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Abstract

Background: DNA palindromes are a unique pattern of repeat sequences that are present in the human genome.
It consists of a sequence of nucleotides in which the second half is the complement of the first half but appearing
in reverse order. These palindromic sequences may have a significant role in DNA replication, transcription and
gene regulation processes. They occur frequently in human cancers by clustering at specific locations of the
genome that undergo gene amplification and tumorigenesis. Moreover, some studies showed that palindromes are
clustered in amplified regions of breast cancer genomes especially in chromosomes (chr) 8 and 11. With the large
number of personal genomes and cancer genomes becoming available, it is now possible to study their association
to diseases using computational methods. Here, we conducted a pilot study on chromosomes 8 and 11 of cancer
genomes to identify computationally the differentially occurring palindromes.

Methods: We processed 69 breast cancer genomes from The Cancer Genome Atlas including serum-normal and
tumor genomes, and 1000 Genomes to serve as control group. The Biological Language Modelling Toolkit (BLMT)
computes palindromes in whole genomes. We developed a computational pipeline integrating BLMT to compute
and compare prevalence of palindromes in personal genomes.

Results: We carried out a pilot study on chr 8 and chr 11 taking into account single nucleotide polymorphisms,
insertions and deletions. Of all the palindromes that showed any variation in cancer genomes, 38% of what were
near breast cancer genes happened to be the most differentiated palindromes in tumor (i.e. they ranked among
the top 25% by our heuristic measure).

Conclusions: These results will shed light on the prevalence of palindromes in oncogenes and the mutations that
are present in the palindromic regions that could contribute to genomic rearrangements, and breast cancer
progression.

Background
Most eukaryotic genomes contain repeat sequences in their
DNA and nearly half of the human genome is covered by
various types of repeats. DNA palindromes are a unique
pattern of repeat sequences that are found in both prokary-
otes and eukaryotes. It consists of a sequence of nucleotides
in which the second half is the complement of the first half
but appearing in reverse order [1, 2]. For example, 5′-

GTTAG|CTAAC-3′ is a DNA palindrome. Proteins such
as restriction enzymes and transcription factors that func-
tion as dimers often recognize the two-fold symmetry of
palindromic sequences and bind to them. This two-fold
symmetry helps to increase the affinity and specificity of
interaction between DNA and proteins [3, 4]. The ability of
a palindromic sequence to fold around its midpoint to form
a double strand with itself enables it to form a secondary
structure called cruciform or hairpin structure. These
secondary structures are known to be associated with
chromosomal translocations and rearrangements that could
contribute to errors in DNA replication and gene expres-
sion leading to human diseases such as male infertility and
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thalassemia [4–7]. Recently, researchers discovered that the
palindromic GOLGA8 regions might be contributing to
microdeletions in chr 15 that are associated with schizo-
phrenia, autism, intellectual disability and epilepsy [8].
DNA Palindromes occur frequently in human cancer

cell lines, including medulloblastoma, breast cancer and
colorectal adenocarcinoma. A microarray based approach
called Genome-wide Analysis of Palindrome Formation
(GAPF) detected a non-random distribution of palin-
dromes in human cancers including breast cancer and
colon cancer genomes; palindromes tend to cluster at
specific regions that undergo gene amplification [9]. Long
palindromes are associated with gene amplification and
genomic instability in cancers. A consistent formation was
also observed at a microRNA gene called bic/miR-155
that is associated with tumor development. Further, palin-
dromes and short tandem repeats were found in APC
gene that is associated with colorectal polyps; polyps are
precancerous lesions that will develop into colorectal
cancer at a later stage. These studies further suggest that
palindrome formation may influence the tumor formation
and cancer development [9–12]. GAPF positive regions
are those regions that are enriched in cancer cell lines
relative to the normal human fibroblasts. When at least
three such regions are present, it is called a cluster. GAPF
positive regions are clustered in breast cancer genomes es-
pecially in chr 8 and chr 11. These chromosomes are also
susceptible to DNA amplification and chromosomal aber-
rations, which are correlated to overexpression of onco-
genes and to tumorigenesis in breast cancer [13–17].
Amplification events in chr 11 that are associated with on-
cogenes are also reported in breast, ovarian, and lung can-
cers [18]. These aspects support a possible role of
palindromes in cancers mediated by DNA amplification
[13–15].
The availability of whole genome sequences of individuals

