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Abstract

Background: Gene expression has been used to identify disease gene biomarkers, but there are ongoing challenges.
Single gene or gene-set biomarkers are inadequate to provide sufficient understanding of complex disease mechanisms
and the relationship among those genes. Network-based methods have thus been considered for inferring the
interaction within a group of genes to further study the disease mechanism. Recently, the Gene-Network-based
Feature Set (GNFS), which is capable of handling case-control and multiclass expression for gene biomarker
identification, has been proposed, partly taking into account of network topology. However, its performance relies
on a greedy search for building subnetworks and thus requires further improvement. In this work, we establish a new
approach named Gene Sub-Network-based Feature Selection (GSNFS) by implementing the GNFS framework with two
proposed searching and scoring algorithms, namely gene-set-based (GS) search and parent-node-based (PN) search, to
identify subnetworks. An additional dataset is used to validate the results.

Methods: The two proposed searching algorithms of the GSNFS method for subnetwork expansion are concerned
with the degree of connectivity and the scoring scheme for building subnetworks and their topology. For each iteration
of expansion, the neighbour genes of a current subnetwork, whose expression data improved the overall subnetwork
score, is recruited. While the GS search calculated the subnetwork score using an activity score of a current subnetwork
and the gene expression values of its neighbours, the PN search uses the expression value of the corresponding parent
of each neighbour gene. Four lung cancer expression datasets were used for subnetwork identification. In addition,
using pathway data and protein-protein interaction as network data in order to consider the interaction among
significant genes were discussed. Classification was performed to compare the performance of the identified
gene subnetworks with three subnetwork identification algorithms.
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Results: The two searching algorithms resulted in better classification and gene/gene-set agreement compared
to the original greedy search of the GNFS method. The identified lung cancer subnetwork using the proposed
searching algorithm resulted in an improvement of the cross-dataset validation and an increase in the consistency of
findings between two independent datasets. The homogeneity measurement of the datasets was conducted to assess
dataset compatibility in cross-dataset validation. The lung cancer dataset with higher homogeneity showed a better
result when using the GS search while the dataset with low homogeneity showed a better result when using the PN
search. The 10-fold cross-dataset validation on the independent lung cancer datasets showed higher classification
performance of the proposed algorithms when compared with the greedy search in the original GNFS method.

Conclusions: The proposed searching algorithms provide a higher number of genes in the subnetwork expansion
step than the greedy algorithm. As a result, the performance of the subnetworks identified from the GSNFS method
was improved in terms of classification performance and gene/gene-set level agreement depending on the homogeneity
of the datasets used in the analysis. Some common genes obtained from the four datasets using different
searching algorithms are genes known to play a role in lung cancer. The improvement of classification performance
and the gene/gene-set level agreement, and the biological relevance indicated the effectiveness of the GSNFS method
for gene subnetwork identification using expression data.

Background
The identification of the gene biomarker from high
throughput gene expression data for complex diseases
is a challenging task. By using high throughput gene
expression data, single genes, gene sets, or gene sub-
networks have been used as biomarkers from different
prior works [1]. Statistical analysis was proposed to
identify the disease gene biomarker in consideration of
the expression data in different conditions. Since dif-
ferent genetic mutations and dysfunctions of different
biological processes are present in complex diseases
like cancer, the gene biomarker identification is a non-
trivial task. The hallmark of cancer includes sustaining
proliferative signalling, evading growth suppressors,
resisting cell death, enabling replicative immortality,
inducing angiogenesis, and activating invasion and
metastasis [2]. Genetic alteration in cancer is one of
the factors that gives rise to the cancer complexity.
The altered genes are functionally linked in a common
biological pathway, enabling tumour cells to activate a
specific set of cellular processes also known as the
hallmarks of cancer [2, 3]. The alteration on these pro-
cesses result in the changing of cellular homeostasis
and cancer development.
Genes expressed statistically significant among different

