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Abstract

Background: In recent years, high-throughput protein interaction identification methods have generated a large
amount of data. When combined with the results from other in vivo and in vitro experiments, a complex set of
relationships between biological molecules emerges. The growing popularity of network analysis and data mining has
allowed researchers to recognize indirect connections between these molecules. Due to the interdependent nature of
network entities, evaluating proteins in this context can reveal relationships that may not otherwise be evident.

Methods: We examined the human protein interaction network as it relates to human illness using the Disease
Ontology. After calculating several topological metrics, we trained an alternating decision tree (ADTree) classifier to
identify disease-associated proteins. Using a bootstrapping method, we created a tree to highlight conserved
characteristics shared by many of these proteins. Subsequently, we reviewed a set of non-disease-associated
proteins that were misclassified by the algorithm with high confidence and searched for evidence of a disease
relationship.

Results: Our classifier was able to predict disease-related genes with 79% area under the receiver operating
characteristic (ROC) curve (AUC), which indicates the tradeoff between sensitivity and specificity and is a good
predictor of how a classifier will perform on future data sets. We found that a combination of several network
characteristics including degree centrality, disease neighbor ratio, eccentricity, and neighborhood connectivity help
to distinguish between disease- and non-disease-related proteins. Furthermore, the ADTree allowed us to
understand which combinations of strongly predictive attributes contributed most to protein-disease classification.
In our post-processing evaluation, we found several examples of potential novel disease-related proteins and
corresponding literature evidence. In addition, we showed that first- and second-order neighbors in the PPI
network could be used to identify likely disease associations.

Conclusions: We analyzed the human protein interaction network and its relationship to disease and found that
both the number of interactions with other proteins and the disease relationship of neighboring proteins helped
to determine whether a protein had a relationship to disease. Our classifier predicted many proteins with no
annotated disease association to be disease-related, which indicated that these proteins have network
characteristics that are similar to disease-related proteins and may therefore have disease associations not
previously identified. By performing a post-processing step after the prediction, we were able to identify evidence
in literature supporting this possibility. This method could provide a useful filter for experimentalists searching for
new candidate protein targets for drug repositioning and could also be extended to include other network and
data types in order to refine these predictions.
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Background
In the last several years, computational biology has
made a variety of contributions to disease analysis using
existing data in an attempt to increase our understand-
ing of human illness. Popular topics include the identifi-
cation and prediction of genes related to disease [1],
statistical analysis of single nucleotide polymorphisms
(SNPs) and disease [2], the prediction and discovery of
new drug targets [3], the development of the disease
ontology and its application to the human genome
[4-6], the analysis of protein-protein interaction (PPI)
networks as they relate to disease [7], and many others.
The development of ‘disease networks’ [8,9], usually
bipartite graphs describing disease as well as disease-
gene relationships, have been of particular interest. In
these networks, a connection between two diseases may
signify one or more shared genes, proteins, metabolic
pathways, microRNAs (miRNAs), or a number of other
data types.
As opposed to many genetic disorders, complex disease

types such as cancer and autoimmunity are often caused
by the dysfunction of many biological systems at once.
Proteins frequently cooperate in various ways to carry out
DNA repair, gene regulation, epigenetic and histone modi-
fications, metabolic pathways, and others vital cellular
functions. Many complex diseases are related to each
other via shared genes, meaning that the functional
disruption of one gene product may result in multiple
maladies. The disease outcome may also depend on a
combination of protein dysfunctions. To confound the
problem, not every gene is disease-causing when mutated
and the exact character of a disease gene is still unclear.
Due to the complicated nature of this problem, which is
manually infeasible when examined on the proteomic
level, researchers often employ machine learning methods
to find solutions. If given descriptive characteristics of a
set of instances, these algorithms can separate two classes
of data, e.g., disease-related versus non-disease-related
proteins. Several existing machine learning algorithms can
help achieve this including support vector machines
(SVM) [10], multiple instance learning [11], positive/unla-
beled (PU) learning [12], Bayesian inference [13], and
others. Ensemble classifiers can also be used to enhanced
these methods, as we have done in previous work with the
C4.5 decision trees [14], bootstrap aggregation [15] and
cost-sensitive learning [16] where we predicted binding
residues within DNA-binding proteins [17]. Recently, we
found that the alternating decision tree algorithm, or
ADTree, [18] worked well for analyzing methylation pat-
terns on DNA [19], predicting a group of DNA-binding
proteins [20], and identifying membrane-binding domains
within protein families [21]. In each of these cases, this
algorithm allowed us to identify the characteristics with
the most influence on class determination for the