makes it possible to study computationally the prevalence
of palindromes and their relative abundance in various gen-
omic locations. By studying the differential distribution of
palindromes in genomes of cancer patients and tumors, we
may be able to shed light on their influence on gene ampli-
fications and genomic rearrangements, and their relevance
in cancer. To our knowledge, there have been no studies of
DNA palindromes in personal genomes (i.e. a genome in-
corporating variants of an individual from 1000 Genomes,
cancer genomes, etc.) except for one preliminary study of
an early draft of the reference genome [4].
We developed a suite of tools to identify palindromes

efficiently in personal genomes and to compare them
across multiple genomes. In this study, we present our
analysis of the palindrome distribution and changes in chr
8 and chr 11 of 69 breast cancer genomes (normal and
tumor) and compare them in relation to genomes from
the 1000 Genomes project [19].

Methods
Data
We analysed 69 matched tumor-normal breast cancer ge-
nomes from The Cancer Genome Atlas (TCGA), and the
same number of personal genomes from 1000 Genomes
project to serve as control. Variant files corresponding to
whole genomes from TCGA are available to us through
the Pittsburgh Genome Resource Repository (PGRR).
PGRR provides a mechanism for University of Pittsburgh
investigators to access and use TCGA datasets from a
central location using common tools and platforms. We
analysed 69 matched tumor and normal whole genomes
of breast cancer, in this pilot study; we also restricted our
focus on chr 8 and chr 11. To serve as a control group, we
analysed the same number of whole genomes from the
1000 Genomes which contains genomes of 2504 individ-
uals overall [19]. We refer to these three types of genomes
as tumor, normal and 1000 g genomes.
These genomes are available as variants in comparison

to reference genome build GRCh37; the personal gen-
ome sequences are constructed by incorporating the
corresponding variants into the reference genome. If a
variant is multi-allelic, the first allele is incorporated into
the genome and the second allele is considered while
post-processing.
We used the Biological Language Modelling Toolkit

(BLMT) (version 2) to identify palindromes in the
human genomes [20]. BLMT pre-processes the whole
genome sequence into suffix arrays and then computes
the longest common prefix array, which make searching
for patterns like palindromes very efficient. BLMT
computes palindromes that are perfectly palindromic in
the central eight bases, and expands it on both arms
until it remains palindromic, but allowing for a user-
specified number of mismatches. We set this mismatch
tolerance to be four. The extension is constrained to be
of same length on either side (i.e. insertion of un-
matched base on only one side is not allowed).
The position of a palindrome in a personal genome

and its position in the reference genome are not the
same because of deletions and insertions preceding the
palindrome. To align the corresponding palindromes
between reference and personal genomes, we keep track
of the offsets introduced due to insertions and deletions
until the location of that palindrome.
We create a master list of all palindromes in all

personal genomes, indexed by their mid-point as per its
location in the reference genome.
We looked for palindromes that changed significantly in

tumor samples but not in normal or 1000 g samples. We
did this using two different heuristics – the first sorts
palindromes in decreasing order of the difference between
number of changes in tumor samples and normal samples
normalized by the number of changes in 69 of the 1000 g
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samples. With this, we identify palindromes that have
varied more in tumor samples than normal ones account-
ing for variants in our control group. Normalizing by the
number of changes in the 1000 g data penalizes palin-
dromes that also vary in the general population. Next, we
computed the t-test (with unequal variances) of changes
in tumor vs 1000 g and normal vs 1000 g and then com-
puted their ratio. To compute the t-test statistic between
the palindrome length changes in tumor samples vs
1000 g, we ran 100 experiments each with 69 randomly
sampled subset of 1000 g, and computed the average of
the t-test statistic. Using the t-test statistic makes our
metric sensitive to the extent of change in samples, which
is evident from its formulation below.