conditions, such as case and control expression profile,
resulted in single gene biomarkers and were inefficient
when applied to distinguished disease sample from a
healthy sample. The artefacts of microarray data, based
on experimental and data processing techniques, re-
sulted in inefficiency of those single gene biomarkers.
In order to address this problem, an approach combin-
ing gene function related data was introduced.
Subramanian et al. [4] introduced the gene-set en-

richment analysis to deal with a large amount of genes

in microarray data. The gene sets obtained were groups of
genes sharing features in common biological function,
chromosomal location, or regulation within each group.
Methods of integrating gene-set data with expression
profile to achieve the disease gene biomarker as a po-
tential gene representative for a specific function were
proposed. Lee et al. [5] and Sootanan et al. [6] proposed
methods for gene identification based on gene-set data to
obtain genes for pathway activity transformation; this had a
high performance on disease classification. However, the
identified gene-set biomarkers were unable to illustrate the
relationship among these genes for disease mechanism in-
terpretation. Then in order to infer the interaction among
those significant genes and imply an insight on the disease
mechanism, the network data was integrated with gene
expression data to identify the gene network biomarker,
which also increases the robustness of the identified
gene biomarkers when applying the gene biomarker to
another dataset of the same disease.
Several network-based methods were proposed for the

gene network termed the subnetwork biomarker. The
network data (e.g. gene-gene interaction or GGI, protein-
protein interaction or PPI) provided the interaction aspect
of gene and protein at systems level. The GGI data
provided the relationship of genes in functional related
aspects, e.g. the two genes interacted with each other
to represent the activation or inhibition of a particular
biological process [7]. The expression data were used
to infer their interaction among gene pairs by correl-
ation analysis. From the correlation of each gene pair,
a gene co-expression network, whose interaction pairs
having high correlation may potentially play a role in
the same biological process, was constructed. The
functional module of genes identified using gene co-
expression network and constructed from microarray
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expression data with scale-free network topology was
proposed [8]. In addition, the PPI data integrated with
expression data was proposed to identify the subnet-
work biomarker for cancer classification [9–12]. These
successful integrations depended on the efficiency of
searching and the scoring algorithm [13].
Recently, the Gene-Network-based Feature Set (GNFS), a

method that integrates the statistical significant genes from
a gene-set-based approach with network topology data, has
been proposed [14]. The GNFS method was proposed for
gene subnetwork identification to handle both binary class
and multiclass expression data by implementing the algo-
rithm of ANOVA-based Feature Set (AFS) method [15].
Originally, the AFS method was proposed for multiclass-
based gene-set-based analysis for significant gene identifica-
tion. The GNFS, however, uses this method to integrate
three assumptions for disease gene biomarker identification
by focusing on the identification of the significant gene
subnetwork for each pathway or gene-set data from
gene expression data. Although the GNFS method was
successfully used for subnetwork identification, providing
better classification performance and biological interpret-
ation, there is still a need to improve the subnetwork
biomarker in order to enhance both disease classification
performance and biological relevance. The GNFS used a
greedy-search approach to obtain the subnetwork by
considering only the maximum increased score of the
subnetwork. By using this criteria, only the candidate
gene having the highest activity score was accounted as
a gene member for optimal expansion, thus ignoring
candidate genes having a lower score. This causes a loss
of informative genes during searching and scoring. The
result is a linear topology. Therefore, alternative searching
strategies for subnetwork identification to achieve the
gene subnetwork was considered.
This work proposed a new method named Gene

Sub-Network-based Feature Selection or GSNFS by imple-
menting two alternative searching schemes for improving
gene subnetwork identification, namely gene-set-based or
GS search and parent-node-based or PN search algorithms.
The proposed algorithms would expand the gene subnet-
work that aggregates more significant genes within the
identified subnetwork. Four lung cancer expression datasets
were used as case studies. The classification performance
was used for validation of the identified subnetworks com-
pared with the greedy search algorithm used in the GNFS
method.