examples by providing a graphical model of the decisions
made by the classifier. A similar method can be useful in
the case of disease-related gene identification.
There have been several previous attempts at global

gene- and protein-disease association and prediction.
Examples include the work of Özgür, Vu, Erkan, and
Radev, who extracted disease genes from OMIM [22],
overlaid the PPI network, and then used an SVM classi-
fier with four centrality measures as features (degree,
eigenvector, betweenness and closeness) to predict
unknown disease genes [23]. Radivojac et al. used a pro-
tein interaction network with sequence and function data
to infer disease-gene association [24]. Similarly, Furney et
al. used knowledge of protein sequence and function to
prioritize candidate cancer-related genes [25]. Gonzalez
et al. predicted atherosclerosis-related genes based on
connectivity by creating a protein interaction network
and adding weights to certain proteins based on text
mining of PubMed abstracts [26]. Xu and Li developed a
K-nearest neighbor (KNN) classifier to predict hereditary
disease genes from OMIM over the human PPI network
with an overall accuracy of 76%. They found that these
hereditary disease proteins tended to have a larger num-
ber of interactions and more shared neighbors than non-
disease proteins [27]. Wu, Jiang, Zhang, and Li acquired
disease-related genes from OMIM [22], identified these
in the PPI network using HPRD [28], and then used lin-
ear regression and a concordance score to measure func-
tional relatedness and phenotypic similarities between
genes. In addition, they created CIPHER, a software tool
that prioritizes disease genes [29]. Additional work in
gene prioritization has employed random walk [30] and
diffusion-based methods [31].
In this work we analyzed the currently known human

protein interaction network and its relationship to dis-
ease using the ADTree algorithm. We used topological
properties of this network to classify known disease-
related proteins vs. non-disease related proteins. We
then identified conserved rules over multiple trees to
find the most discriminating characteristics of disease-
related proteins in a network context. As a post-proces-
sing step, we examined the false positive examples that
were assigned a high confidence score by the classifier
and found that many of these proteins had potential dis-
ease associations. We then identified the most common
diseases related to the first- and second-order neighbors
of these proteins to further emphasize possible disease
association.

Methods
Toward the ultimate goal of identifying new potential
disease-related genes, we developed a multi-stage proto-
col. First, we created a protein interaction network and
calculated a set of topological properties for each protein
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to be used as predictive features. Second, we overlaid a
set of known disease-related genes onto the network,
identifying each protein product as ‘disease-related’ or
‘non-disease related’. Third, we performed a binary classi-
fication on the proteins in the network using our feature
set. During this process, each protein was predicted to
belong to one of the two classes. Next, we ran a 10-fold
cross validation over the model and used a bootstrapping
technique to create a tree that highlights conserved rules.
Subsequently, we evaluated the results from our classifier
and ranked by confidence score those members of the
negative class (non-disease-related proteins) that were
misclassified as disease-related by our classifier. The rea-
son for the misclassification is that the classifier recog-
nized these proteins as having very similar characteristics
to disease-related proteins based on the attributes pro-
vided. Therefore, a set of high-confidence false-positives
can be considered potential novel disease-related pro-
teins. We identified the first- and second-order neighbors
for each of the high-confidence false positives. Next, we
analyzed the distribution of diseases associated with
these neighbors. Finally, we searched for evidence in lit-
erature that these misclassified proteins may play a role
in some disease process.

Data sets
We analyzed protein-protein interactions using the
Human Protein Reference Database (HPRD) [28] Release
9, which contained 9,616 proteins and 39,240 binary
interactions. We obtained disease-gene associations from
DOLite [32]. These associations are based on a combina-
tion of the Disease Ontology [4] and the GeneRIFs (Gene
Reference Into Function) construct (http://www.ncbi.
nlm.nih.gov/gene/about-generif), which provides a short
description of gene function and requires a published
manuscript as supporting evidence. This combination,
referred to as DORIF, was recently used to annotate the
human genome [6]. They found that DORIF annotation
provided a much higher recall rate when compared to
OMIM data for validation gene sets. The DORIF annota-
tion included 88,343 entries for 5,376 genes. There were
1,854 diseases and 48,436 PubMed references for gene-
disease relationships. We created two groups for binary
classification: those proteins with at least one assigned
disease association (positive class) and proteins with no
annotated disease association (negative class). 3,104 of
these genes corresponded to a protein product in the PPI
network, resulting in 32% of HPRD proteins having a dis-
ease association. Within this positive class the average
number of diseases associations was 4.3 per protein. The
average number of neighbors for the entire network was
7.7, the diameter of the network was 14, and the charac-
teristic path length was 4.2. We created five versions of
the data set, each with a different minimum number of

