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Abstract

Background: The rapid advances in genome sequencing technologies have resulted in an unprecedented number
of genome variations being discovered in humans. However, there has been very limited coverage of
interpretation of the personal genome sequencing data in terms of diseases.

Methods: In this paper we present the first computational analysis scheme for interpreting personal genome data
by simultaneously considering the functional impact of damaging variants and curated disease-gene association
data. This method is based on mutual information as a measure of the relative closeness between the personal
genome and diseases. We hypothesize that a higher mutual information score implies that the personal genome is
more susceptible to a particular disease than other diseases.

Results: The method was applied to the sequencing data of 50 acute myeloid leukemia (AML) patients in The
Cancer Genome Atlas. The utility of associations between a disease and the personal genome was explored using
data of healthy (control) people obtained from the 1000 Genomes Project. The ranks of the disease terms in the
AML patient group were compared with those in the healthy control group using “Leukemia, Myeloid, Acute”
(C04.557.337.539.550) as the corresponding MeSH disease term.
The mutual information rank of the disease term was substantially higher in the AML patient group than in the
healthy control group, which demonstrates that the proposed methodology can be successfully applied to infer
associations between the personal genome and diseases.

Conclusions: Overall, the area under the receiver operating characteristics curve was significantly larger for the
AML patient data than for the healthy controls. This methodology could contribute to consequential discoveries
and explanations for mining personal genome sequencing data in terms of diseases, and have versatility with
respect to genomic-based knowledge such as drug-gene and environmental-factor-gene interactions.

Background
The advent of next-generation sequencing (NGS) tech-
nologies has had a huge impact on functional genomics
[1]. NGS technologies have already been employed to
sequence the constitutional genomes of several indivi-
duals [2-7]. The first five cancer genomes to be found

contained thousands of novel somatic mutations and
implicated new genes in tumor development and pro-
gression [8-13]. Current knowledge of the genetic var-
iants that underlie disease susceptibility, treatment
response, and other phenotypes will continually improve
as these types of investigation expand the catalog of
DNA sequence variation in humans. However, a far
greater challenge is mining genomes for clinically useful
information. Present analytical methods are insufficient
to make genetic data accessible in a clinical context, and
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the clinical usefulness of these data for individual patients
has not been formally assessed.
Despite the existence of more comprehensive databases

and better methods for analyzing genetic variants, gen-
ome interpretation remains an elusive goal. Ashley and
colleagues [14] made an impressive and ambitious effort
to use full-genome sequence data in the clinical setting.
They estimated a patient’s risk of several common dis-
eases using several types of information, including single-
nucleotide polymorphisms that have been associated
with the risk of these diseases. In addition, Chen and
colleagues [15] tracked down genetic effects in the geno-
type-phenotype chain to discover relevant biomarkers for
further personalization of diagnoses and therapeutics.
Data from studies of disease concordance in monozygotic
twins suggest that a negative test result from whole-
genome sequencing data for many common diseases
(e.g., cancer) would not appreciably reduce an indivi-
dual’s risk relative to that of the baseline population [16].
Focusing computational analysis schemes on personal
genomes and diseases has the potential to bridge this
knowledge gap.
The aim of the present study was to associate the per-

sonal genome with disease predisposition patterns based
on calculations of the closeness between the genome and
diseases. This research provides the first method for asso-
ciating the personal genome with diseases with regard to
genome-sequencing studies. The method works by rank-
ing all variants in the personal genome as potential dis-
ease risks, and reporting Medical Subject Headings
(MeSH) terms that are significantly associated with
highly ranked genes. A key distinguishing feature of this
methodology is that the algorithm simultaneously consid-
ers the functional impact of damaging variants and
curated disease-gene associations. This research is espe-
cially important when pathologic variants exhibit charac-
teristic trends or properties specific to a given disease.