t ¼ X1−X2

sX1−X2

ð1Þ

sX1−X2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s12

n1
þ s22

n2

s

ð2Þ

where xl , si
2 and ni are the mean, the unbiased estimator

of the variance and the number of participants in the
two samples.

We used annovar to annotate palindrome locations
with gene regions [17]. We compiled the list of onco-
genes and breast cancer related genes from Cancer
Genetics Web (http://www.cancer-genetics.org/).

Results
We computed the palindromes in the human refer-
ence genome using Biological Language Modeling
Toolkit. We focused our analysis on chr 8 and chr 11
in this pilot study. In the reference genome, we found
that overall there are a total of 685,064 palindromes
in chr 8 and 600,274 in chr 11. On an average, there
are 12 palindromes per 3000 bases, but some regions
have more than 100 palindromes per 3000 bases. In
the 2504 genomes of 1000 g, there are 684,211 palin-
dromes in chr 8 on an average, and 599,308 in chr
11. Of these, about 28,000 palindromes of chr 8 had
variants in them, some of which altered their length.
In chr 11 about 25,000 had variants. Density of palin-
dromes was comparable in cancer genomes. Figure 1
shows the density of palindromes per 3000 bases and
the difference in density between the reference gen-
ome and one random TCGA sample, for chromosome
8 (Fig. 1a and b) and 11 (Fig. 1c and d).

Fig. 1 Regions that have highest density of palindromes. The number of the palindromes per 3000 bases is computed. The top 2% of the
windows that are most dense with palindromes are shown for chromsomes 8 and 11 in (a) and (c). Corresponding numbers were computed for
one of the TCGA samples, and the difference with respect to reference genome (tumor – reference) are shown in (b) and (d)
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We created a master list of all palindromes that occur in
any of the personal genomes indexed by their correspond-
ing location in the reference genome. For each of these
palindromes, we analyzed whether there is a difference in
its presence in tumor vs normal or 1000 g. Figure 2a and b
present palindromes that rank the highest according to our
first heuristic (seeMethods). It also highlights changes that

occurred within these palindromes across the TCGA
samples in color-coded manner. Figure 3 present eight
genes of chr 8 and chr 11 that contain specific palindromes
that are significantly altered in tumors. Table 1A and B
contains palindromes that rank the highest according to
our second heuristic that computes the ratio of the t-test
statistics of tumor vs normal.

Fig. 2 List of Palindromes. List of palindromes in (a) chr8 and (b) chr11 with significant changes in tumor and normal samples in TCGA brca
dataset and minimum changes in 1000 Genomes with the following color coding: absence of the palindrome (orange), bigger than in the
reference genome (pale blue), smaller than in the reference genome (pale green), perfect palindrome in the reference genome which is
now a near palindrome with a single mismatch the central eight bases (dark grey) and palindrome that had the same length as in the
reference genome but had a variant (burgundy). The left side of the figure represents normal samples and the right side tumor samples.
Oncogenes and/or brca genes are highlighted in green
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Discussion
DNA Palindromes were shown to be distributed non-
randomly in breast cancer cell lines [11]. In addition,
they were also found to be clustered in gene amplicons

chr 8 and chr 11, specifically, 8p12, 8q21, 8p23, 11q12
and 11q13 in breast cancer when associated with copy-
number gains and amplifications [10, 21]. We analysed
palindromes that have changed significantly in breast

