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Abstract

Background: Preeclampsia is a multifactorial disease with unknown pathogenesis. Even when recent studies
explored this disease using several bioinformatics tools, the main objective was not directed to pathogenesis.
Additionally, consensus prioritization was proved to be highly efficient in the recognition of genes-disease
association. However, not information is available about the consensus ability to early recognize genes directly
involved in pathogenesis. Therefore our aim in this study is to apply several theoretical approaches to explore
preeclampsia; specifically those genes directly involved in the pathogenesis.

Methods: We firstly evaluated the consensus between 12 prioritization strategies to early recognize pathogenic
genes related to preeclampsia. A communality analysis in the protein-protein interaction network of previously
selected genes was done including further enrichment analysis. The enrichment analysis includes metabolic
pathways as well as gene ontology. Microarray data was also collected and used in order to confirm our results or
as a strategy to weight the previously enriched pathways.

Results: The consensus prioritized gene list was rationally filtered to 476 genes using several criteria. The
communality analysis showed an enrichment of communities connected with VEGF-signaling pathway. This
pathway is also enriched considering the microarray data. Our result point to VEGF, FLT1 and KDR as relevant
pathogenic genes, as well as those connected with NO metabolism.

Conclusion: Our results revealed that consensus strategy improve the detection and initial enrichment of
pathogenic genes, at least in preeclampsia condition. Moreover the combination of the first percent of the
prioritized genes with protein-protein interaction network followed by communality analysis reduces the gene
space. This approach actually identifies well known genes related with pathogenesis. However, genes like HSP90,
PAK2, CD247 and others included in the first 1% of the prioritized list need to be further explored in preeclampsia
pathogenesis through experimental approaches.
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Background
The study of preeclampsia (PE) from a bioinformatics ap-
proach will be affected by several aspects that will inevitable
affect the interpretation and will establish an implicit frame
to our analysis. The PE is a multifactorial disease that prob-
ably involves several genes and environmental factors.
However, the main theory behind PE is that the disorder
results from placenta ischemia, with further releases of
several factors into the maternal circulation [1, 2]. The
ischemia origin is supported mainly by a failure in the
transformation of the spiral artery caused by a trophoblastic
invasion abnormality [1–3]. Therefore, placenta (at this
level) is the central organ for pathogenesis. From this point
forward, the possible scenarios could be more complex.
Nevertheless, the endothelial dysfunction seems to be a
primary factor leading to the remaining problems and
clinical manifestations. The roll of placenta is clearly
reflected in the application of “omic” tools, specifically
microarrays studies. The simple inspection of micro-
array data [4, 5] (through GEO and ArrayExpress data-
bases) reveals that majority were obtained in placenta
samples by a case/control design.
Even when arrays technologies could be valuable to pro-

vide a wide gene-disease association, a problem arises
from the experimental design (case/control). With this
type of experimental design will be hard to differentiate
pathogenic from non-pathogenic genes. Its means that if
we obtain a very significant up or down-regulated gene,
we can’t be sure that it is involved in pathogenesis. More-
over we can’t confirm that these up or down-regulated
genes can be used as a risk evaluator or predictive meas-
ure without further experimental analysis in a longitudinal
design. Even with all previous considerations, microarrays
information is used for bioinformatics analysis and gene
prioritization suggesting that here are genes that can be
probably related with pathogenesis [6–12].
How is the scenery in scientific literature? The ratio

between case/control and prospective analysis is biased.
It is difficult to proof this statement without a rigorous
analysis of the scientific information. However, using
pre-eclampsia (MeSH Term) in PubMed database, we
obtain 13,173 publications in the last 10 years, but add-
ing the terms “longitudinal studies” or “prospective” the
previous search is reduced to 1578 in the same time
interval. Even when this approach can be considered as
superficial clearly indicate the bias toward case/control
studies. Therefore, any prioritization strategy based on
text mining or even database exploration, will provide us
with a genetic-disease association. However we can’t
confirm that there genes are primarily related to PE
pathogenesis.
There are few studies in PE focused in system biology