Methods
The aim of the method described herein is to measure the
closeness between a personal genome and a disease. We
considered both damaging missense mutations and knowl-
edge of disease-gene associations. The overall procedure
for computing the closeness is as follows (Figure 1A):
• Step 1. Quantify damaging missense mutations in

personal genome sequences using the Sorting Intolerant
From Tolerant (SIFT) tool [17].
• Step 2. Extract knowledge about disease-gene asso-

ciations from Online Mendelian Inheritance in Man
(OMIM) by simultaneously considering the hierarchical
structure of MeSH.
• Step 3. Pairwise computation of mutual information

between the SIFT score vectors of variants in the perso-
nal genomes and the disease-gene association vectors.

• Step 4. Analyze the similarity structure pattern
between personal genomes and diseases.

Personal genome sequencing data
We obtained targeted exome sequencing data from The
Cancer Genome Atlas (TCGA). The platform of mRNA
expression was Illumina HiSeq 2000 RNA Sequencing V2.
Illumina 2 × 100-bp paired-end sequencing reads were
produced after elution from capture arrays. Illumina
paired-end reads were aligned to NCBI build36 using
BWA 0.5.5. Somatic mutations were identified using Soma-
ticSniper and a modified version of the SAMtools indel
caller. The TCGA data set has 494 variants identified in 50
patients with acute myeloid leukemia (AML) by targeted
resequencing of 601 genes having 7,932 coding exons. To
show comparisons of other diseases groups with healthy
controls in the 1000 Genomes Project, we obtained high-
throughput sequencing data in several cancer types such as
bladder cancer, breast cancer, colon cancer, kidney cancer,
lung adenocarcinoma, lung squamous cell carcinoma,
malignant melanoma, ovarian serous cystadenocarcinoma,
prostate cancer and rectal cancer from TCGA and breast
cancer and lung cancer from Catalogue Of Somatic Muta-
tions In Cancer (COSMIC). The 1000 Genomes Project
provides 1,092 whole-genome sequences obtained from 14
populations drawn from Europe, East Asia, sub-Saharan
Africa, and the Americas [18].

Functional impact of nonsynonymous variants
In order to measure the relative closeness between perso-
nal genomes and diseases, we created SIFT score vectors
of variants (VSiftVar) for the personal genome sequences,
and binary vectors for disease-gene association (VDis-
Gene) obtained from OMIM. To assess the effect of a
substitution, SIFT assumes that important positions in a
protein sequence have been conserved throughout evolu-
tion, and substitutions at these positions may affect pro-
tein function. By using sequence homology, SIFT
predicts the effects of all possible substitutions at each
position in the protein sequence. VSiftVar was created
for each personal genome sequence. Let Xj denote the
probability of a perturbed or altered function of a gene,
Gj. The original SIFT scores range from 0 to 1. If a SIFT
score is smaller than 0.05, it is predicted to be “dama-
ging"; otherwise, it is predicted to be “tolerated.” Xj is
defined as 1 minus the average SIFT scores for all nonsy-
nonymous variants i of Gj, denoted as Gji. The newly
defined score still ranges from 0 to 1, and a larger score
means the variant is more likely to be deleterious:

Xj = 1 −

|Gji|∑
i=1

SIFTscorei
∣∣Gji∣∣
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The length of VSiftVar equals the total number of
genes in OMIM.

Disease-gene association based on the MeSH tree structure
We obtained a list of disorders, disease genes, and asso-
ciations between them from OMIM, which listed 5,911

disorders and 2,721 disease genes as of November 2011.
We applied the MeSH controlled vocabulary to the dis-
ease features from OMIM to organize diseases for the
following analyses.
We attempted to use the MeSH controlled vocabulary

to organize the disease features referred to in OMIM.

