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Abstract

Background: A substantial proportion of Autism Spectrum Disorder (ASD) risk resides in de novo germline and rare
inherited genetic variation. In particular, rare copy number variation (CNV) contributes to ASD risk in up to 10% of
ASD subjects. Despite the striking degree of genetic heterogeneity, case-control studies have detected specific
burden of rare disruptive CNV for neuronal and neurodevelopmental pathways. Here, we used machine learning
methods to classify ASD subjects and controls, based on rare CNV data and comprehensive gene annotations. We
investigated performance of different methods and estimated the percentage of ASD subjects that could be
reliably classified based on presumed etiologic CNV they carry.

Results: We analyzed 1,892 Caucasian ASD subjects and 2,342 matched controls. Rare CNVs (frequency 1% or less)
were detected using Illumina 1M and 1M-Duo BeadChips. Conditional Inference Forest (CF) typically performed as
well as or better than other classification methods. We found a maximum AUC (area under the ROC curve) of
0.533 when considering all ASD subjects with rare genic CNVs, corresponding to 7.9% correctly classified ASD
subjects and less than 3% incorrectly classified controls; performance was significantly higher when considering
only subjects harboring de novo or pathogenic CNVs. We also found rare losses to be more predictive than gains
and that curated neurally-relevant annotations (brain expression, synaptic components and neurodevelopmental
phenotypes) outperform Gene Ontology and pathway-based annotations.

Conclusions: CF is an optimal classification approach for case-control rare CNV data and it can be used to
prioritize subjects with variants potentially contributing to ASD risk not yet recognized. The neurally-relevant
annotations used in this study could be successfully applied to rare CNV case-control data-sets for other
neuropsychiatric disorders.

Background
Autism Spectrum Disorders (ASD) affect about 1% of the
population, with a higher prevalence in males than
females, and are characterized by impairments in social
interaction and communication, as well as by repetitive
and restricted behavior [1,2]. ASDs are highly heritable [3]
and genomic studies have revealed that a substantial pro-
portion of ASD risk resides in de novo germline and rare
inherited genetic variation, ranging from chromosome

abnormalities and copy number variation (CNV) [4-8] to
single nucleotide variation [9-14]. Genomic studies have
highlighted a striking degree of genetic heterogeneity, with
variation distributed across numerous genes enriched in
synaptic components as well as broader neuronal pro-
cesses and neurodevelopmental pathways [15]. While
numerous ASD loci have been recognized to date, they
only account for a small fraction of the overall estimated
heritability [16], consistent with the prediction that there
are about 1000 loci underlying ASD [17].
Rare CNVs are expected to contribute to ASD risk in up

to 10% of ASD subjects [15], whereas estimates for rare
nucleotide substitutions and small insertions/deletions
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range between 10 and 40% for different studies (depending
on the sequencing technology, the modes of inheritance
investigated and the depth of phenotypic characterization)
[9-14].
Certain multigenic regions with rare yet recurrent

inherited or de novo CNVs (genomic disorder loci such
as 15q11.2-q13 duplications and 16p11.2 deletion/dupli-
cation), as well as rare variants disrupting single genes
(such as NRXN1), have a well established contribution to
ASD etiology. De novo CNVs are observed in up to
5-10% of screened ASD subjects; however, not all of
these events have a clear contribution to ASD risk, which
is thought to depend on the size of the genomic change
and the gene pathways perturbed. In this sample collec-
tion, 3.0% of ASD subjects harbored a de novo or inher-
ited genic CNVs classified as pathogenic according to
clinical annotation guidelines [18] and consensus catalo-
gue of ASD loci (124 genes and 55 loci) [16]; more than
half of these pathogenic CNVs were de novo.
While univariate statistics are well suited for investigat-

ing global burden and for discovering pathways implicated
in ASD, multivariate machine learning methods are best
suited to achieve optimal classification performance using
all available gene annotations. Data-driven classification is
complementary to CNV clinical classification based on
established ASD genetics, and thus helps expanding the
number of “explained” subjects. Unlike other published
studies focusing uniquely on pathogenic CNV classifica-
tion [19], we aimed at classifying subjects based on the
contribution of all rare CNVs.
Many classification algorithms have been proposed to