or other bioinformatics tools [6–14]. Some of them use
the microarray information previously described while

others used (combined or not), text mining and protein-
protein interaction networks (PPI). All these methods
will be affected by the previous discussed issues. Still, a
more important problem with bioinformatics tools is
actually its diversity. There are several ways in which we
can combine the information and not all of them will
converge into the same results. For example, in the re-
cent work of Miranda van Uitert et al. [6] on microarray
data, their proposed several genes but when compared
with other two similar studies we found an overlap of
77% with Vaiman et al. [13] and 44% with Moslehi et all
[14]. Between these three studies a total of 556 genes
were selected but only 47 are common (~8%) which is a
very low overlapping (this microarray information will
be further discussed).
Each particular problem could have a better tool to

solve it and in terms of prioritization, the consensus
strategy had proof to be the most effective way to ex-
plore gene-disease association [15, 16]. However, we are
not so clear if consensus is also effective for identifica-
tion of pathogenic genes and it will be our first step in
the current work. Consequently we will include several
prioritization strategies that will be integrated using a
consensus strategy in order to rank the genes in the
gene-disease association. The consensus result will be
integrated in a common pathway and compared with
previous results in microarray meta-analysis in order to
clarify the genetic function. The goal of this second step
including network analysis and metabolic pathways
analysis is to additionally evaluate the capacity of iden-
tify pathogenic pathways and it relevance.

Methods
Selection of pathogenic genes for validation
In order to validate the prioritization strategy on patho-
genic genes we need to identify specific genes with a
high probability of being involved in PE pathogenesis.
Through manually literature inspection we considered a
gene as pathogenic if:

1. The silencing or induced overexpression of the
proposed gene in animal models generate a clinical
phenotype like preeclampsia (this group of genes
was named as G1)

2. At least one variation (polymorphism) was
associated with PE. We only consider the articles
that apply meta-analysis methods (this group of
genes was named as G2)

The full analysis of the genes in each group can be
found in Additional file 1. We found 35 unique genes
combining G1 and G2 groups (off course it is not an
exhaustive list). The selected genes in each group and its
corresponding Entrez Gene ID identifier are:
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G1 (n = 27): ADA (100), ADORA2A (135),
ADORA2B (136), AGTR1 (185), APOH (350), CD73
(4907), CRP (1401), ENG (2022), EDN1 (1606), FLT1
(2321), GADD45A (1647), HADHA (3030), HIF1A
(3091), IDO1 (3620), IL10 (3586), IL17A (3605), IL6
(2569), NOS1 (4842), NOS2 (4843), NOS3 (4846),
PGF (5228), ROS1 (6098), TACR3 (6870), TGFB1
(7040), TNF (7124), TNFSF14 (8740), VEGFA (7422).
G2 (n = 13): F5 (2153), F2 (2147), AGT (183), MTHFR

(4524), NOS3 (4846), ACE (1636), SERPINE1 (5054),
VEGFA (7422), LEPR (3953), TGFB1 (7040), AGTR1
(185), HLA-G (3135), IL10 (3586).

Prioritization algorithms and consensus strategy
From the prioritization portal [15, 16] we selected the
methods according to the following criteria: 1) fully
available in web service platform and 2) requiring only
the disease name for gene prioritization. Under these
conditions we found 12 methods: Biograph [17], Candid
[18], Glad4U [19], PolySearch [20], Cipher [21], Guildify
[22], DisgeNet [23], GeneProspector [24], Genie [25],
SNPs3D [26], GeneDistiller [27] and MetaRanker [28].
The following methods: Cipher, Guildify and DisgeNet
were not selected from the prioritization portal but from
literature, however, fulfilling the same two requirements.
These methods have several characteristics that had be-
ing fully comprised by other authors previously [15, 29].
Our strategy to combine the different scores obtained

in each independent methods is similar to the method
used in [30, 31]. Each gene (denoted as i) in the ranked
list provided by each method (denoted as j) was normal-
ized (GeneNi , j which means, the normalized score of the
gene “i” in the method “j”) in order to integrate all
methods for the consensus approach. For the final score
by gene, we considered the average normalized score as
well as the number of methods which predict the gene
(denoted as ni) using the formula:

Genei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðni−1Þ
ð12−1Þ

� �
1
j
ΣjGeneNi;j

� �s
ð1Þ

The Eq. 1 correspond with the geometrical mean be-
tween the average score of each gene obtained in each
method and the normalized score according to the number
of methods which predict the association between the gene
and the disease. However, this formula will be zero if the
gene is only predicted by only one method. Therefore we
sort the genes according to the Genei values and according

to the average ( ni−1ð Þ
12−1ð Þ

� �
þ 1

j Σj GeneNi;j

� �h i
=2). This sort-

ing will produce a ranking that further normalized leading
to the final score of each gene (ConsenScorei). If two genes
are predicted by only one method and also have the same

normalized scores then will also have the same value of
ConsenScorei.
The final list of prioritized genes is actually very long

(more than 18,000). We needed a strategy to create a
rational cutoff in the number of genes comprising the
major pathogenic information with minimal noise. To ac-
complish this task we used the same pathogenic genes
already defined. We defined the following index: I i ¼ TPi

FPiþ1

ConsenScorei where, TP and FP are the true and false
positive values (up to the ranking value of the gene i)
respectively. The maximal value of Ii can be understood as
the maximal compromise between the true positive and
false positive rate compensated with the ranking index of
each gene.

Early recognition analysis in prioritization
Several enrichment metrics have been proposed in the
chemoinformatics literature to measure the enrichment
ability of a virtual screening protocol [32] and had being
recently applied in gene prioritization [33]. In this work
and similar to [33], we used some of the most extended
metrics to estimate the enrichment ability in order to
compare different gene prioritization strategies. The
overall enrichment metrics include the area under the
accumulation curve (AUAC); the area under the ROC
curve (ROC); and the enrichment factor (EF) evaluated at
the top 1, 5, 10 and 20% of the ranked list. At the same
time, the early recognition metrics used were the robust
initial enhancement (RIE) and the Boltzmann-enhanced
discrimination of ROC (BEDROC) evaluated at the top 1,
5, 10 and 20% of the ranked list [32]. The calculation of
both classic and early recognition enrichment metrics was
conducted by using the perl scriptCresset_VS [34].

Enrichment analysis
We used David Bioinformatics Resource [35, 36] for
gene ontology (GO) and pathways enrichment analysis.
The number of GO terms could be very big considering
the amount of genes. Therefore we used Revigo [37] in
order to simplify the GO terms keeping those with high-
est specificity. We additionally used RSpider [38], to
obtain an integrated pathway combining Reactome and
KEGG databases. In these databases the pathways are
not the same so any enrichment will produce different
pathways that otherwise could be connected or even
very similar in the two databases. The use of RSpider
will produce not only a statistical analysis of the enrich-
ment but also a network representation integrating the
information in both databases. The main goal in RSpider
is to connect into non-interrupted sub-network compo-
nent as many input genes as possible using minimal
number of missing genes.
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Protein-protein interaction network and analysis
We used String Database [39] to create the protein-protein
interactions network with a confidence cutoff of 0.9 and
zero node addition. We also used Cytoscape [40] for
centrality indexes calculation and network visualization.
Communality (or cliques) network analysis by clique per-

colation method was applied using CFinder [41]. The com-
munality analysis provides a better topology description of
the network including the location of highly connected
sub-graphs (cliques) and/or overlapping modules that usu-
ally correspond with relevant biological information. The
selection of the value “k-cliques” will affect the number of
community and also the number of genes in each commu-
nity. We create a rational cutoff by balancing the number
of communities and the genes distribution across them. In
general higher values of k-cliques imply few communities
while lower values lead to many communities. In our net-
work both extremes (too small or to high k-cliques values)
result in an unbalanced distribution of the genes across
communities. Therefore we create the following index “S”

as: Sk ¼ mean Nk
gð Þ−median Nk

gð Þj j
Nk

c
where Nk

g and Nk
c are the

number of genes in each community and the number of
communities for a defined k-clique cutoff value.
In each community obtained using CFinder, we per-

formed a pathways enrichment analysis followed by a
ranking of all pathways. This ranking or scoring was done
as follow: if ConsenScoreki is the ConsenScorei of the gene
“i” in the community “k” then:

1) Each community “k” was weighted as: Wk ¼
P

ConsenScoreki =Nk , where Nk is the number of
communities.