Fig. 3 Changes in specific palindromes in eight genes. Three palindromes that have changed most significantly are shown for eight genes
(KMT2A, TNKS, CADM1, RAD21, NUP98, TRPS1, NRG1 and NBN). For each palindrome of any gene, its difference in the length in comparison to
reference genome are shown separately for 1000 g, normal and tumor genomes. The size of the circle is proportional to the number of samples
out of the 69 considered in each set. C represents Control, N represents Normal and T represents Tumor in the figure
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Table 1 Table of statistical significance values for Chr8 (a) and Chr11 (b). Genes with their regions, whether the gene is oncogene or
brca gene with the statistical significance are shown in separate columns

Gene region Gene symbol Oncogene Breast cancer gene Odds ratio

Chromosome 8

intronic SPIDR FALSE FALSE 12.5

intronic EMC2 FALSE FALSE 4.6

intergenic CASC9 FALSE FALSE 3.9

intronic RAD54B FALSE FALSE 3.6

intronic SH2D4A FALSE FALSE 3.6

intronic MAK16 FALSE FALSE 3.5

intronic UBXN2B FALSE FALSE 3.4

intronic KIAA1429 FALSE FALSE 3.3

intronic UBXN2B FALSE FALSE 3.0

exonic SLC26A7 FALSE FALSE 3.0

intronic KIAA0196 FALSE FALSE 2.8

intronic POTEA FALSE FALSE 2.8

intergenic UNC5D FALSE FALSE 2.7

intronic CA1 FALSE FALSE 2.7

intronic EIF3E TRUE TRUE 2.5

intronic CPQ FALSE FALSE 2.5

exonic USP17L7 FALSE FALSE 2.5

intronic SH2D4A FALSE FALSE 2.5

exonic C8orf37 FALSE FALSE 2.5

intronic SDC2 FALSE FALSE 2.4

exonic DCAF13 FALSE FALSE 2.4

intronic CPQ FALSE FALSE 2.4

intronic CCAR2 TRUE FALSE 2.4

ncRNA_intronic LOC392232 FALSE FALSE 2.4

exonic GRHL2 FALSE FALSE 2.4

intronic TRPS1 TRUE TRUE 2.3

Chromosome 11

intergenic LOC283177 FALSE FALSE 17.0

intronic NFRKB FALSE FALSE 14.9

intronic DCDC5 FALSE FALSE 6.0

intronic C2CD3 FALSE FALSE 5.0

intergenic LOC283177 FALSE FALSE 4.2

intergenic LOC102724301 FALSE FALSE 4.1

intergenic LOC283177 FALSE FALSE 3.9

intergenic FAM86C2P FALSE FALSE 3.9

intronic KIRREL3 TRUE FALSE 3.8

intronic NUCB2 FALSE FALSE 3.5

intronic MYO7A FALSE FALSE 3.4

intergenic MIR8068 FALSE FALSE 3.2

intergenic OR4A5 FALSE FALSE 3.1

intronic CADM1 TRUE FALSE 3.0

intergenic LOC283177 FALSE FALSE 3.0
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cancer genomes (tumor and/or normal) in comparison
to palindromes in 1000 genomes. Of all the palindromes
that showed any variation in cancer genomes, 38% of
what were near breast cancer genes happened to be the
most differentiated palindromes in tumor (i.e. they
ranked among the top 25% by first heuristic measure).
An intronic palindrome that is associated with one of