Methods
Expression data
Four microarray gene expression datasets of lung cancer
used for gene subnetwork identification were downloaded
from Gene Expression Omnibus or GEO database (http://
www.ncbi.nlm.nih.gov/geo/) [16]. The dataset of GSE18842

(denoted as Lung1) was published by Sanchez-Palencia et
al. [17]. There are 91 samples of which 46 are primary
adenocarcinoma and squamous-cell carcinoma samples
and 45 are non-tumour samples as control samples. The
dataset of GSE10072 (denoted as Lung2) was published by
Landi et al. [18]. There are 107 samples of which 58 are
adenocarcinoma samples and 49 are non-tumour samples
as control from tissue samples of adenocarcinoma paired
with non-involved lung tissue from current, former and
non-smokers. The dataset of GSE4115 (denoted as Lung3)
was published by Spira et al. [19]. There are 187 samples of
which 90 are smokers without lung cancer and 97 are
smokers diagnosed of having cancer. The dataset of
GSE7670 (denoted as Lung 4) was published by Su et al.
[20]. The 26 samples from lung cancer patient at the Taipei
Veterans General Hospital were separated into pairwise
samples of 26 adjacent normal part of adenocarcinoma and
26 tumour part of adenocarcinoma in this study.
In this work, each microarray dataset was pre-

processed by discarding the microarray probe represent-
ing multiple genes in order to avoid the ambiguous
interpretation of those genes. The expression values
were normalized using z-transformation into standard
scores having mean of zero and standard deviation of
one for further analysis.

Gene-set data
The gene-set data were used for gene expression trans-
formation prior to the gene subnetwork identification
considering each gene-set or pathway data. The list of
genes that correspond to each gene-set or pathway
were provided. In this work, the gene-set data from
PathwayAPI [7] were used. The PathwayAPI is a web
service for retrieving the curated gene-sets data to
consider gene-gene relationship. The gene-sets data
consist of 319 pathways of 7467 genes.

Network data
Two sets of network data were used for the purpose of
comparison. First, the GGI from PathwayAPI which com-
posed of 7637 genes and 60,853 gene-gene relationships
were used as network data in this study. Then to expand
on the dataset, a comparison was made with those identi-
fied by using protein-protein interaction (PPI) network.
The PPI and genetic interactions data were downloaded

from the Biological General Repository for Interaction
Datasets (BioGRID) (http://thebiogrid.org/) (version 3.4.136
update April 25th, 2016). The BioGRID, originally proposed
by Stark et al. [21], is an open access database that collects
genetic and protein interactions curated from the primary
biomedical literature proven to exist via small-scale or
large-scale experimental methods [22].
The PPI data from BioGRID was pre-processed to ob-

tain only the interactions of human gene and protein
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(Entrez ID: 9606). The interactions (edges) with self-loop
or self-interaction and duplicate edge were removed. After
pre-processing, 16,041 genes/proteins with 213,996
interactions, which provides a topology, were used for
further study.

Dataset homogeneity measurement
When using publicly available microarray gene expression
data from different experiments, there may be some covari-
ates confound the data space of those datasets. Therefore,
to generate a reliable result, it is required to check for their
homogeneity. This work applied the measurement of the
data homogeneity in order to provide a reliability measure
of the datasets used for cross-validation. To determine the
relative contribution to sample variation by the disease
status and batch effects of merging a microarray dataset
from the public database, Engchuan et al. [23] proposed a
measure to deal with the limitations in using those micro-
array datasets by assessing cluster purity regarding disease
status (PurityD) and cluster purity regarding batch status
(PurityB). The measurement was calculated based on the
analysis of the clustering result of the merged dataset. The
clustering was done using k-means clustering approach in
the R package. For the k parameter, it was set as the
number of classes of the merged dataset. The purity
level shows how cluster members are mixed from dif-
ferent classes or different statuses. Here, the purity was
presented in two terms, PurityB and PurityD, which can
be calculated as follows:

Purity Ω;Cð Þ ¼
1
N

X
k
maxj wk∩ cj

�� ��
� �

� j−1

j−1

where Ω = {w1, w,2…, wk} is the set of clusters, C = {c1,
c2,…, cj} is the set of classes or statuses and N is the
total number of instances. The range of purity value was
normalized to be in range 0 to 1. A good analysis result
is expected to have low PurityB and high PurityD to indi-
cate the compatibility of two datasets of the same dis-
ease for further comparison analysis.