Figure 1 Overview of the methodology. This analysis scheme is based on mutual information as a measure of the relative closeness between
the personal genome and diseases. (A) Calculating mutual information between the personal genome and diseases. The closeness between the
personal genome and diseases was measured by considering both damaging missense mutations and knowledge of disease-gene associations.
(B) Discovering association patterns based on mutual information as a measure of the relative closeness between the personal genome and
diseases. The yellow-bars plot indicates VSiftVar and the green-bars plot indicates VDisGene.
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The extracted disease names from OMIM were mapped
to the MeSH terms in two successive term-matching
steps. First, we looked for exact matches, where all words
composing the name had an identical corresponding
MeSH term, and vice versa (the word order and the case
were not considered). When this step failed, we looked
for partial matches by at least two words.
The MeSH tree contains a finite set of MeSH codes, M.

A specific variant, v ∈ V, is associated with zero, one, or
more MeSH codes [i.e., forms a set Mv={m: annot(v,m) ∩
m ∈ M}, where the predicate annot() pairs variants with
their MeSH codes]. VDisGene is a binary vector indicat-
ing either disease association or no disease association
for each gene in the MeSH tree. Let Yj denote the binary
disease-association value of a gene j (e.g., Yj = 0 for no
disease association and Yj = 1 for disease association for
the corresponding gene, j). The length of the disease vec-
tor is also the total number of genes in OMIM.

Measuring relative closeness between the personal
genome and diseases
We applied mutual information as the measure of the
relative closeness between the personal genome and the
diseases. Formally, the mutual information of VSiftVar,
denoted as X, and VDisGene, denoted as Y, can be
defined as

I(X;Y) =
∑
y∈Y

∑
x∈X

p(x, y)log2
(

p(x, y)
p(x)p(y)

)

where p(x, y) is the joint probability distribution func-
tion of X and Y, p(x) is the marginal probability distribu-
tion function of X, and p(y) is the marginal probability
function of Y.
Higher mutual information between VSiftVar of a perso-

nal genome and VDisGene of a disease from OMIM
means that the personal genome is more likely to be asso-
ciated with the disease. Zero mutual information means
that the joint distribution of the personal genome-disease
association contains no more information than the perso-
nal genome-disease relationship considered separately
(Figure 1B). This means that mutual information can be
used as a metric between SIFT scores of variants in
the personal genome sequencing data and the disease-gene
association obtained from OMIM related to their degree of
independence. We hypothesized that a higher mutual
information score between VSiftVar of a personal genome
and VDisGene of a disease implies that the personal gen-
ome is more susceptible to the disease than other diseases.

Characterization of 1000 Genomes Project data according
to the population
In order to identify the similarity structure pattern
between personal genomes and diseases according to

subpopulations, we clustered individuals in the data set
based on mutual information between VSiftVar and
VDisGene using a hierarchical clustering method (dis-
tance measure, Manhattan; linkage method, Median).
To compare the variability of mutual information with

regard to MeSH disease categories in the entire popula-
tion, we performed analysis of variance (ANOVA) to test
whether each MeSH disease category exhibited a statisti-
cally significant different relative closeness with the per-
sonal genomes according to the population. Differences
among each of the subpopulations was then tested using
a post-ANOVA Tukey’s HSD test for post-ANOVA com-
parisons, because a significant F-ratio shows only that the
aggregate difference among the means of several samples
is significantly greater than zero.