the breast cancer gene (brca) NBN, that is in 8q21
region, shows significant changes in tumors ie., changes
in seven tumors but no change in any normal samples.
NBN mutations have shown to be associated with
chromosomal rearrangements and instability, with in-
creased risk for cancers including breast cancer. It
encodes nibrin that is involved in DNA damage and
repair [22]. One of the palindromes in intronic region of
RAD21 has a germline variant; RAD21 plays a role in
double strand break repair mechanism and is associated
with multiple cancers [23]. Tumors have a tendency to
accumulate mutations that could disrupt DNA repair,
which leads to DNA damage. Therefore, palindrome
associations in NBN and RAD21 may be important to
understand the role of these proteins in DNA damage
and repair [24]. Another gene TRPS1 shows that there
are 3 intergenic palindromes that changed significantly
in tumors. One of these intergenic palindromes is absent
in many tumor samples whereas there are no changes
observed in normal samples; other intergenic palin-
dromes got smaller in tumors with no changes in nor-
mal samples. TRPS1 gene belongs to the family of
transcription factors and may have role in regulating cell
proliferation and growth [25]. This gene is localized in
chr8q23-24.1, and this region is known to be highly
amplified in breast and prostate cancers. Palindromes in
SPIDR are significantly altered in tumors (Table 1A).
SPIDR is a scaffolding protein that is involved in hom-
ologous recombination repair mechanism and is shown
to have breast and ovarian cancer susceptibility [26].
Through similar analysis of palindromes in chr 11, we

found that palindromes in oncogenes NUP98 and KMT2A
have significant changes in tumors when compared to
normal and 1000 genomes. All palindromes observed in

NUP98 were in the intronic region, and three intronic,
three exonic and one intergenic palindromes were observed
in KMT2A gene. In NUP98, one palindrome is completely
absent in tumors, whereas an intronic palindrome in
KMT2A got bigger. NUP98 is a nuclear pore gene that is
required for induction of p53 target genes and is associated
with cancers such as hepatocellular carcinoma. KMT2
genes are most frequently mutated genes in various can-
cers. KMT2A is present in chr11q23 region that undergo
frequent genomic rearrangements, and somatic mutations
in KMT2A are associated with leukaemia [27]. We also
found that CADM1 has an intronic palindrome that shows
significant changes in tumors and loss of CADM1 expres-
sion is associated with poor prognosis in breast cancer
patients and identified as metastasis susceptibility gene
in breast cancer [28].

Conclusion
Many palindromes are significantly different in tumors
when compared to serum-normal and 1000 Genomes
data. These findings will further support the role of
palindromes in cancers including breast cancer. We
believe that further experimental analysis of these palin-
drome variations will help to identify the effect of these
variants on genomic rearrangements and downstream
effects such as gene expression. New palindromes that
are formed because of variants may even serve as bind-
ing sites to transcription factors [29], leading to abnor-
mal gene expression. These findings will help to identify
the palindromes that could be potential biomarkers for
breast cancer in the future. We limited our variant
analysis to SNPs, insertions and deletions in this study
but we are planning to include copy number variations
in future work. This is a pilot study to highlight a very
important question in cancer genomics that is amenable
to study by computational methods by leveraging large
amounts of whole genome data of cancer patients in
comparison to control group such as 1000 Genomes.
We are cataloguing the altered palindromes in whole

cancer genomes, and analysing the palindrome changes
in transcription factor binding sites (TFBS) in both

Table 1 Table of statistical significance values for Chr8 (a) and Chr11 (b). Genes with their regions, whether the gene is oncogene or
brca gene with the statistical significance are shown in separate columns (Continued)

exonic NXPE1 FALSE FALSE 2.9

intronic CWF19L2 FALSE FALSE 2.8

intronic PRCP FALSE FALSE 2.8

intergenic LOC283177 FALSE FALSE 2.7

intergenic LOC283177 FALSE FALSE 2.7

intronic MYO7A FALSE FALSE 2.6

downstream OR51B4 FALSE FALSE 2.6

intergenic LOC283177 FALSE FALSE 2.5
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normal and breast tumors, and analyse whether they affect
gene expression and function [30]. As TFBS motifs typic-
ally contain a palindromic sequence, alteration to these
motifs or formation of motifs in new locations may alter
or create a binding affinity for transcription factors and
other proteins through mutations. This would provide a
direction to understand how, through alterations to palin-
dromes, genetic variants may contribute to chromosomal
rearrangements and gene regulation defects that may
eventually lead to breast cancer pathogenesis.
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