solve different classification problems. Random Forest
(RF) is an ensemble learning method that can be used for
binary classification as well as for regression analysis. A RF
classifier is composed of a large number of decision trees,
each trained using a random subset of samples (bagging)
and constructed by selecting the best splitting features
from random and independent sampled subsets of features
[20,21]. RF has been used in different fields, including
computational biology; it is robust, accurate, with limited
or no overfitting issues, and with transparent feature utili-
zation. Despite its robustness, the relevance measures used
by RF to select the best splitting features have been shown
to be positively biased towards features with a larger num-
ber of categorical values; additional shortcomings occur in
presence of highly correlated variables [22]. To avoid these
issues, the Conditional Inference Forest (CF) classification
method was proposed as a modification of RF that utilizes
statistical inference testing for feature selection during tree
construction [23].
Support Vector Machines (SVM) [24] and Artificial

Neural Networks (NN) [25] are two popular classification
methods, based on different mathematical models than
Random Forest. SVM uses its kernel to project the data

points from the feature space to a higher dimensional
space, where a hyperplane is sought to maximize the
separation between the nearest data points from each
class (also called the support vectors). Artificial Neural
Networks, in particular Multilayer Perceptrons (here
called simply Neural Networks, or NNs) are built up of
three or more layers of nodes and weighted connections
between them; weights are set maximizing the rate at
which the output layer correctly identifies the true class
of given examples.
In this work, we investigated classification performance

of different methods and the corresponding fraction of
ASD subjects who can be reliably classified as cases.

Methods
ASD sample collection
Samples were collected as part of the Autism Genome
Project (AGP), an international consortium with more
than fifty contributing sites in North America and Eur-
ope; informed consent was obtained from all partici-
pants. ASD was diagnosed based on the ADOS (Autism
Diagnostic Observation Schedule) and ADI-R (Autism
Diagnostic Interview - Revised) [26,27]. Patients with
karyotypic abnormalities, Fragile X syndrome or other
genetic syndromes causing congenital malformations
were excluded. Only samples from subjects with Eur-
opean ancestry were used for this analysis, as deter-
mined by multidimensional scaling analysis (MDS) of
known SNPs (single nucleotide polymorphisms).
Unrelated controls were assembled from three large

studies in which subjects had no previous psychiatric
history: SAGE (Study of Addiction Genetics and Envir-
onment), Ontario Colorectal Cancer study, HABC
(Health Aging and Body Composition) [28-31]. Controls
were genotyped on the same array platforms (Illumina
1M single or duo arrays) as ASD subjects and parents,
applying the same quality control procedures and CNV
calling algorithms.
Part of the samples (stage 1) was analyzed and pub-

lished in 2010 [8], whereas the remainder (stage 2) is
being published in a separate paper [32].

CNV calling and clinical classification
Only samples meeting quality thresholds were used for
CNV analysis. CNVs (of size 30 kb or greater) were
detected using an analytical pipeline optimized for Illu-
mina 1M arrays [8,33]. All de novo CNVs were experimen-
tally validated. Samples with copy number variation
greater than 7.5 MB were excluded.
The clinical classification of de novo and inherited

CNVs as pathogenic, uncertain or benign was established
according to the American College of Medical Genetics
guidelines [18], on the basis of genetic loci known to be
implicated in ASD (124 genes and 55 loci) [16]; large and
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very rare CNVs were also classified as pathogenic, even if
they were not reported before. Experimental CNV valida-
tion details can be found in [33].

CNV gene annotations and gene-set construction
Rare CNVs were mapped to genes whenever at least one
transcript overlapped the CNV; transcript coordinates
were based on RefSeq hg18 (the same build as for the
BeadChip arrays). Similar performance results were
obtained using the more stringent exonic mapping (i.e.
requiring at least one exon to be overlapped by a CNV).
Curated neurally-relevant gene-sets captured (i) pre-

dicted haploinsufficiency [33], (ii) brain expression levels,
based on the spatiotemporal Brainspan RNA-seq data-set
[35], as well as brain expression specificity compared to
other tissues, based on the Novartis Tissue Atlas microar-
rays [36], (iii) experimentally-determined synaptic com-
plex membership [37] and regulation by FMR1, a key
modulator of mRNA translation required for synaptic
plasticity, based on two different methods [38,39], (iv)
implication in neurological or neuropsychiatric disease in
humans (according to HPO, the Human Phenotype
Ontology) [40], (v) implication in abnormal nervous sys-
tem or abnormal behavior in mice, according to Mamma-
lian Phenotype Ontology (MPO) annotations provided by
Mouse Genome Informatics (MGI) [41], and (vi) neuro-
nal or nervous system function based on Gene Ontology
(GO) [42] annotations or pathway membership. A more
detailed description is provided in the supplementary
methods and results [see Additional file 1].