Network-based algorithm
The network-based method named Gene Sub-Network-
based Feature Selection (GSNFS) method was proposed
and used for subnetwork identification in this study.
GSNFS implementing two new searching approaches to
modify the previously published GNFS method [14]. It is
a method for subnetwork biomarker identification based
on the integration of gene expression data, gene-set or
pathway data, and network data which can handle both
multiclass and binary class of gene expression data. For
each gene-set or pathway, Analysis of Variance or ANOVA
was applied to identify the significant gene (at 0.05 signifi-
cant level for this study) for further use in the process of

subnetwork identification. The network data was used as a
scaffold to infer the interaction of a seed gene to the neigh-
bour in the subnetwork identification step. Top 10% of
identified significant genes with the highest number of
neighbour genes were selected as seed genes. An F-value of
ANOVA, was used in consideration of the growing seed
and subnetwork expansion. Each seed gene was grown to
its neighbour gene, resulting in the highest F-value. The
expansion from a current subnetwork to its neighbour
depends on the improvement of the F-value when each
candidate gene is temporarily added to the subnetwork
compared with the score of the current subnetwork. At
each subnetwork expansion, the search of its neighbour
and the score of the candidate gene calculation are crucial
steps in subnetwork identification. Two termination criteria
of subnetwork expansion are whether there is no more
available gene neighbours for consideration or no more
improvement of the current subnetwork score.
By focusing on the modification, the GSNFS aims to

improve the classification performance while still main-
taining good gene/gene-set level agreement. The GSNFS
includes two new searching strategies (GS and PN) during
network expansion to obtain better subnetwork bio-
markers. In order to evaluate the proposed strategies,
the gene subnetworks identified by using these two pro-
posed strategies and the greedy approach used in GNFS
were compared based on the classification performance.
The identified gene subnetworks with at least three gene

members were further used for analysis and discussion in
the evaluation of the performance of the proposed search-
ing algorithms.
The overall steps of the GSNFS method and the mod-

ules of searching strategies as proposed in this work are
illustrated in Fig. 1.

Scoring method
The scoring method was used for representing the sig-
nificance of the subnetwork. It consists of two steps: the
correlation analysis and the gene-set activity calculation.
The significant genes in each gene-set were obtained
using ANOVA for both binary class and multiple class
expression data with threshold setting. In correlation
analysis, Pearson’s correlation was used to determine the
correlation of an activity of a current subnetwork (or
seed gene expansion to its neighbour of the first iter-
ation of gene expansion) and a particular candidate
expansion gene. The sign (positive or negative) of
correlation coefficient was used for determining the
criteria to update the activity level of the current sub-
network as explained in [14]. This subnetwork activity
represented the summarized expression value of iden-
tified subnetwork and was used to calculate the F-
value as a subnetwork score. A subnetwork, having
the highest F-value of each pathway or gene-set, was
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selected as the representative of a particular pathway
or gene-set.

Searching algorithm
The GSNFS implements two new searching algorithms:
the gene-set-based and parent-node-based approaches as
opposed to the GNFS that uses the greedy searching
algorithm. The detail of each algorithms are described as
follow.

Gene-set-based (GS) search
This GS search algorithm considered the gene member
and the activity score of the current subnetwork. In the ith

iteration of subnetwork identification or node expansion,
the gene members of a current subnetwork were treated

as a set of seed genes to consider the neighbour gene as
candidate genes for expansion. All the neighbour genes of
this set of seed genes were considered for an expansion of
a current subnetwork to the neighbour gene by calculating
the F-value. The neighbour gene with maximum F-value
was selected and its F-value was compared to the current
subnetwork. The expansion was made if there was an
improvement in the F-value.