2) Each pathway “m” was weighted as: PathRankScorem
¼ P

Wm
k =N

m
k , where W

m
k is the weight (Wk) of each

communities connected with the pathway “m” and Nm
k

is the number of communities connected with the
pathway “m”.

3) A second weight was given to the pathway “m”
(PathGeneScorem) considering all the genes involved
in the pathway as: PathGeneScorem ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ConsenScoremi
� � nm

Nm

q
, where Nm is the total number

of genes in the pathway “m” while nm is the number of
those genes which are also found in the protein-protein
interaction network. ConsenScoremi

� �
is the average of

the ConsenScorei of all genes presents in the pathway “m”.
4) The final score associated with the pathway “m”

(PathScorem)is calculated as the geometrical mean
between PathGeneScorem and the normalized
PathRankScorem.

Microarray analysis
A total of five studies were considered in microarray
data integration and were named as: A1 [7], A2 [6], A3

[14], A4 [8] and A5 [10]. In each study we extracted the
significant up-regulated/down-regulated genes consider-
ing the procedure of each author in the correspondent
articles. In any case was considered the fold-expression
as significant cutoff but the adjusted p-value reported by
the authors. The criterion was an adjusted p-value < 0.05.
The strategies in the reported articles considering:
microarrays integration, gene expression correction and
annotations where different (we will discuss more about
it in results section and a brief description can be found
in Additional file 2). The adjusted p-values were used to
create a ranking of genes in each study followed by inde-
pendent normalization.
We could go through a meta-analysis cross-normalization

approach as in [10, 33]. However, because different strategies
are possible to accomplish this analysis leading to different
results we choose to consider each study separately. In each
study (“j”) a particular up-regulated or down-regulated gene
(“i”) will have a normalized score according to ranking (Gen-
eSi , j, the normalized score of the gene “i” in the study “j”).
The consensus scoring of each gene in the microarray data
was carried out similarly to consensus prioritization strategy.
This means, the final score of each gene was calculated as

GeneASi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Narrayi−1ð Þ
5−1ð Þ

� �
1
j Σ jGeneSi;j

� �r
where, Narrayi cor-

respond with the number of studies reporting the gene “i”.
Combining all genes in the selected studies we found 1944
genes: 916 always reported up-regulated, 1013 always
reported as down-regulated and 13 genes with ambiguous
expression. The full list of genes is presented in Additional
file 2 as well as the calculated scores. This final score
(GeneASi) will have a double meaning 1) inter-studies
agreement and 2) the measure of the statistical signifi-
cance of the gene in the study. Therefore, highest values
of the score imply that the gene was identifying in several
studies and also with highest statistical significance.

Results
Consensus prioritization
The detections of pathogenic genes in all methods are pre-
sented in Table 1. As we can notice not all methods are
capable to identify the 35 proposed pathogenic genes.
Consensus strategy identify the entire G2 set in the

first 1% of the final gene list (>18,000 genes) and in all
cases remain as the method with higher identification of
pathogenic genes. Very close to consensus strategy ap-
proach is the MetaRanker [28] method. The identifica-
tion of the pathogenic genes is important but even more
relevant is the early recognition ability.
The average rank of the studied genes is lower in

consensus strategy than in other methods (Table 2) used
independently. The average rank of the detected genes is
not properly speaking a measure of early recognition.
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However, intuitively will means that consensus strategy
early detect the pathogenic genes (identified in G1 and G2
groups). The MetaRanker is one more time the closer
strategy. Even when these two previous analyses could
indicate that the consensus strategy prioritize better the
pathogenic genes, we additionally calculate several indexes
directly related with the evaluation of early enrichment
(Table 3). Because MetaRanker is the method with closer
results, the early enrichment analysis was only performed
comparing consensus and MetaRanker strategies.
The indexes related with the early enrichment clearly