Cross-validation strategy
Stratified three-fold cross-validation was used to avoid
overfitting [43]. Subjects with at least one rare CNV
were randomly divided into three equal subsets, each
with the same proportion of cases and controls. The
union of two subsets was used to train the model, while
the remaining subset was used as the test set, to assess
the classification performance. This process was
repeated three times without re-dividing the data-set, so
that each subset was used once as test set and twice as
training set. Twenty independent cross-validation itera-
tions were performed to estimate the mean and stan-
dard deviation of the area under the curve (AUC), to
model the classification stochasticity. Absence of overfit-
ting was further assessed by replacing real classification
features with randomized features based on gene iden-
tity permutation.

Classifier implementation details
For RF, we used the implementation provided by the
R/CRAN package ‘randomForest’ version 4.6-7 [44],
which follows the original algorithm proposed by Breiman
2001 [20]. We used default settings unless otherwise

specified. For CF, we used the implementation provided
by the R/CRAN package ‘party’ version 1.0-9 [45]. We
used default settings unless otherwise specified. R 2.15.2
was used for all RF and CF analyses.
For the linear SVM, the libSVM package was used [46]

in MATLAB R2013a. The cost parameter was kept at
default as 1 and class weights were kept even. Each fea-
ture was independently normalized and rescaled to a 0-1
interval prior to being input into the classifier.
The Neural Network was built with two middle layers of

100 and 50 nodes each, a learning rate of 0.005 (which
affects the rate of connection weight adaptation) with a 0.9
momentum (which affects the acceleration of connection
weight adaptation). The network was trained through
back-propagation, and unlike the SVM, it did not require
feature normalization or scaling. The NN was also imple-
mented in MATLAB R2013a.

Feature relevance metrics and feature selection
Two feature relevance metrics were utilized for RF: Mean
Decrease Accuracy (MDA) and Mean Decrease Gini, as
implemented in the randomForest package. MDA is calcu-
lated by permuting the value of the feature in OOB (out of
bag) samples and comparing the accuracy of prediction
before and after permutation tree by tree. Mean Decrease
Gini is a measure of how each feature contributes to the
homogeneity of the nodes and leaves.
MDA was also used for CF, as implemented by the

party package function ‘varimp’, using the standard ver-
sion (unless stated otherwise); in fact, the conditional
version, which adjusts for correlations between predictor
variables, is extremely computationally demanding.
For MDA-based selection, we ranked features based

on MDA, and selected a predefined number of features.
The procedure used for step-wise decorrelation and the
detailed implementation of Minimum Redundancy Max-
imum Relevance Feature Selection (MRMR) [46] are
described in detail in the supplementary methods and
results [see Additional file 1].

Percentage of correctly classified ASD subjects
The percentage of correctly classified ASD subjects was
calculated as the number of ASD subjects correctly pre-
dicted in at least 15 out of 20 iterations divided by the
study total (1,892); the prediction probability cutoff was
chosen ensuring that the percentage of correctly pre-
dicted ASD subjects without pathogenic or de novo
CNVs exceeds the percentage of incorrectly predicted
controls by more than 1.5x. Carriers of pathogenic and de
novo CNV are easier to classify, thus the ratio described
above is a more conservative estimate of the true positive
to false positive ratio. Results did not change substantially
when requiring subjects to be classified in at least 10 out
of 20 iterations.
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Results and discussion
Feature construction
We analyzed 1,892 ASD subjects (1623 males and 270
females) and 2,342 platform-matched controls (1093
males and 1250 females) with at least one rare CNV
(frequency 1% or less); all subjects are of Caucasian eth-
nicity. Rare CNVs were mapped to gene transcripts; de
novo and inherited rare CNVs were labeled as patho-
genic, uncertain or benign following clinical annotation
guidelines. Univariate burden and pathway analysis, as
well as details on the clinical CNV classification, can be
found in a separate publication [32].
Classification features were constructed for every sub-