Parent-node-based (PN) search
The PN search algorithm considered the gene member
and the parent gene of a particular candidate gene. As in
the ith iteration of subnetwork identification or node
expansion, the neighbour genes of all gene members of a
current subnetwork were considered as candidate genes

Fig. 1 GSNFS framework for gene subnetwork identification. For each gene-set, the expression data was integrated with network data to identify
gene subnetwork biomarker for phenotype outcome classification. The improvement of the existing algorithm focused on subnetwork expansion
procedure to aggregate significant genes. Two searching methods (GS and PN search) were implemented as searching algorithm in the GSNFS
method. GS search treats seed nodes in the ith iteration as a set of the current subnetwork (i, ii) and searches all neighbours of the current
subnetwork while PS search only looks for neighbours of a particular gene member in the current subnetwork (i or ii) bypassing genes that
are already accounted for the current subnetwork (in this diagram is gene (i) and gene (ii))
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for expansion. The F-value between each candidate gene
and its interacted gene as the parent node was consid-
ered. The current subnetwork expanded to the candidate
gene with maximum F-value.

Greedy search
The greedy search was performed to identify the gene
subnetwork in the GNFS method. At each gene expansion
level, each neighbour gene of a subnetwork was used to
calculate the activity score for comparison with that of the
current subnetwork. This comparison was used to consider
the improvement when adding that candidate gene to the
current subnetwork. By searching for the highest score of
each expansion result in local maxima, all neighbours of a
current expanded gene were considered to expand to the
neighbour gene with the highest score.

Gene level and gene-set level agreement
The evaluation of the identified gene subnetwork was
explored by identifying the co-occurrence of gene or
gene-set being identified between two datasets. By doing
this, the evaluation was focused on inspecting the pres-
ence of the identified gene and gene-set resulting from the
analysis without considering the expression value of
each gene. The Jaccard-like agreement implemented in
Engchuan et al. [24] was used for the evaluation.
The result of the analysis presented the robustness of

the proposed method and the agreement of the markers
identified from two datasets.

Cross-dataset validation
The different sets of data generated by different laboratories
may contain some confounding factors. As a result, a set of
biomarkers identified from one dataset cannot be applied
to another. Cross-dataset validation was applied to validate
the robustness of a model (gene subnetwork), which is
identified by using one dataset as training data and another
independent dataset of the lung cancer as test set. This
validation process was used to predict the effectiveness
of applying the identified subnetwork biomarkers from
one dataset (training set) to distinguish the phenotypes
of another dataset (test set). The results from cross-dataset
validation can reflect the robustness and reliability of an
identified biomarker. The classification performance was
assessed and presented as Area Under the Curve (AUC) of
the Receiver Operating Characteristic curve. The support
vector machine (SVM) in WEKA version 3.7-12 with
default parameter setting (C-SVC classification with kernel
type of radial basis function) was used in this study.

Results
GSNFS with the GS searching algorithm (GSNFS-GS)
and PN searching algorithm (GSNFS-PN) were proposed
and implemented in this work. The identified subnetworks

obtained from GSNFS using these two new searching
strategies were compared with those obtained from the
greedy search algorithm originally used in GNFS. Four
lung cancer datasets retrieved from GEO database were
assessed for their compatibility for further classification
evaluation by the purity index analysis (Table 1). A pair of
datasets was considered highly compatible if they have
low PurityB and high PurityD. From the result, only two
pairs of datasets are compatible. The datasets Lung1 and
Lung2 were found to be compatible for comparison
analysis with the PurityB and PurityD of 0.081 and 0.6,
respectively. The datasets Lung2 and Lung4 were com-
patible with the PurityB and PurityD of 0.34 and 0.64,
respectively. Lung3 was found to have low comparable
manner for classification validation with the other three
datasets (Lung1, Lung2 and Lung4) because the assess-
ment results were low in PurityD. In this study, how-
ever, the comparison analysis with Lung3 has also been
done to assess the ability of the proposed method with
the least compatible datasets due to a limited number
of datasets resulting from the same assumption of the
experiment. The identified gene subnetworks of a particular
dataset were obtained using three different searching
approaches. The number of gene subnetworks obtained
using GGI from PathwayAPI and PPI network is shown
in Table 2.
The GGI from PathwayAPI and PPI were used as

network topology data in the GSNFS method for inferring
the interaction among significant genes. Applying the two
searching strategies resulted in potential gene subnet-
works as disease biomarkers.
Subnetworks having at least three gene members were

used to evaluate the agreement of gene/gene-set of the
two independent datasets. The gene/gene-set level agree-
ment is a ratio of the number of common identified gene/
gene-set from the two datasets and the total number of
identified gene/gene-set in the two datasets (Table 3).
The cross-dataset validation was used to validate the

performance of the identified subnetworks by applying
them in disease classification using an independent dataset
of the same disease. The classification performance of the

