TCF7L2 genotype on changes in BMI, total fat mass, and
trunk fat mass

Qi et al. 2012
[44]

Two years,
intervention, n=737

GIPR
rs2287019

Dietary carbohydrate modified GIPR genotype effects on changes in body weight

Xu, et al. 2013
[23]

Two years,
intervention, n=734

PPM1K
rs1440581

Dietary fat modified genetic effects on changes in weight

Alsaleh et al,
2013 [25]

One year,
intervention, n=367

ADIPOQ
rs2241766

A diet high in n-3 polyunsaturated fatty acids modified the effects of rs2241766 on risk of
obesity

Knoll et al
2012 [27]

One year,
intervention, n=453

FAAH
rs324420

The FAAH rs324420 AA/AC is not associated with weight loss in a 1-year lifestyle intervention
for obese children and adolescents

de Luis et al,
2013 [26]

Three months
intervention, n=305

FTO
rs9939609

Metabolic improvement secondary to weight loss was better in A carriers with a low fat
hypocaloric diet

Lai et al 2013
[45]

Four weeks
intervention, n=88

Visfatin
rs4730153

Visfatin rs4730153 homozygous GG Genotype may affect glucose and lipid metabolism in
obese children and adolescents by reducing total triglyceride level and increasing insulin
sensitivity to exercise

Qi et al 2012
[8]

Cohorts (NHS, HPFS,
WGHS)

BMI-GRS The genetic association with adiposity was stronger among participants with higher intake of
sugar-sweetened beverages than among those with lower intake.

Qi et al 2012
[21]

Cohorts (NHS, HPFS) BMI-GRS Sedentary lifestyle may accentuate the predisposition to elevated adiposity, whereas greater
leisure time physical activity may attenuate the genetic association.

Qi et al 2014
[6]

Cohorts (NHS, HPFS,
WGHS)

BMI-GRS Participants in the highest risk groups for both fried food and GRS had the highest BMI overall.
Eating fried food more than four times a week had twice the effect on BMI for those in the
highest third of GRS than those in the lowest third.

GRS: genetic risk score, NHS: the Nurses’ Health Study, HPFS: the Health Professionals Follow-up Study, WGHS, the Women’s Genome Health Study.

The GRS was calculated on the basis of 32 established BMI-associated variants.
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pathway. Therefore, it could enhance statistical power and
also provide insights into biological mechanisms. Several
recent studies have shown that gene-based and pathway-
based approaches to GEI in the context of GWAS could
facilitate the mining of functional information that is com-
plementary to traditional agnostic GWAS analysis [31].
Wei et al. conducted a GWEI to identify gene-asbestos
interaction in lung cancer risk at levels of SNPs, genes, and
pathways, using Texas lung cancer GWAS dataset, and
found that pathway-based analyses had more power than
SNP- or gene-based analyses [32].
3) A module-based cocktail approach
Hsu et al. proposed a module-based approach to inte-
grating various methods (such as the correlation screen-
ing and marginal association screening) that exploits
each method’s most appealing aspects [33]. Three mod-
ules were included in this approach: 1) a screening mod-
ule for prioritizing SNP; 2) a multiple comparison
module for testing GEI; and 3) a GEI testing module.
They combined all three of these modules and devel-
oped two novel “cocktail” methods. It was demonstrated
that the proposed cocktail methods did not inflate the
type I error and had enhanced power under a wide
range of situations [33]. This modular approach is com-
putationally straightforward.
4) A joint test of marginal associations and GEI
Kraftet al. proposed a joint test of marginal association
and GEI [34], using a likelihood ratio test. The joint test
was found to have greater power than the marginal test
when the genetic association was confined to an exposure
subgroup or the GEI test when the genetic association
was detected in both exposed and non-exposed groups
[34]. Several studies have demonstrated enhanced power
for large-scale association studies where the true underly-
ing GEI model is unknown [35,36].
5) Variance prioritization approach
Pare et al. proposed a novel approach to prioritize SNPs
for testing the gene-gene and gene-environment interac-
tions for quantitative traits [37]. In this approach, the
variance of a quantitative trait by genotypes in the pre-
sence of an interaction effect was calculated, and then
Levene’s test was used to test if subgroup samples have