ject as gene counts for each gene-set, i.e. counting how
many genes participating in a gene-set harbor a rare
genic gain or loss; in particular, separate features were
constructed for gains and losses. For CNV mapping, we
decided to focus on transcripts of known genes as there
is a wealth of information that can be used to predict
their implication in autism, and their boundaries are
well characterized in the human genome; upstream tran-
scription start site regulatory motifs, or other non-cod-
ing sequence could be the object of another paper.
Only subjects harboring at least one rare genic CNV

were used for classification, as features would be constantly
zero for the other subjects, but all subjects were considered
when reporting percentage “explained” statistics. This

resulted in a subset of 1,570 ASD subjects (80.8%) and
1,916 controls (81.8%), of which 958 ASD subjects and
1,113 controls had at least one genic loss, whereas 1,132
ASD subjects and 1,363 controls had at least one genic
gain. 78 ASD subjects harbored at least one genic de novo
CNV (30 gains, 51 losses); 57 ASD subjects subjects har-
bored at least one de novo or inherited CNV recognized as
“pathogenic” according to clinical significance annotation
[16,18] (21 gains, 37 losses). All subsets presented a gender
composition similar to the full data-sets.
Gene-sets (and corresponding classification features)

were organized in three groups: (a) 20 curated gene-sets
of neurobiological relevance, capturing brain expression,
synaptic components, neuro-phenotypes in human and
mouse and predicted haploinsufficiency (Table 1), (b)
gene-sets corresponding to GO annotations, (c) gene-
sets corresponding to pathways (KEGG, Reactome, NCI
Pathway Interaction Database, Biocarta databases)
[48-53]. GO and pathway gene-sets were filtered to
remove exceedingly large or small sets, resulting in 1425
GO sets (out of 5657) with 100 to 3000 genes, and 519
pathway sets (out of 1763) with 50 or more genes. The
total gene count, regardless of gene-set membership,
was also used as a classification feature.
For different classifiers and parameter settings, we

classified all ASD subjects, or only the ASD subjects car-
rying a pathogenic or de novo rare CNV. This was

Table 1 Curated gene-sets description and gene number

Gene-set ID Gene-set Description Gene N#

hi015 Predicted haploinsufficiency (most inclusive) 8862

hi035 Predicted haploinsufficiency 4136

hi055 Predicted haploinsufficiency (most stringent) 2214

ExpsNov_BrainFeAd_sp Specific expression in human adult or fetal brain (Novartis Tissue Atlas) 1285

Synapse_GrantFull Post-synaptic density components 1407

FMR1_Targets_Darnell FMR1 targets (Darnell et al) 840

FMR1_Targets_Ascano FMR1 targets (Ascano et al) 927

thrEXPR_log2rpkm Expressed in brain (BrainSpan) 13802

thr4.86_log2rpkm Expressed in brain, very high (BrainSpan) 4595

thr3.32_log2rpkm Expressed in brain, high/medium (BrainSpan) 4604

thr0.84_log2rpkm Expressed in brain, medium/low (BrainSpan) 4603

thr.MIN_log2rpkm Not expressed in brain (BrainSpan) 4600

PhHs_NervSys_ADX Human nervous system phenotype (HPO), autosomal dominant or X-linked 620

PhHs_NervSys_All Human nervous system phenotype (HPO) 784

PhHs_MindFun_ADX Higher mental function phenotype (HPO), autosomal dominant or X-linked 395

PhHs_MindFun_All Higher mental function phenotype (HPO) 687

MmHs_Neuro_All Mouse neuro phenotype (MGI/MPO) 3479

MmHs_Extend_All Mouse developmental phenotype (MGI/MPO) 4314

NeuroF_large Neurobiological function, inclusive 2601

NeuroF_small Neurobiological function, stringent 1088

Total Total gene count 18203
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helpful to evaluate the performance of our classification
approach for more obviously implicated genes and loci.
In addition, we classified either all ASD subjects with
any rare genic CNV, or only the carriers of rare genic
losses (using only loss-based features) or rare genic
gains (using only gain-based features). This was helpful
to evaluate the predictive power of the two CNV types.