Table 1 The homogeneity of datasets

Data PurityB PurityD

Lung1*2 0.081 0.6

Lung1*3 0.35 0.12

Lung1*4 0.27 0.34

Lung2*3 0.27 0.14

Lung2*4 0.34 0.64

Lung3*4 0.56 0.029

The homogeneity of each pair of independent datasets was measured and
presented in terms of PurityB and PurityD. The low PurityB and high PurityD
present the high compatibility of the two datasets for further
cross-dataset validation
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identified subnetworks using the GGI from PathwayAPI
and PPI network with different searching strategies is
shown in Table 4.
To compare the effectiveness of gaining biological

related genes in the gene subnetworks, the overlapped
or common genes among the identified gene subnetworks
using different four datasets, three searching strategies,
and two networks were inspected as shown in Table 5.

Discussion
The homogeneity of between the four datasets was
measured to illustrate the difference in distribution of
the two independent datasets. Table 1 showed that Lung1,
Lung2 and Lung4 datasets are compatible as derived from
the low batch effect for PurityB and high PurityD in the
disease class assessment. Nevertheless, the results mea-
sured between Lung1 and Lung3, Lung2 and Lung3, or
Lung3 and Lung4 showed low compatibility which can
imply the difference between data distribution of Lung3
from the others. Therefore, the classification using the
model trained by using either Lung1, Lung2 or Lung4
dataset may be inefficient when applied to classify Lung3

dataset. Thus, in this study, Lung3 was used as cross-
dataset validation to validate the performance of the iden-
tified subnetworks despite its low compatibility in order to
observe the robustness of the identified subnetworks.
The number of identified gene subnetworks obtained

from the three approaches; GNFS-greedy search, GSNFS-
GS and GSNFS-PN, was different. To obtain significant
genes, statistical analysis was applied. The seed genes were
identified among those genes for subnetwork expansion.
The difference among these three approaches is that it only
influences the number of gene members in each gene
subnetwork. In Table 2, when considering gene subnet-
works with at least three gene members, the number of
gene subnetworks varied especially in Lung3 dataset.
This may be attributed to the genetic difference in the
all-smoker samples, where some have lung cancer while
others do not have it. The number of identified subnet-
works resulted from Lung1 was different from that of
Lung2 and Lung4 because more number of genes being
covered by microarray platform used to generate Lung1
dataset. The GSNFS-PN provides the largest number of
gene subnetworks in both network data.

Table 2 The number of identified gene subnetworks using GGI from PathwayAPI and PPI network on different three approaches

Data GGI PPI

GNFS-greedy [14] GSNFS-GS GSNFS-PN GNFS-greedy [14] GSNFS-GS GSNFS-PN

Lung1 65 84 94 40 46 62

Lung2 49 65 92 29 34 42

Lung3 7 4 53 6 11 25

Lung4 16 23 46 14 20 35

Table 3 Evaluating the resulting subnetworks based on gene level/gene-set level agreement