disease associations required for inclusion in the positive
class (see Additional file 1, Table S1). We analyzed the
protein-protein interaction network using Cytoscape [33]
and calculated nine features using Network Analyzer
(http://med.bioinf.mpi-inf.mpg.de/netanalyzer/index.php)
including degree, closeness, stress, and betweenness cen-
tralities, neighborhood connectivity, eccentricity, radial-
ity, topological coefficient, and clustering coefficient.
These are common methods for characterizing the
importance, the influence, and the connectivity of as well
as the distance between molecules in biological networks.
These metrics are described in more detail in the supple-
mentary material. We included an additional metric to
describe the local environment of a node in terms of its
disease-related neighbors. This feature, termed the dis-
ease neighbor ratio (DNR), was calculated as follows:

DNRi =
ndisease

∑n
j=1 Aij

, (1)

where ndisease is the number of neighbors of node i
identified as disease-related proteins, n is the number of
nodes in the network, and A represents an adjacency
matrix with elements i and j. The denominator is
equivalent to the degree centrality of i.
Some metrics were excluded because they were very

similar to ones we had chosen (for example, the all-
pairs shortest path length [34]). Many other network
statistics are available including eigenvector centrality
and its variants [35-37] as well as composite [38] and
integrative measures [39]. While arguments could be
made for using different feature combinations depend-
ing on the goal of the experiment, we chose descriptive
statistics that captured a variety of global and local char-
acteristics of the protein interaction network. We made
sure to include many of the most commonly used
metrics in biological literature.
As a preliminary step, we identified the most distin-

guishing features in our data set using an attribute sub-
set evaluator with a greedy step-wise search method
within the Weka machine learning workbench [40]. The
resulting attribute set in order of selection was disease
neighbor ratio, degree, neighborhood connectivity,
stress, topological coefficient, betweenness centrality,
radiality, eccentricity, closeness centrality, and clustering
coefficient.

Machine learning: the alternating decision tree (ADTree)
The ADTree [18] provides the benefits of a decision tree
algorithm with the added advantage of an intuitive gra-
phical model. This algorithm builds decision trees over
a user-defined number of iterations using confidence-
rated boosting, which results in an option tree [41]. The
developed classifier returns both a class label and a
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score that measures the confidence in the classification.
This confidence score is a sum of all scores acquired by
the instance as it is evaluated using the rules in the tree.
This additive score sets the ADTree apart from other
decision trees in that instance classification is based on
the entire path through the tree instead of one particu-
lar section of the path. A given instance is placed in the
positive class if its final score is greater than 0, other-
wise it is predicted to belong to the negative class (see
Figure 1). We used the ADTree algorithm included in
the MALIBU machine learning workbench [42]. We
found that twenty tree-building iterations provided the
best results with accuracy as the parameter selection
standard. 10-fold cross validation was used for both the
parameter selection and validation steps. Finally, we
used a bootstrap sampling method to find conserved
rules among multiple trees. These conserved rules cor-
responded to the most important features in determin-
ing the class of each instance.

Classifier evaluation
We used a Receiver Operating Characteristic (ROC)
curve to evaluate the performance of our models. The
ROC curve measures the ability of a classifier to separate
positive from negative examples and is generally

considered a good measure of overall performance. The
curve consists of continuous-valued outputs (correspond-
ing to the likelihood for an example to belong to the
positive class) from the generated model. The graph is
formed by plotting the false positive rate (FPR, which is
equal to 1 - specificity (Eq. 2)) versus the true positive
rate (TPR, Eq. 3) for each example in the data set.

ROCplot, X axis : FPR =
FP

FP + TN
(2)

ROC plot, Y axis : TPR =
TP

TP + FN
(3)

An area under the ROC curve (AUC) of 0.5 is considered
random, while an AUC equal to 1 would be characteristic
of a flawless model. The AUC gives an idea of the tradeoff
between sensitivity and specificity and is a good predictor
of how a classifier will perform on future data sets.