Classification results: RF and CF
For all classifiers, we used a robust cross-validation
approach and tested randomized features to ensure the
absence of significant overfitting (Figure 1).
Random Forest (RF) was our original choice for its

resilience to overfitting and its capability to handle a
large feature space [20]. However RF has been criticized
for its positive selection bias towards features with more
categorical values [22]; for this reason, Conditional
Inference Forest (CF) has been suggested as an alterna-
tive to RF [23].
The performance of RF and CF was compared for the

20 curated neurally-relevant features plus the total gene
count. We found CF to have slightly higher AUC than

RF when classifying all subjects (all CNV types, loss-
only, gain-only), whereas it had slightly lower AUC than
RF for de novo and pathogenic subjects (Table 2). We
inspected the feature relevance metrics for both classi-
fiers, using the Mean Decrease Accuracy and Mean
Decrease Gini for RF, and Mean Decrease Accuracy,
with or without correlation adjustment, for CF. Both RF
metric showed greater relevance for gain-based features
when classifying all subjects, in contradiction with the
fact that classification based uniquely on losses displayed
a better AUC than the one based on gains. On the other
hand, CF relevance metrics showed the opposite pattern,
with loss-based features more relevant than gain-based
features, in accordance with expectations (Figure 2). For
this reason, we used CF in place of RF for the rest of
the analyses.
The AUC achieved by CF using the 20 curated neu-

rally-relevant features and the total count was greater by
several standard deviation (sd) units than the AUC
achieved using the total gene count alone; it was also
greater than the AUC achieved by the total gene count
plus 20 matched randomized features obtained by per-
muting the gene identities and re-computing the gene-
set counts for gains and losses. This was particularly the
case when classifying all subjects; on the other hand,
when classifying only de novo or pathogenic CNV car-
riers versus controls, gains displayed an AUC close to
the AUC obtained using the total gene count alone.
This can be interpreted in relation to the larger size of
pathogenic and de novo gains compared to control
gains. In addition, as expected, adding the 20 rando-
mized features to the total gene count did not lead to a
remarkable increase of the AUC (i.e. lower than or
within one sd unit) (Table 3).
CF classification using the 20 curated neurally-relevant

features (gains and losses), together with the total gene
count, resulted in 7.9% correctly classified ASD subjects
and less than 3% incorrectly classified control; this result
is reasonably close to the expected contribution of rare
CNVs to ASD risk in 10% of the ASD subjects. Losses
alone correctly classified 5.9% of the ASD subjects and
less than 2.3% incorrectly classified controls; this sug-
gests that gains, besides the ones already recognized to
be pathogenic, have limited predictive power, a result in
line with univariate burden analysis for this data-set
[32].
A detailed analysis of feature relevance for all subjects,

or only de novo and pathogenic, is presented in the sup-
plementary methods and results [see Additional file 1].

Classification results for GO and pathways using different
feature selection strategies
The set of features based on GO annotations and path-
ways presented the additional challenges of having many

Figure 1 Cross-validation strategy. The data-set is divided into
three equal subsets, each with the same propotion of ASD and control
subjects. Two of the tree subsets are used as the training set the
model, whereas the other subset is used as the validation set for
performance quantification; this is iterated three times, so that each
subset is used twice for training and once for validation. The feature
selection is performed only for GO and pathway-based features. The
remaining set is used as test set to assess the performance of
classification. The cross-validation procedure is repeated times to
estimate the mean performance and its standard deviation.
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features, with a high degree of mutual overlap and pre-
sence of many features with limited or no classification
relevance.
To address those issues, we performed classification

based on GO and pathway features in two ways: (a)
using all features, (b) embedding a feature selection step
in the cross-validation procedure; in particular, we used

(i) Mean Decrease Accuracy (MDA) based selection, (ii)
MDA based selection with stepwise decorrelation, (iii)
MRMR (Minimum Redundancy Maximum Relevance
Feature Selection). For each procedure, we selected the
top 20, top 15% and top 40% ranking features excluding
the total gene count, and then added the total gene
count. It is important to point out that feature selection
was based on the feature relevance metrics calculated
on the data subset used for training, and performed
independently for every training set, to avoid any over-
fitting issues.
We assessed the classification performance of different

feature selection strategies in comparison to classification
without any extra feature selection step or performing
manual feature selection based on previous knowledge of
ASD biology.
GO without feature selection produced a suboptimal

performance (the AUC was very similar to using the

Table 2 CF and RF classification performance for 20
neurally-relevant curated features (mean ± sd)