Data GGI PPI

GNFS-greedy [14] GSNFS-GS GSNFS-PN GNFS-greedy [14] GSNFS-GS GSNFS-PN

Gene level

Lung1*2 0.099 0.138 0.118 0.186 0.140 0.145

Lung1*3 0.023 0.004 0.068 0.047 0.087 0.085

Lung1*4 0.047 0.084 0.094 0.1 0.108 0.127

Lung2*3 0.043 0.019 0.096 0.081 0.104 0.107

Lung2*4 0.091 0.105 0.121 0.087 0.1 0.076

Lung3*4 0.037 0 0.084 0.143 0.076 0.104

Gene-set level

Lung1*2 0.2 0.319 0.453 0.23 0.23 0.316

Lung1*3 0.058 0.0115 0.272 0 0.056 0.16

Lung1*4 0.125 0.103 0.308 0.08 0.179 0.366

Lung2*3 0.037 0.015 0.321 0.059 0.125 0.175

Lung2*4 0.083 0.219 0.34 0 0.174 0.167

Lung3*4 0.095 0 0.2375 0.111 0.148 0.2

The gene/gene-set level agreement is a ratio between the number of common genes/gene-sets found in two datasets and the total number of genes/gene-sets
identified from the two datasets. The gene/gene-set level agreements were calculated for different searching strategies and presented above
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The consistency of identified subnetworks of the two
independent datasets were evaluated based on the occur-
rence of the same gene/gene-set in term of gene/gene-set
level agreement. From Table 3, the GSNFS-GS and
GSNFS-PN have more common genes between data-
sets. This result can be used for further study of genes
or gene-sets consistently presented in the lung cancer
biomarkers.
The identified gene subnetworks obtained from these

two searching strategies improved the classification per-
formance when compared with the gene subnetworks iden-
tified using the greedy search. The classification evaluation
performed by applying the subnetworks identified from one
dataset to distinguish the sample with disease from the
healthy sample on independent datasets. The GSNFS-GS
potentially resulted in subnetworks having a better classifi-
cation performance.
Considering different network data, the PPI network

contains more genes/proteins than the GGI network.
However, the identified subnetworks obtained by using
GGI provided a better gene/gene-set level agreement and
classification performance than the subnetworks identified

by using PPI. This might be due to the use of subnetworks
with at least three gene members for evaluating the gene/
gene-set level agreement and the classification perform-
ance. The identified subnetworks with one or two gene
members were discarded. In addition, the large number of
genes/proteins and their interactions in PPI may not imply
the function of those genes in term of interacting gene/
protein pairs. In contrast, the GGI data provide the re-
lationship of genes having interaction in functional
basis based on curated data. This result shows that the
relationship of genes in different assumption of network
data is important in network-based analysis. After analysing
these two network data using Merge Network plug-in of
Cytoscape tool (version 3.3.0), there were 3101 nodes found
as overlapping gene/protein and 1212 of those having 1929
overlapping interactions. This small number of common
genes/proteins and interactions resulted in higher gene
level agreement and higher number of overlapping among
the four datasets (see Table 5) in the subnetworks using PPI
as network data.
From the analysis, the better classification performance

was obtained when applying GGI to Lung1, Lung2, and

Table 4 Classification performance of cross-dataset validation using GGI from PathwayAPI and PPI network

Data GGI PPI

GNFS-greedy [14] GSNFS-GS GSNFS-PN GNFS-greedy [14] GSNFS-GS GSNFS-PN

Lung1*2 0.828 0.704 0.546 0.634 0.773 0.717

Lung1*3 0.54 0.59 0.546 0.568 0.481 0.535

Lung1*4 0.75 0.865 0.635 0.519 0.635 0.75

Lung2*1 0.834 0.868 0.578 0.724 0.791 0.689

Lung2*3 0.479 0.556 0.532 0.53 0.588 0.537

Lung2*4 0.865 0.827 0.692 0.731 0.712 0.635

Lung3*1 0.275 0.539 0.726 0.65 0.607 0.647

Lung3*2 0.378 0.624 0.729 0.35 0.526 0.558

Lung3*4 0.481 0.712 0.635 0.462 0.673 0.615

Lung4*1 0.902 0.848 0.69 0.563 0.693 0.857

Lung4*2 0.805 0.849 0.77 0.583 0.72 0.751

Lung4*3 0.603 0.549 0.608 0.595 0.608 0.631

The classification performance of the identified subnetworks resulted from different searching strategies in the subnetwork identification

Table 5 Common genes found in the identified subnetworks with at least three gene members across four datasets by using three
different approaches