Results
Disease-related protein classification
We created five versions of the disease-protein data set,
each with an increasing number of disease associations
required for a protein to belong to the group of positive

Figure 1 An ADTree created using 10-fold CV and bootstrapping. The root node indicates the bias in the data set, i.e., the ratio of positive to
negative class examples (disease-associated proteins versus non-disease-associated proteins). The rectangles (decision nodes) contain the feature
name. The number in parentheses within each decision node indicates the order in which the rule was found. The amount of node conservation
between each of the trees generated in the validation step is indicated by the color of the box (red: ≥ 90%, orange: ≥ 70% (none in this tree),
yellow: ≥ 50%, green: ≥ 30%, blue: ≥ 10%, black: ≤ 10% (none in this tree)). Ovals (prediction nodes) contain the value for the weighted vote, where
a positive number indicates a prediction for disease-association. The numbers next to the arrows correspond to the threshold for the prediction. If
the attribute value is equal to or exceeds this number, the left path is followed; otherwise the prediction follows the right path.
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examples (see Additional file 1, Table S1). We generated
five classifiers using these data sets and performed 10-
fold cross validation over each. Model performance
increased with the removal of proteins associated with
few diseases, which affected only the positive class in
the prediction. After analyzing the ROC curves, we
found that the classifier created using proteins asso-
ciated with five or more diseases yielded the highest
AUC but also had the widest ratio between positive
and negative examples. The AUC for the five data sets
were as follows: 67% for ≥ one disease, 71% for ≥ two
diseases, 75% for ≥ three diseases, 76% for ≥ four dis-
eases, and 79% for ≥ five diseases (see Additional file 1,
Figure S1).
Next, we created a bootstrapped ADTree for the PPI-

disease data (Figure 1). As indicated by the order in
which the rules were found and by the conservation of
rules discovered during the bootstrapping process, the
attributes that were the most effective for distinguishing
disease- from non-disease proteins were degree, disease
neighbor ratio, eccentricity, and neighborhood connectiv-
ity. The next most conserved feature, present in at least
50% of the trees, was betweenness centrality. This feature
was conserved when used in conjunction with degree and
disease neighbor ratio. The remaining rules were con-
served in ≤ 50% of the bootstrapped trees. Similar to
other recent analysis [43,44], we found that the degree,
disease neighbor ratio, and neighborhood connectivity
metrics played an important role in the classification. In
order to test the stability of the discovered rules, we
removed 15% of the data set and reran the analysis. The
results indicate that the rules within the trees remained
largely consistent. The bootstrap method also helped to
prevent large fluctuations between the final trees.
The bootstrapping process revealed rules that were

conserved across the trees. These rules can give insight
into potentially distinguishing characteristics of disease-
related proteins. Two of the highly conserved rules
involved only one attribute each: ‘Eccentricity (2)’ and
‘Neighborhood Connectivity (3)’. Proteins that followed
the first rule were identified as disease-related if they
had an eccentricity value ≥ 10; otherwise they were
identified as non-disease-related. Eccentricity measures
the distance from the subject protein to the protein
farthest away from it in the network. A high eccentricity
value indicates that a protein is more isolated from
others in the context of the network. Similarly, the clas-
sifier identified some proteins with a neighborhood con-
nectivity score of 12.9 or greater as disease-related. This
statistic measures the average number of proteins that
interact with all neighbors of the subject protein. This
rule suggests that some proteins may be disease-related
because they are located within highly-connected sub-
networks referred to as ‘cliques’ [45]. Other rules in the

tree are more complicated and involve multiple interde-
pendent attributes. One example is the rule involving
‘Degree (0)’, ‘DN_ratio(1)’, and ‘Betweenness Centrality
(7)’. For this rule, the proteins identified as disease-
related with the highest confidence were those with six
neighbors or fewer (less than 31% of which were in the
disease-related class) that did not tend to bridge subnet-
works to each other in the network. Though the degree
attribute itself was a strong predictor, the confidence
score was increased when the additional two criteria
were met.
The majority of the rules in the tree suggest that dis-

ease genes tend not to be highly connected to other
genes in the network but rather lie near the perimeter
and are therefore less likely to be vital to the structure of
the network. This is in agreement with previous analysis
of the human disease-gene network using the OMIM
database [8]. However, in our data set we found that,
overall, disease-related proteins tended to have a higher
degree (i.e., more interactions with other proteins) and
disease neighbor ratio compared to non-disease proteins
(see Additional file 1, Figure S2). This difference could be
due not only to a few highly connected proteins but to
the fact that in contrast to the OMIM data set, which
includes only genetic disorders, our data set includes
both genetic and complex diseases, which can involve
many genes.
To test the importance of the most discerning fea-