Subject Classifier All CNV Gain CNV Loss CNV

All subjects RandomForest 0.531±0.005 0.509±0.004 0.544±0.006

All subjects CForest 0.533±0.004 0.513±0.005 0.546±0.003

De novo RandomForest 0.805±0.012 0.769±0.024 0.840±0.010

De novo CForest 0.787±0.008 0.732±0.013 0.846±0.011

Pathogenic RandomForest 0.913±0.014 0.913±0.012 0.935±0.016

Pathogenic CForest 0.880±0.012 0.897±0.008 0.922±0.030

Figure 2 RF and CF feature relevance, boxplots for the 20 curated neurally-relevant features. Feature relevance boxplots for loss-based
features (red) and gain-based features (blue). Mean decrease gini (MDG) and Mean decrease accuracy (MDA) were used for RF. MDA, with and
without correlation adjustment, was used for CF. For all relevance metrics, higher values correspond to more relevant features.
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gene count alone). When classifying all subjects, the
best results for GO were achieved by MDA, either by
taking the top 20 features using MDA with decorrela-
tion or by taking the top 15% using MDA without dec-
orrelation; after decorrelation, the top 15% features had
a lower performance, suggesting that many relevant yet
highly correlated features are removed by decorrelation
(see Additional file 1). The best feature selection strat-
egy achieved a slightly better performance than the
manually selected GO sub-set (1 sd unit or more), but
still inferior to the 20 curated neurally-relevant features
(Table 3).
The performance for pathway-based features was

markedly worse, with the AUC very close to the total
gene count, even when restricting to the manually-
selected pathway subset and with the best feature selec-
tion strategy (top 20 features using MDA and decorrela-
tion) (Table 3).
These results suggest that feature selection is able to

manage the large number and redundancy of GO and
pathway-based, although their information content for
ASD classification based on rare CNV genes appears to
be more limited than the curated neurally-relevant fea-
tures. Pathway-based features may have particularly dis-
appointing performance results because of the small size
of the corresponding gene-sets. Based on these results,
we preferred using only the 20 curated neurally-relevant
features for the other analyses. It is important to consider
that the 20 curated neurally-relevant features include two
features derived from the gene-set union of the GO and
pathways manually-selected on the basis of known ASD
pathobiology.

Classification results using other classifiers and modifying
CF parameters
Classification of all subjects using linear SVM or NN
achieved lower or comparable AUC compared to CF

[see Additional file 1]. This suggests CF is an optimal
classification method for this problem.
Additional analysis demonstrated that CF performance

does not vary substantially modifying model construc-
tion settings (inferential tests and p-value threshold for
feature selection operating for tree construction) [see
Additional file 1].
Finally, we compared the performance of our classifier

based on the 20 neurally-relevant feature to an existing
classifier designed to distinguish benign from pathogenic
CNV for mental retardation (GeCCO [19]). We found
our classifier to have a significantly better performance
[see Additional file 1].

Prioritization of subjects
We used the classification results based on the 20 curated
neurally-relevant features and total gene count to priori-
tize subjects with potentially interesting inherited rare
losses; we focused on inherited rare variation because it
is more difficult to assess its significance outside known
ASD loci, and we selected rare losses as these display bet-
ter classification performance than rare gains.
To ensure the classification results are robust to the

algorithm’s stochasticity, we required a subject to be clas-
sified in at least 15 cross-validation iterations out of 20.
We scanned the prediction probability cutoffs to maximize
the number of correctly predicted ASD subjects without
pathogenic or de novo CNVs with respect to incorrectly
classified controls. At the ASD prediction probability cut-
off of 0.52, the correctly classified ASD subjects repre-
sented 3.76% of all ASD subjects with at least one genic
rare loss, which dropped to 1.25% (12 subjects) when
removing subjects with pathogenic or de novo rare CNVs
(TP*); this was still larger (about 3.5x) than 0.36% of incor-
rectly classified controls (FP, false positives), interpretable
as a false discovery rate < 30% [see Additional file 1].
We manually inspected these 12 subjects, and found