Results
Functional impact of nonsynonymous variants of AML
patients and healthy controls in the 1000 Genomes
Project
To identify the different extent of damaging effects of
variants between patients and healthy controls, we
obtained SIFT scores for 494 variants in 447 genes from
50 unrelated AML patients, and extracted SIFT scores
for the variants of the same genes in the healthy con-
trols from the 1000 Genomes Project data. We obtained
1,935, 1,713, and 2,312 variants from Europeans, Asians,
and Africans, respectively. The distribution of SIFT
scores was categorized into seven groups (Table 1).
SIFT assigns a “functional importance” score to variants
with a default cutoff threshold of 0.05, with variants
with a SIFT score higher than this threshold regarded as
“benign.” Among the AML patients, 41.30% of the var-
iants exhibit SIFT scores of < 0.05 and were thus desig-
nated as variants that are functionally damaging. The
proportions of damaging variants among the healthy
controls were 32.50%, 34.62%, and 34.43% for Eur-
opeans, Asians, and Africans, respectively. In order to
show that AML patients had statistically more variants
with a damaging impact, we performed Fisher’s exact
test using the number of variants with damaging (<
0.05) and non-damaging (>= 0.05) effect because a SIFT
score is smaller than 0.05, it is predicted to be “dama-
ging"; otherwise, it is predicted to be “tolerated.” The
Fisher’s exact test showed that AML patients had statis-
tically more variants with a damaging impact than
healthy controls in the 1000 Genome Project data (P =
6.441e-08, African controls; P = 1.808e-08, European
controls; P = 1.206e-06, Asian controls).

Similarity structure pattern of personal genomes in the
1000 Genomes Project and diseases
It is necessary to understand overall relative patterns of
disease association in healthy people, because the 1000
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Genomes Project data are important as reference gen-
ome sequencing data. A hierarchical clustering method
using mutual information between VSiftVar and VDis-
Gene was used to detect relative closeness patterns of
subpopulations in the 1000 Genomes Project data and
diseases. Data from subjects belonging to African

subpopulations - comprising Yoruba in Ibadan, Nigeria
(YRI), Luhya in Webuye, Kenya (LWK), and those with
African ancestry in southwest USA (ASW) - were clus-
tered into a single group. The overall mutual information
values are higher in these African subpopulations than in
other subpopulations (Figure 2).

Table 1. Distribution of variants by SIFT score in the AML patients and the healthy controls

SIFT AML patients Healthy controls in the 1000 Genomes Project

Score Impact No. of variants % No. of variants % No. of variants % No. of variants %

0 Damaging 131 26.52 421 18.21 339 17.51 333 19.44

0.001-0.050 Damaging 73 14.78 375 16.22 290 14.99 260 15.18

0.051-0.100 Potentially damaging 25 5.06 173 7.48 146 7.55 129 7.53

0.101-0.200 Borderline 28 5.67 295 12.76 242 12.51 190 11.09

0.201-0.500 Tolerant 63 12.75 441 19.07 358 18.50 326 19.03

0.501-0.999 Tolerant 53 10.73 298 12.89 245 12.66 212 12.38

1.00 Tolerant 121 24.49 309 13.37 315 16.28 263 15.35

Total 494 100.00 2312 100.00 1935 100.00 1713 100.00

Figure 2 Heatmap of mutual information of diseases according to the population in the 1000 Genomes Project. The heatmap shows
mutual information of diseases in the MeSH tree according to data from the population in the 1000 Genomes Project. Column colors: purple,
African; orange, Asian; green, American; cyan, European.
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The differences in relative closeness between subpopu-
lation genomes and diseases with regard to MeSH disease
categories were explored by performing ANOVA using
mutual information between VSiftVar and VDisGene
with the entire 1000 Genomes Project data (Table 2). We
found that three MeSH categories exhibited statistically
significantly different relative closeness among subpopu-
lations in the 1000 Genomes Project data: C15 - hemic
and lymphatic diseases (P = 2.58E-07); C16 - congenital,
hereditary, and neonatal diseases and abnormalities (P =
1.19E-06); and C17 - skin and connective-tissue diseases
(P = 1.19E-06). These MeSH disease categories have
higher mutual information in African populations than in
any other subpopulations (Additional file 1). Moreover, a
post-ANOVA Tukey’s HSD test showed that these
MeSH disease categories have significantly different
mutual information in African subpopulations (Addi-
tional file 1).
The top-ranked diseases in common among subpopu-