tures, we ran the algorithm four more times, each time
removing one of these important attributes. Removing
the disease neighbor ratio resulted in an 11% decrease
in sensitivity (which measures the ratio of true positive
examples and those correctly identified as positive).
Removal of the degree centrality and neighborhood con-
nectivity features reduced sensitivity by 3% each. These
results along with the ADTree in Figure 1 make it clear
that while individual attributes may contribute more or
less to a prediction problem, the combination of these
features gives us a multi-dimensional view of how the
two classes are separated.

Comparison with other algorithms and previous results
Due to both the wide variety of methods used in gene-
disease association studies and the high variability of
the data sets used for evaluation, direct comparison with
the results of previous work was not feasible. Instead,
we compared the performance of the ADTree algorithm
on our data set with that of a variety of other tree-based
classifiers as well as Bayesian, function-based, and meta-
classifiers using the Weka machine learning workbench
[40]. Figure 2 shows ROC curves for the ADTree, Ada-
boost [46], Bayesian Network, Naïve Bayes, and Radial
Basis Function (RBF) Network [47] classifiers. ADTree
and AdaBoost performed similarly (AUC = 0.795), as
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did the Bayesian Network and Naïve Bayes methods
(AUC = 0.754). The poorest performance in the group
was that of the RBF Network (AUC = 0.726). While
AdaBoost was capable of producing the same area
under the ROC curve as ADTree, the ADTree provides
the benefit of an interpretable model that describes the
interdependency of features.
In addition to comparisons with other algorithms, we

examined the results of our classifier and found that we
correctly identified 17/17 disease-related proteins that
Gonzalez et al. [26] mined from literature. Our classifier
also correctly predicted 14/16 known breast cancer
genes identified by Wu et al. [29]. Additionally, we were
able to correctly classify 15/16 known disease genes
found in literature by Özgür et al. [23].

Identification of potential disease genes
Our classifier predicted 98 non-disease-related proteins
(i.e., those that lack DORIF annotation) to be members
of the positive class with a confidence score ≥ 0.5
(threshold = 0). This indicated that these examples have
attribute values that qualify them as potential disease-
related proteins. We examined the fifteen false positive
examples with the highest confidence score more care-
fully using the MalaCards [48] and GeneCards [49]
databases and found that there was evidence linking
many of these proteins to disease. Table 1 shows this
group ranked by confidence. Only two proteins (PTCH1
and TCF4) have associated MIM numbers (indicating

Mendelian disease involvement). Nine out of fifteen pro-
teins (CDH5, DPP4, GZMB, FGR, FLT1, PECAM1,
SREBF2, STAT6, and TOP1) have moderate to strong
evidence of disease association, while four of the fifteen
(STAMBPL1, MDH2, GRK5, and CD74) have light evi-
dence. Interestingly, twelve of these proteins are linked
to some form of cancer or tumor development.
Other proteins within the network neighborhood can

offer clues about potential disease associations of these
misclassified proteins. For example, we identified the
first-order neighbors (i.e., proteins with a direct interac-
tion) of dipeptidyl-peptidase 4 (DPP4, Figure 3). This
gene product is a glycoprotein receptor involved in the
signaling pathway for T-cell receptor (TCR)-mediated
T-cell activation [49]. DPP4 has 55 PubMed IDs asso-
ciating it with non-insulin-dependent diabetes mellitus
(NIDDM). Figure 3 shows the five most common dis-
eases of DPP4 first-order neighbors by Disease Ontology
ID (DOID). ‘Diabetes mellitus’ ranks third, while ‘Auto-
immune disease’ ranks second. Interestingly, NIDDM is
often accompanied by beta cell autoimmunity, where
the beta cells of the pancreas are destroyed by an auto-
immune disorder [50]. We used a similar method for
the Gardner-Rasheed feline sarcoma viral (v-fgr) onco-
gene homolog (FGR), but this time we examined the
second-order neighbors of the protein (i.e., neighbors of
neighbors). There are three PubMed IDs (PMIDs) asso-
ciating this gene with breast cancer and one PMID link-
ing it to prostate cancer. Figure 4 shows the top five