state that consensus strategy over perform the result of
MetaRanker in pathogenic genes detection locating
more genes with a significant lower rank. We compare

the rank of the pathogenic genes between the two
methods for G1, G2 and G1,2 using signed Wilconson
test. The p-value was lower than 0.01 in the three groups
indicating statically significant differences in the ranking
obtained by the two methods.
Previous calculations are based on predefined genes in

G1 and G2 groups. In order to explore the consistency
of our results by changing those genes, we performed a
bootstrap sampling as follow:

a) We remove 5 random genes form the 35
“pathogenic genes” (around 14%) and evaluate the
median rank of the remaining ones in both:
consensus and MetaRanker

Table 1 Identification (in %) of pathogenic genes in each approach

Methods 1% 5% 10% 20%

G1 G2 G1,2 G1 G2 G1,2 G1 G2 G1,2 G1 G2 G1,2

BioCarta 0,00 0,00 0,00 0,00 7,69 2,86 3,70 23,08 8,57 3,70 23,08 8,57

Candid 14,81 15,38 14,29 25,93 61,54 34,29 29,63 69,23 37,14 44,44 84,62 54,29

GLAUG4 3,70 0,00 2,86 14,81 15,38 14,29 18,52 53,85 28,57 22,22 76,92 37,14

PlySearch 0,00 0,00 0,00 0,00 7,69 6,25 6,25 15,38 12,50 12,50 23,08 18,75

CIPHRE 0,00 0,00 0,00 0,00 7,69 2,86 0,00 15,38 5,71 0,00 15,38 5,71

Guildify 14,81 23,08 14,29 18,52 38,46 22,86 25,93 53,85 34,29 44,44 69,23 51,43

DISGENET 3,70 15,38 5,71 7,41 30,77 14,29 11,11 38,46 20,00 29,63 92,31 45,71

Geneprospector 3,70 30,77 11,43 22,22 84,62 34,29 22,22 100,00 40,00 33,33 100,00 48,57

GENIE 7,41 0,00 5,71 14,81 46,15 25,71 25,93 76,92 40,00 37,04 84,62 48,57

SPNS3D 7,41 7,69 5,71 14,81 15,38 11,43 14,81 30,77 17,14 29,63 53,85 34,29

GeneDistiller 0,00 0,00 0,00 0,00 7,69 6,25 6,25 7,69 12,50 12,50 15,38 18,75

MetaRanker 44,44 92,31 54,29 62,96 92,31 68,57 74,07 92,31 77,14 88,89 92,31 88,57

Consensus 51,85 100,00 62,86 74,07 100,00 80,00 85,19 100,00 88,57 88,89 100,00 91,43