lations were determined showing a Venn diagram of the
top-50 diseases from subpopulations in the 1000
Genomes Project data (Figure 3). About 56% of the top-
50 diseases (28/50) are common in subpopulations; in
contrast, macular degeneration (C11.768.585.439) is only

associated with African subjects. In particular, arthritis
(C05.550.114), ichthyosis vulgaris (C16.131.831.512.410,
C16.320.850.405, C17.800.428.333.410, C17.800.804.
512.410, and C17.800.827.405) and viremia (C02.937,
C23.550.470.790.500.900) are only associated with Asian
subpopulations, and AIDS-related complex (C02.782.
815.616.400.080, C02.800.801.400.080, C02.839.080, and
C20.673.480.080) and hematuria (C12.777.934.442,
C13.351.968.934.442, and C23.550.414.849) are only
associated with European subpopulations.

Relative disease-rank patterns between patients and
healthy subpopulations in the 1000 Genomes Project
In the genome sequencing data from a patient with a spe-
cific disease, if the rank of the corresponding disease term
based on mutual information is relatively high, this could
support that this proposed methodology is appropriate for
associating the personal genome with the disease. Before
comparing ranks of disease terms in the patient sequen-
cing data, we ranked disease terms in healthy people in
the 1000 Genome Project data as control data under all of
the categories “disease” of the MeSH (Additional file 2).
As expected, the distribution of disease terms in healthy
people was ranked randomly overall; in other words, we

Table 2. Statistically significant differences of MeSH codes among the healthy controls

Code Term P (ANOVA)

C01 Bacterial Infections and Mycoses 0.01400

C02 Virus Diseases 0.01435

C03 Parasitic Diseases 0.22684

C04 Neoplasms 0.55150

C05 Musculoskeletal Diseases 0.00003

C06 Digestive System Diseases 0.02709

C07 Stomatognathic Diseases 0.20351

C08 Respiratory Tract Diseases 0.23714

C09 Otorhinolaryngologic Diseases 0.00055

C10 Nervous System Diseases 0.00139

C11 Eye Diseases 0.00002

C12 Male Urogenital Diseases 0.00013

C13 Female Urogenital Diseases and Pregnancy Complications 0.00013

C14 Cardiovascular Diseases 0.00058

C15 Hemic and Lymphatic Diseases 2.58E-07

C16 Congenital, Hereditary, and Neonatal Diseases and Abnormalities 1.19E-06

C17 Skin and Connective-Tissue Diseases 1.19E-06

C18 Nutritional and Metabolic Diseases 0.00009

C19 Endocrine System Diseases 0.51232

C20 Immune System Diseases 0.00852

C22 Animal Diseases 0.00130

C23 Pathological Conditions, Signs, and Symptoms 0.00005

C24 Occupational Diseases 0.00149

C25 Substance-Related Disorders 0.04237

C26 Wounds and Injuries 0.59611

F03 Mental Disorders 0.00019
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cannot link a healthy person’s genome to any particular
disease.
To compare the ranks of the disease terms in the AML

patient group with those in the healthy control group, we
used “leukemia, myeloid, acute” (C04.557.337.539.550) as
the corresponding MeSH disease term (Figure 4). The

red solid line in Figure 4 indicates the distribution of the
rank of the disease term “leukemia, myeloid, acute”
(C04.557.337.539.550) in the AML patient group, and the
dashed lines indicate the distribution of the rank of the
disease term in the healthy control group according to
the various subpopulations. Notably, the AML patients
have a substantially higher rank of this disease term than
the healthy control group. In order to examine more
other diseases than AML, we used several cancer types
such as bladder cancer, breast cancer, colon cancer, kid-
ney cancer, lung adenocarcinoma, lung squamous cell
carcinoma, malignant melanoma, ovarian serous cystade-
nocarcinoma, prostate cancer and rectal cancer from
TCGA and breast cancer and lung cancer from COSMIC.
We generated density plot of the rank based on mutual
information of the corresponding MeSH disease terms
between each patient groups and healthy controls in the
1000 Genomes Project (Figure 5). The table in the Addi-
tional file 3 provides the MeSH codes of used sequencing
data to compare rank based on mutual information
between disease groups and healthy controls. The ranks
of the corresponding disease MeSH codes in the all dis-
ease groups are higher than healthy controls. These
results show that the methodology can be applied to
infer associations between a personal genome and
diseases.