that one of them had a pathogenic loss missed by the
clinical annotation, whereas the others had at least one
VUS (Variant of Unknown Clinical Significance) each;
we used a set of top-scoring loss-based features to iden-
tify specific genes that are more likely to contribute to
ASD risk within the VUS variant [see Additional file 5].
Finally, we also noticed that prioritized subjects were

significantly enriched in females compared to all autism
subjects with at least one rare genic loss (Fisher’s Exact
Test p-value 0.0066 and OR 2.7). A similar enrichment
was reported when considering pathogenic CNVs
further classified as “highly penetrant” based on clinical
genetic literature [32].

Conclusions
We successfully used rare CNVs and neurally-relevant gene
annotations to classify ASD subjects: the best classifier

Table 3 Classification results for all subjects using 20
neurally-relevant curated features, 20 matched
randomized features, Gene Ontology and pathways
(mean ± sd)

Gene set (All subjects) All CNV Gain CNV Loss CNV

20 curated 0.533±0.004 0.513±0.005 0.546±0.003

GO 0.512±0.005 0.506±0.002 0.519±0.002

GO (man. selected) 0.520±0.005 0.505±0.005 0.524±0.003

GO (f.s.: 20 MDA dec.) 0.524±0.003 0.510±0.003 0.529±0.005

Pathway 0.500±0.000 0.500±0.000 0.504±0.004

Pathway (man. selected) 0.500±0.000 0.500±0.001 0.510±0.004

Pathway (f.s.: 20 MDA dec.) 0.513±0.003 0.510±0.004 0.513±0.003

Random (20 curated) 0.517±0.005 0.510±0.007 0.515±0.007

Total count 0.515±0.005 0.505±0.005 0.516±0.004
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achieved an AUC of 0.533, corresponding to 7.9% ASD
subjects correctly classified by rare CNVs and less than 3%
incorrectly classified controls; this result is reasonably close
to prior expectations that about 10% of ASD subjects have
rare CNV contributing to ASD risk.
Conditional Inference Forest (CF) typically performed as

well as or better than other classifiers, and was also found
to have a stable performance when using parameter set-
tings different than defaults. Losses alone displayed a
markedly stronger classification power than gains; in addi-
tion, features based on brain expression, synaptic compo-
nent and neuro-phenotypes had a superior performance to
the full collection of GO and pathways, even after the lat-
ter were pre-processed by feature selection and de-correla-
tion methods. This classification approach can be used for
other case-control rare CNV data-sets; the features we
found to be optimal for ASD are likely to perform well for
other neurodevelopmental and neuropsychiatric disorders
(e.g. developmental delay, schizophrenia), which also dis-
play a specific burden of rare variation for neuronal and
neurodevelopmental genes [54-57].
The CF classifier based on neurally-relevant features

was also successfully used to extract subjects with inher-
ited losses potentially contributing to ASD risk, but not
classified as pathogenic CNVs according to clinical
annotation. Nonetheless, since classification perfor-
mance is particularly high for pathogenic and de novo
CNV carriers, this type of analysis can also be used to
prioritize subjects in the absence of clinical annotations.
Within this classification framework, improved perfor-

mance could perhaps be achieved by (i) using additional
indexes of genic intolerance to variation [58] (ii) modeling
the different level of constraint for different gene compo-
nents (coding exons, introns, UTRs), (iii) expanding the
gene annotation feature set, for instance using gene inter-
action network distances from known ASD disease
genes [59], (iv) modeling non-coding RNAs, regulatory
sequences and other inter-genic elements [60]), (v) weight-
ing differently X-linked variants based on the subjects’
genders. Modeling gender more accurately is of particular
interest, considering the higher prevalence of autism in
males compared to females; it would be ideal to train
and assess the performance of the classifier for male and
female subjects separately, which was not possible for
our data-set owing to the small number of female
subjects.

Availability of supporting data
The complete set of stage-1 CNV calls is currently avail-
able in dbGAP as phs000267.v3.p2; stage-2 will be soon
available in dbGAP as phs000267.v4.p2. Rare variants
for ASD subjects and controls are provided as additional
files [see Additional file 3-4].
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