Table 2 Average rank of identified pathogenic genes in each method

Methods 1% 5% 10% 20%

G1 G2 G1,2 G1 G2 G1,2 G1 G2 G1,2 G1 G2 G1,2

BioCarta 4,0 4,0 7,0 5,7 5,7 7,0 5,7 5,7

Candid 18,8 9,0 17,2 44,1 70,9 58,3 71,3 92,0 73,8 180,7 157,9 182,5

GLAUG4 1 1 3,0 5,0 3,2 4,8 8,3 6,4 6,5 11,2 9,1

PlySearch 0 0 0 1,0 1,0 2,0 1,5 1,5 3,0 2,3 2,3

CIPHRE 15,0 15,0 28,5 28,5 28,5 28,5

Guildify 36,0 41,0 29,0 57,0 155,6 117,6 300,1 324,0 353,9 1010,9 648,9 864,1

DISGENET 2,0 1,5 1,5 3,0 2,8 3,0 6,3 4,6 5,7 15,5 13,4 13,8

Geneprospector 4,0 2,5 2,5 11,2 7,7 7,7 11,2 9,8 9,6 24,0 9,8 16,7

GENIE 2,0 2,0 5,8 7,7 6,4 11,0 12,3 10,9 19,2 13,8 15,8

SPNS3D 2,0 3,0 2,0 4,0 5,5 4,0 4,0 8,0 6,2 12,9 13,4 13,9

GeneDistiller 0,0 0,0 0,0 1,0 1,0 1,0 1,0 1,0 1,5 1,5 1,3

MetaRanker 45,8 43,7 44,9 143,8 43,7 114,5 297,3 43,7 231,4 648,6 43,7 511,9

Consensus 36,4 15,8 28,0 118,2 15,8 88,3 272,6 15,8 205,7 372,0 15,8 282,4
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b) We repeat the previous step 1000 times, each time
selecting a new set of 5 random genes.

The density distribution (using Gaussian kernel of
function “density” in R) of the 1000 values in both
methods is presented in the Fig. 1.
As we can noticed, consensus strategies compared to

MetaRanker provides more frequently the lower rank for
the genes in agreement with our previous results in
Table 3 after evaluation in 1000 samples modifications.

Enrichment analysis of preeclampsia related genes and
protein-protein interaction network
Using G1 and G2 unique genes (n = 35), we can notice
(Table 1) that consensus strategy already identify the
89% in the 10% of the data, this means that the 89% of
the 35 genes are in the initial 1800 genes obtained from
prioritization. This is a very big number; therefore a

strategy for a rational cutoff was designed (see Methods).
The implementation of Ii considering the true positive
and false positive ratio could be used as a rational cutoff
to reduce the amount of genes. This procedure is
showed in Fig. 2.
The maximal (Fig. 2) value of Ii is 0.76085 and corres-

pond with a ranking value of 476, therefore the reduced
list for PE comprise the first 476 genes. The entire gene
list as well as their scores and ranking can be found in
Additional file 3. In the 476 genes there are 30 of 35
predefined pathogenic genes.
The enrichment analysis of biological processes in these

genes results into more than 500 terms with an adjusted
p-value <0.01 (considering FDR) (Additional file 4). In
order to simplify this list we used Revigo [37] to calculate
the frequencies of the gene ontology terms. We only
consider those terms with a frequency lower than 0.01%
(full list of terms can be found in Additional file 4). With

Table 3 Initial enrichment indexes for the MetaRanker and the Consensus strategy

Indexes MetaRanker Consensus

G1 G2 G1,2 G1 G2 G1,2

MEDIAN RANK 246 (6–12,345) 23 (3–3709) 154 (3–12,345) 114 (2–9218) 10 (1–59) 46 (1–9218)

AUC 0,927 0,982 0,938 0,944 1 0,957

EF_1% 44,533 92,491 54,394 51,993 100,272 63,028

EF_5% 12,604 18,478 13,726 14,823 20,011 16,009

EF_10% 7,41 9234 7717 8519 10 8857

EF_20% 4445 4616 4429 4444 5 4571

RIE_1% 38,836 75,295 46,407 48,1 92,346 58,435

RIE_5% 11,807 17,656 12,941 13,806 19,673 15,158

RIE_10% 6912 9117 7324 7676 9918 8191

RIE_20% 3971 4731 4,11 4216 5013 4399

BEDROC_1% 0,418 0,78 0,51 0,517 0,956 0,642

BEDROC_5% 0,599 0,889 0,66 0,7 0,991 0,772

BEDROC_10% 0,696 0,915 0,739 0,773 0,995 0,827

BEDROC_20% 0,79 0,941 0,819 0,84 0,998 0,877

Fig. 1 Average ranking distribution in consensus and MetaRanker strategies in 1000 generations randomly removing the 14% of the pathogenic
genes (G1,2) each time
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this consideration the number of terms remains high so
only some of the initial ones (more relevant) are presented
in Table 4.
Similarly, the enrichment analysis of metabolic path-

ways is presented in Table 5 using to main databases:
KEGG and Reactome.