Evaluation of disease rank in the sequencing data
A quantitative comparison was made between the AML
patient group and data for the healthy subpopulations
in the 1000 Genomes Project in terms of the relative
closeness between the genome and diseases based on
the proposed method. We examined how highly the
AML-related MeSH term “leukemia, myeloid, acute”
(C04.557.337.539.550) was ranked in the two groups.
Specifically, we treated the corresponding AML-related
MeSH term as a true positive and computed the recei-
ver operating characteristic (ROC) curve across the dif-
ferent thresholds. Overall, the area under the ROC
curve of the AML patient data was significantly higher
than that of the healthy control data from the 1000
Genomes Project, as indicated in Table 3. In order to
explain evaluation more detail, we showed rank percen-
tage between AML patient group and healthy subpopula-
tions in the 1000 Genomes Project. The rank percentage
is defined as the rank of “leukemia, myeloid, acute”
(C04.557.337.539.550) as the corresponding MeSH dis-
ease term in the group such as AML patient group and
healthy controls in the 1000 Genomes Project is divided
by total number of MeSH term. Lower rank percentages
mean higher rank of the corresponding MeSH term
within the group. The bar plot of rank percentage shows
that AML patient group have higher rank on “leukemia,
myeloid, acute” (C04.557.337.539.550) than healthy

Figure 3 Venn diagram of the top-50 diseases in the 1000
Genome Project. Circle colors in the Venn diagram indicate African
as blue, Asian as yellow, American as green, and European as violet.
The numbers shown in this diagram represent the number of
diseases in each intersection area or set.

Figure 4 Distribution of the rank based on mutual information.
The density plot shows the rank based on mutual information of the
MeSH disease term “leukemia, myeloid, acute” (C04.557.337.539.550)
between AML patients and healthy controls in the 1000 Genomes
Project.
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controls (Additional file 4). These observations could
highlight the importance of associating the genome
sequencing data with the related diseases being used to
interpret the personal genome with regard to diseases.

Discussion
This study had provided the first computational analysis
scheme for interpreting the personal genome by simul-
taneously considering the functional impact of damaging
variants and curated disease-gene associations. Herein
we present a method for associating the personal gen-
ome with diseases based on the relative closeness
between the personal genome and diseases.
The similarity structure patterns based on mutual

information between the genomes and the diseases in
the MeSH disease category differ according to the

Figure 5 The rank of the MeSH disease term between several disease groups and healthy controls. To show comparisons of other
diseases groups with healthy controls in the 1000 Genomes Project, we used several cancer types such as bladder cancer, breast cancer, colon
cancer, kidney cancer, lung adenocarcinoma, lung squamous cell carcinoma, malignant melanoma, ovarian serous cystadenocarcinoma, prostate
cancer and rectal cancer. The density plot of the rank is based on mutual information of the corresponding MeSH disease terms between each
patient group and healthy controls (line colors: red, Patient group; black, African; orange, Asian; purple, American; cyan, European).