GGI PPI

GNFS-greedy [14] GSNFS-GS GSNFS-PN GNFS-greedy [14] GSNFS-GS GSNFS-PN

MAPK1 None MAPK1 MAPK1 EGFR EGFR

MAP2K3 TNFRSF1A MAPK1 MAPK1

MAP2K4 SHC1 TNFRSF1A TNFRSF1A

PRKCA SOS2 MAP3K7

STAT3

All gene members in gene subnetworks with at least three gene members were inspected for the common genes obtained from the identified gene subnetworks
across four datasets by using different searching strategies and different network data in subnetwork identification. The genes in italic indicate the important
genes in lung cancer
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Lung4 datasets. Moreover, when applying the PPI net-
work to the analysis, the subnetworks identified from
Lung1 and Lung2 also performed well on the classifi-
cation analysis.
Table 4 shows that the two proposed searching algo-

rithms increase the performance of the classification
when compared with the original greedy search imple-
mented in the GNFS method. However, the GSNFS-PN
presented robustness when applied to Lung3 and Lung4
dataset in terms of improving the cross-dataset classifica-
tion performance and increasing the gene/gene-set level
agreement results. Nevertheless, the improvement of the
classification performance and gene level agreement was
seen by applying the GSNFS-GS to Lung1 and Lung2. This
implies that the GSNFS-PN may be suitable with the
datasets having low compatibility while the GSNFS-GS
could be efficient with datasets having high compatibility.
The subnetworks identified from Lung4 dataset using the
GSNFS-PN with PPI network performed well when apply-
ing to independent datasets. This classification performance
of Lung4 was consistent with high number of gene/
gene-set level agreement of Lung4 with other three data-
sets. When comparing between GSNFS-GS and GSNFS-
PN in overall, it was found that GSNFS-PN performed
better when considering the gene/gene-set level agreement.
Meanwhile the GSNFS-GS was better when considering
the classification performance analysis.
The effectiveness of the two proposed algorithms for

searching in biological meaning is shown in Table 5. The
well-studied gene related to lung cancer, EGFR gene,
[25, 26] was identified by these two searching strategies
using PPI network. This gene is shown in italic in
Table 5. Moreover, MAPK1 (mitogen-activated protein
kinase 1) gene was found as a common gene among all
four lung cancer datasets except for the GSNFS-GS. This
gene encodes for a member of the MAP kinase family,
which plays a role in a variety of cellular processes such as
proliferation, differentiation, transcription regulation and
development by controlling phosphorylation at nuclear
target. The TNFRSF1A (tumour necrosis factor receptor
superfamily member 1A) gene was found as a common
gene using PPI as the network data. This gene encodes for
a protein, which is one of the major receptors for the
tumour necrosis factor-alpha. The function of this re-
ceptor is related to activate NF-kappaB, mediate apop-
tosis which may play a role in tumourigenesis. These
results illustrated the improvement of identified gene
subnetworks using the GSNFS method with the pro-
posed searching algorithms for gene subnetwork bio-
marker identification.
In this work, each gene expression dataset was pre-

processed. The homogeneity measurement of the data-
sets have been done with the purpose of inspecting the
contribution of the data in two independent datasets.

Another task of the data pre-processing step was a batch
effect correction to reduce the systematic error of gener-
ating microarray data from a different batch.

Conclusions
This work proposed a new network-based method named
Gene Sub-Network-based Feature Selection or GSNFS.
GSNFS identifies gene subnetwork biomarkers by using
two new searching algorithms: gene-set-based search and
parent-node-based search algorithms. With the use of our
newly proposed searching and scoring algorithms, more
numbers of genes were obtained in the subnetwork
expansion step. As a result, the evaluation showed the
improvement of the identified subnetworks regarding
its classification performance and gene/gene-set level
agreement over the greedy search algorithm implemented
in the GNFS method. Applying the homogeneity meas-
urement to the dataset provided a reliable result for
cross-dataset validation. The results from the classifica-
tion performance and the biological relevance showed
that the proposed searching strategies are quite effect-
ive in identifying of gene subnetwork as biomarker for
lung cancer.
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