The pathways presented in Table 5 are only a partial
list but it is entirely presented for Reactome and KEGG
in Additional file 4.
The biological processes and enriched pathways are

consistent between them and also with the scientific
knowledge about PE, however would be hard to establish

Fig. 2 Left) ROC curve obtained with prioritized genes for PE and the proposed pathogenic list. Right) Variation of Ii with respect to genes
ranking. The maximal value of Ii is the 0.76085 and correspond with a ranking value of 476

Table 4 Some of the more specific biological process obtained by enrichment analysis in PE genes

BP ID Name Frequency log10 p-value

GO:0008217 regulation of blood pressure 0,01% −33,0101

GO:0032496 response to lipopolysaccharide 0,01% −16,8268

GO:0030193 regulation of blood coagulation 0,01% −16,684

GO:0050818 regulation of coagulation 0,01% −16,6635

GO:0043434 response to peptide hormone 0,01% −15,6819

GO:0048660 regulation of smooth muscle cell proliferation 0,00% −15,3242

GO:0032868 response to insulin 0,01% −13,5114

GO:0045765 regulation of angiogenesis 0,01% −13,1612

GO:0070663 regulation of leukocyte proliferation 0,01% −12,3862

GO:0031960 response to corticosteroid 0,00% −12,214

GO:0045428 regulation of nitric oxide biosynthetic process 0,00% −11,8447

GO:0043627 response to estrogen 0,01% −11,8447

GO:0050670 regulation of lymphocyte proliferation 0,01% −11,3468

GO:0007568 aging 0,01% −11,3468

GO:0050730 regulation of peptidyl-tyrosine phosphorylation 0,01% −11,1844

GO:0003073 regulation of systemic arterial blood pressure 0,01% −11,0177

GO:0051384 response to glucocorticoid 0,00% −10,9101

GO:0010743 regulation of macrophage derived foam cell differentiation 0,00% −10,8962

GO:0050729 positive regulation of inflammatory response 0,01% −10,8962

GO:0050886 endocrine process 0,00% −10

GO:0031099 regeneration 0,01% −9,9245

GO:0051341 regulation of oxidoreductase activity 0,00% −9,8996

GO:0019229 regulation of vasoconstriction 0,00% −9,8761

GO:0042035 regulation of cytokine biosynthetic process 0,01% −9284

GO:0019218 regulation of steroid metabolic process 0,01% −8,1221
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some kind of relevance between them without further
consideration. In this way we carried on a network
analysis.
With the indicated cutoff of 0.9, the final protein-

protein interaction network has 417 nodes, correspond-
ing with the 87.6% of the initial genes (476). The Sk

index (as proposed in the Methods section to identify a
rational k-clique number) will rich a minimum either by

an increment in the number of communities and/or by
an increment in the similarity between the mean and
median values of the number of genes in all communi-
ties. We can notice (Fig. 3) that the desired values will
be between 8 and 10. The number of communities for
k = 8 is 16 compared to 9 and 5 for k = 9 and 10
respectively. Considering that in each community several
biological analyses will be carried on, 16 communities
will be difficult to study. Additionally in k = 8, one of
the communities have almost twofold the number of
genes with respect the remaining communities. For this
reason we select the k = 9 in our analysis (Fig. 4. Left).
Each community can be weighted considering the

ConsenScoreiof each gene in the community (see Table 6).
Additionally we also included the number of pathogenic
genes present in the community.
Communities 2 and 6 could be considered as the more

relevant showing. However could be useful the
prioritization of the metabolic pathways by an enrich-
ment analysis in each community (full list presented in
Additional file 4) and weighted as presented in the
Methods section.