Table 3. Comparison of the area under ROC (AUC)
between the AML patients and the healthy controls

Patients Healthy controls in the 1000 Genomes
Project

Populations AML African European Asian American

AUC 0.992 0.676 0.680 0.683 0.687
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subpopulations in the 1000 Genomes Project data. One
particularly notable finding was that the African subpo-
pulations were clustered into one group, and the mutual
information values were far higher for the African sub-
populations than for the other subpopulations. We can
connect this result with previous research in terms of
the concept of the “recent African origin of modern
humans.” African populations are genetically more
diverse than European and Asian populations [19-21].
According to the out-of-Africa hypothesis of human
origins, this can be explained by groups migrating out
of Africa experiencing severe population bottlenecks
that have resulted in a reduction in the genetic diversity
in the descendant populations [22,23]. A reduction in
nucleotide diversity outside Africa has been consistently
observed in genotype and resequencing data [22]. Due
to the adaptive advantage of the heterozygote, sickle-cell
anemia is prevalent, especially among people with recent
ancestry in malaria-stricken areas, such as Africa [24].
The 1000 Genomes Project Consortium showed genetic
variation within and between populations using the
same data that this study used [25]. In the paper, they
mentioned “individuals from populations with substan-
tial African ancestry (YRI, LWK and ASW) carry up to
three times as many low-frequency variants (0.5-5% fre-
quency) as those of European or East Asian origin,
reflecting ancestral bottlenecks in non-African popula-
tions”. The reason that African population has higher
overall mutual information in this study could ascribe to
more number of low-frequency variants than other
populations. This doesn’t mean that the population is
more sensitive to the disease but suggests that in order
to interpret the personal genome properly, we should
consider together population characteristics including
genetic variations within populations.
Population-level disease-gene associations in this study

are based on individual-level disease-gene associations.
After getting each individual-level disease-gene associa-
tions, we summarized total individual-level disease-gene
associations into population-level disease-gene associa-
tions. It is somewhat difficult to evaluate the proposed
method and figure out biological or medical implications
from individual observations. Characterized populations
such as normal group or specific disease group can pro-
vide intuitive grasp in the purpose of evaluating the pro-
posed method. After the proposed method is evaluated
as proper method to interpret the genome sequencing
data from population-level, we can apply this method to
individual observations and interpret individual variations
from personal genome data.

Conclusions
In conclusion, this study could open up novel possibili-
ties regarding the interpretation of personal genome

sequencing. Rich disease-gene association knowledge
can enable the accurate prediction of disease predisposi-
tion patterns. The scheme of this method could be
expanded for applications in genomic-based knowledge,
such as drug-gene and environmental-factor-gene
interactions.

Additional material

Additional file 1: Comparison of the variability of mutual information
with regard to MeSH disease categories in the 1000 Genomes Project
data. (A) Bar plot of mutual information of statistically different MeSH
categories in the 1000 Genomes Project data. Data are mean and SD
values. The red horizontal line indicates the average mutual information of
all populations in the 1000 Genomes Project. MI in the y-axis means
mutual information. (B) Tukey’s HSD test for post-ANOVA Comparisons of
the MeSH categories: C15 - hemic and lymphatic diseases; C16 -
congenital, hereditary, and neonatal diseases and abnormalities; and C17 -
skin and connective-tissue diseases.

Additional file 2: Distribution of the rank in the 1000 Genomes
Project data according to MeSH codes. The density plots show the
rank of each MeSH code in the healthy controls in the 1000 Genomes
Project. The x-axis means ranks based on mutual information and the
y-axis means kernel density.

Additional file 3: The MeSH code list of each disease. The MeSH
code list of each disease is used in order to compare ranks of MeSH
disease terms in the disease groups (bladder cancer, breast cancer, colon
cancer, kidney cancer, lung adenocarcinoma, lung squamous cell
carcinoma, malignant melanoma, ovarian serous cystadenocarcinoma,
prostate cancer and rectal cancer) with those in the healthy controls in
the 1000 Genomes Project.

Additional file 4: Rank percentage between AML patient group and
healthy subpopulations in the 1000 Genomes Project. The rank
percentage is defined as the rank of “leukemia, myeloid, acute”
(C04.557.337.539.550) as the corresponding MeSH disease term in the
group such as AML patient group and healthy controls in the 1000
Genomes Project is divided by total number of MeSH term.
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