Figure 2 ROC curves comparing five classifiers run over the disease-protein network data set. The top two performers were ADTree and
AdaBoost (both AUC = 0.795), followed by the Bayesian network and the Naïve Bayesian classifiers (both AUC = 0.754), and finally the RBF
network (AUC = 0.726). The curves are colored according to the threshold value and based on a color gradient scale from blue (threshold value
of 0) to orange (threshold value of 1). This figure was created using Weka [40].
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diseases related to the second-order neighbors of FGR.
‘Prostate Carcinoma’ and ‘Breast Cancer’ are the second
and third most common diseases, respectively, only
behind the general category of ‘Cancer’.
For further analysis, we examined the transcription

factor TCF4, which also belonged to our high-confi-
dence set of false positives (Table 1). The TCF4 gene,

which encodes a protein known as transcription factor
4, is one of only two genes in our set to have an MIM
number assigned and has been implicated in Pitt-Hop-
kins Syndrome, a condition that results in severe intel-
lectual and physical disabilities [51]. When analyzed in
the context of the PPI network, we observed that TCF4
had a high number of second-order neighbor proteins
related to breast cancer. We extracted a subnetwork of
proteins which included those identified as breast

Table 1. A subset of negative-class proteins predicted to be disease-related

Conf. Score OS DORIF OMIM Suspected Disease Relationship

6.24096 CDH5 - - Melanoma, tumor metastasis

5.8186 PTCH1 - 109400, 605462, 610828 Basal Cell Nevus Syndrome, Basal Cell Carcinoma

5.19721 STAMBPL1 - - Very light evidence, Alzheimer’s

5.14813 MDH2 - - Very light evidence, tumor development

1.09972 DPP4 - - Diabetes (17 PMIDs), colon cancer (3 PMIDs)

1.09972 GRK5 - - Very light evidence, heart failure

0.907016 GZMB - - Lymphoma (30 PMIDs), tumors (92 PMIDs)

0.898631 TCF4 - 610954 Pitt-Hopkins Syndrome, various cancer (light evidence)

0.705929 FGR - - Breast cancer (3 PMIDs), prostate cancer (1 PMID)

0.705929 FLT1 - - Cancer, various

0.705929 PECAM1 - - Cancer, various

0.705929 SREBF2 - - Prostate cancer (2 PMIDs)

0.705929 STAT6 - - Prostate cancer (3 PMIDs)

0.705929 TOP1 - - Leukemia, colon and ovarian cancer

0.664823 CD74 - - Very light evidence, lymphoma

A subset of 15 proteins belonging to the non-disease-related class (lacking DORIF annotation) but predicted to be disease-related, sorted by the ADTree-assigned
confidence score. Two proteins (PTCH1 and TCF4) have associated OMIM disorders. 9/15 proteins (CDH5, DPP4, GZMB, FGR, FLT1, PECAM1, SREBF2, STAT6, and
TOP1) have moderate to strong evidence of disease association, while 4/15 (STAMBPL1, MDH2, GRK5, and CD74) have light evidence linking them to disease. (n
PMIDs) indicates the number of PubMed IDs connecting a protein to a particular disease. ‘Conf. Score’ is the confidence score assigned by the ADTree classifier,
‘OS’ is the official symbol of the gene, ‘DORIF’ is Disease Ontology + Gene Reference Into Function, ‘OMIM’ is the MIM number associated with the gene, ‘light
evidence’ is defined as having a predicted disease association according to the MalaCards database [48]. Disease information for this table was acquired from the
GeneCards database [49].

Figure 3 The five most common diseases associated with the
first-order neighbors of DPP4. The five most common diseases
associated with the first-order neighbors of DPP4 (those proteins
with a direct interaction). DPP4 has 55 PubMed IDs that associate it
with non-insulin-dependent diabetes mellitus (NIDDM). Interestingly,
NIDDM is often accompanied by beta cell autoimmunity, where the
beta cells of the pancreas are destroyed by an autoimmune
disorder [50].