equal variances. Pare et al. further applied the variance
prioritization approach in the Women’s Genome Health
Study and identified several novel interactions, including
the interactions between the LEPR rs12753193 and BMI
on C-reactive protein levels, between the ICAM1
rs1799969 and smoking on intercellular adhesion mole-
cule 1 (ICAM-1 ) levels [37]. Given the limited number
of SNPs that are eventually tested for interactions, this
approach has enhanced power over traditional methods.
6) A set-based gene environment interaction test (SBERIA)
Jiao et al. proposed a set-based gene environment inter-
action test (SBERIA) to explore the GEI using case-con-
trol data [38]. SBERIA first selects markers with relatively
strong correlation signals, and then a weighted sum of
the selected marker interaction terms is computed,
where the weight corresponds to the magnitude and
direction of the correlations among the markers. SBERIA
was applied to GWAS data of 10,729 colorectal cancer
cases and 13,328 controls and the study identified several
significant interactions of known susceptibility loci with
smoking on colorectal cancer [38]. One advantage of
SBERIA is that could increase the statistical power by
aggregating correlated SNPs within a marker set and thus
reduce the multiple testing problems.

Continued challenges
Despite some progress in characterizing GEI underlying
obesity, many challenges remain. First, many inconsisten-
cies and significant findings need replication or more
detailed follow-up. Publication bias may have contributed
to the absence of replication reports. Therefore, it is criti-
cal for researchers to conduct replication studies and to
publish both positive and negative results [39]. Second,
inadequate statistical power due to modest sample sizes
and measurement errors for environmental factors con-
tinue to be major factors limiting progress in the field
[39]. Environmental exposures such as diet and exercise
are often difficult to measure in free-living populations.
Simulation studies have demonstrated that in GEI studies,
even a modest amount of measurement errors in assessing
environmental exposure can result in a substantial reduc-
tion in statistical power to detect an interaction [40].

Table 2 Examples of newly developed genome-level approaches to GWEI.

Author Year Methods

Kraft et al 2007 Joint test of marginal effects of SNPs and G x E [34].

Murcray et al. 2009 Two-step analysis of GWAS data [28]

Paré et al 2010 Variance prioritization approach[37]

Wei et al. 2012 SNP, gene, and pathway based GWAS analysis[30]

Hsu et al. 2012 Cocktail methods [33]

Gauderman et al. 2013 Revised two-step screening and testing method (EDG×E) [29].

Jiao et al. 2013 SBERIA: Set-Based Gene-Environment Interaction Test [38].
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Future perspective of GEI on obesity
There has been considerable progress in our understand-
ing of the role of both genetic and environment factors in
the development of obesity. Findings to date indicate that
behavioral changes such as improving diet and physical
activity can substantially offset obesogenic effects of risk
alleles, which has much broader clinical and public health
implications. In the near future, individuals may be able to
obtain their comprehensive genetic information and thus
a knowledge of their genetic predisposition to obesity and
other chronic diseases. Nutritional genetics studies have
made slow but steady progress in examining gene and
dietary intervention interactions for weight loss and main-
tenance [8,23,24,41], but there are still many challenges.
Continued progress will depend on appropriate study
design; more accurately measured environmental factors,
and very large sample size. Further investment in studies
of GEI for obesity holds promise on several grounds [39].
First, GEI studies may help us better understand disease
mechanisms by providing biological insight into the func-
tion of novel obesity loci and pathways and interplays
between the genes and environment. Second, GEI investi-
gation may identify high-risk individuals for more efficient
and targeted diet and/or lifestyle interventions. Finally, the
integrating of genomics with other “omics” such as tran-
scriptomics, proteomics, and metabolomics can provide
greater insights into how diet and lifestyle alter the expres-
sion or ‘manifestation’ of our genomes and the interplays
between genes and environments on obesity development
and progression. This approach, termed “systems epide-
miology” [39], has tremendous potential to advance our
understanding of obesity etiology and to help achieve the
goal of personalized nutrition for obesity prevention and
management.
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