Figure 4 The five most common diseases associated with the
second-order neighbors of FGR. The five most common diseases
associated with the second-order neighbors (i.e., neighbors of
neighbors) of FGR. There are three PMIDs associating this gene with
breast cancer and one PMID linking it to prostate cancer.
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cancer-related by OMIM (MIM:114480), those identified
as such in the work of Wu et al. [29], and genes tested
for breast cancer-related mutations at My Cancer Gen-
ome (http://www.mycancergenome.org), a personalized
cancer medicine resource managed by the Vanderbilt-
Ingram Cancer Center. In addition, we included a set of
eleven first-order neighbor proteins for TGF4. The
resulting network (Figure 5), visualized using the net-
work software Gephi [52], consisted of 36 nodes and
107 edges. We used a community detection algorithm
[53] to partition the network into modules and colored

the proteins by modularity class. Interestingly, TCF4 has
only one first-order neighbor identified as breast cancer-
related, the androgen receptor AR. A literature search
revealed that TCF4 and AR have been shown to interact
via the DNA-binding domain of AR [54]. AR is known to
be expressed in many breast tumors [55] and is seen as a
potential drug target [56]. There is also evidence that
TCF4 may have a role in breast cancer progression due
to its interaction with the b-catenin protein (encoded by
the CTNNB1 gene) and the Wnt signaling pathway [57].
This example illustrates how an initial classification step

Figure 5 The network neighborhood of the transcription factor TCF4. A subset of proteins from the PPI-disease data set highlighting the
relationship between breast cancer-related genes and the transcription factor TCF4, one of 15 proteins in our set of high-confidence false
positive predictions (Table 1). Proteins are colored according to modularity class (four modules were identified). Proteins are labeled with the
gene’s official symbol with a ‘- 1’ afterwards to indicate breast cancer association and a ‘- 0’ to indicate no association. The TCF4 node has been
made larger for identification purposes.
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can help to direct a network neighborhood search that
facilitates protein-disease association discovery.

Discussion
The benefits of the ADTree algorithm are two-fold: first, it
provides a confidence score for each example based on its
full traversal path through the tree. Second, it allows us to
identify interdependencies between attributes in the pre-
diction and illustrates a pathway by which rules work
together to discriminate between disease- and non-dis-
ease-related proteins. We found that, due to the difficult
nature of this prediction problem and complexity of the
data set, it was necessary to add a post-classification pro-
cessing step to evaluate false positive predictions. Interest-
ingly, the confidence score helped to point out non-
disease-related proteins that may in fact be disease-related.
The examples provided by DPP4, FGR, and TCF4 illus-
trate how the PPI network can be used during this post-
processing step to examine the network neighborhood of
potential disease-related proteins and to identify disease(s)
with which these proteins may be associated.
An obvious weakness of this approach is the effect of

data set bias during classification, which is a result of
the tendency for highly studied proteins to be overrepre-
sented. Also, any change in the structure of the network
will change its topological properties, and, because the
initial identification of potential disease genes is based
on these properties, network statistics should be recalcu-
lated following any addition or deletion of nodes or
edges. Also, it is important to note that a ‘disease-
related protein’ is not necessarily the cause of a particu-
lar disease. The role that a protein product plays in a
disease process may depend on specific mutations to its
corresponding gene or that of its interacting partners,
tissue specificity, conditional essentiality, and other fac-
tors. The prediction of disease-related genes is a first
step in a process that includes experimental evaluation.
The advantage of the prediction step is that it acts as a
filter and focuses effort toward those proteins that are
more likely to play important roles in disease, as well as
those proteins that may serve as potential drug targets.
As we have learned from our work, diseases share

interactions through molecular networks. One of the
next steps in disease-gene analysis could be to study
connections between diseases; for instance, various types
of cancers as they relate to other illnesses such as dia-
betes [58], various infections [59], and obesity [60,61].
Though the type or nature of this relationship may be
unknown, we may be able to shed light on the subject
using these knowledge-mining methods along with
molecular data such as metabolic pathways, regulation
networks, and others. We believe that as more complete
data sets become available, a higher level of knowledge
will be attainable by utilizing this method.

Conclusions
We analyzed the human protein interaction network
and its relationship to disease and found that both the
number of interactions with other proteins and the dis-
ease relationship of neighboring proteins helped to
determine whether a protein had a relationship to dis-
ease. Our classifier predicted many proteins with no
annotated disease association to be disease-related,
which indicated that these proteins have network char-
acteristics that are similar to disease-related proteins
and may therefore have disease associations not pre-
viously identified. By performing a post-processing step
after the prediction, we were able to identify evidence in
literature supporting this possibility. This method could
provide a useful filter for experimentalists searching for
new candidate protein targets for drug repositioning and
could also be extended to include other network and
data types in order to refine these predictions.
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