Microarray data integration
From the 1944 genes collected in microarrays data only 80
are present in our 476 obtained in consensus prioritization
representing only a 4%. The worst gene overlapping with
respect to other microarrays is with the study A1. The A2,
A3, A4, A5 conserve 40 genes in common but drastically
reduced to 2 by adding A1 (Fig. 5 Left). The agreement
between selected microarray studies is not good in terms
of genes identifications as we can see in the Venn diagrams
(Fig. 5, Left). It is a direct consequence of the differences in
initial microarray data and processing strategies (pre-
sented in Additional file 2). The study A1 is the only
one with any meta-analysis strategy. Both A2 and A3
carried out a meta-analysis, while A4 and A5 go

Table 5 Pathways enrichment analysis using Reactome and
KEGG databases

Pathway Name (KEGG) % Genes p-value

Cytokine-cytokine receptor interaction 16,0337553 1,22E-26

Complement and coagulation cascades 7,59,493,671 1,64E-20

Graft-versus-host disease 4,85,232,068 1,33E-13

Allograft rejection 4,21,940,928 1,28E-10

Focal adhesion 9,28,270,042 4,28E-09

Type I diabetes mellitus 4,21,940,928 4,58E-09

Antigen processing and presentation 5,69,620,253 1,25E-08

Hematopoietic cell lineage 5,48,523,207 1,95E-07

Jak-STAT signaling pathway 7,17,299,578 1,91E-06

Renin-angiotensin system 2,32,067,511 2,63E-05

TGF-beta signaling pathway 4,64,135,021 2,13E-04

Adipocytokine signaling pathway 4,00843882 2,91E-04

Endocytosis 6,96,202,532 5,37E-04

Natural killer cell mediated cytotoxicity 5,69,620,253 6,70E-04

Pathway Name (Reactome) % Genes FDR

Hemostasis 15,8,227,848 7,21E-29

Signaling in Immune system 12,2,362,869 7,53E-11

Signaling by PDGF 5,06329114 1,73E-08

Signaling by VEGF 2,10,970,464 2,00E-06

Integrin cell surface interactions 4,85,232,068 2,05E-05

Fig. 3 Values of Sk with respect to each k-clique cutoff value
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specifically through cross-platform normalization. The
differences between both strategies in microarray data
integration had being explored previously [42]. Actually
A2 and A3 share 111 genes and similarly A4 and A5
share 237 genes. This gene space is reduced 40 genes
when all four studies are combined. Moreover as we
can see in Additional file 2, A4 and A5 share a number
of similarities regarding initial microarray data.
Analyzing the amount of genes that each study inde-

pendently shares with the initial 476 prioritized genes
(Fig. 5. Right) we found that: A1 (n = 12, 3.8%), A2
(n = 30, 7.7%), A3 (n = 30, 7.9%), A4 (n = 53, 4.2%) and
A5 (n = 26, 7.5%). The result indicates that the

methodology of Moslehi et al. [14] will represent better our
prioritized genes (even when very close to A2 and A5).
Moreover considering the average consensus score of those
genes we found: A1 (0.396), A2 (0.561), A3 (0.597), A4
(0.111) and A5 (0.540). This average scoring also suggests
that the work of Moslehi et al. [14] also cover better ranked
genes (even not so distant of A2 and A5). These values will
be discussed later.
There are a total of 41 up-regulated and 39 down-

regulated genes commonly found between all integrated
genes in microarray data and the 476 already prioritized
genes (a total of 80 genes). The up-regulated are:
VEGFA, FLT1, STOX1, SERPINE1, LEP, INHA, INHBA,

Fig. 4 Left). Community analysis for k-cliques = 9. Black nodes represent genes which are parts of several communities. The rest of the colors
correspond with the 9 communities obtained. Right) Gradient connectivity degree distribution (min = 9 with white color and max = 85 with
red color and indicated by PIK3R1 gene)

Table 6 Communities membership and scores

Communities Genes Average
ConsenScorei

Average Rank Average
Degree

N Pathogenic N Pathways

2 TGFB1, SRC,IGF1,IL6, INS, LEP, NOS3, AKT1, ICAM1,
MMP2, STAT3, VEGFA, EDN1, MMP9

0,995 89,07 55.21 5 8

6 TGFB1, TGFB3, EGF, VWF, IGF1, F2, KNG1, PPBP,
SERPINE1, TIMP1, FN1, PLG, VEGFA, IGF2, CLU,
F13A1, FIGF, MMRN1, PF4, SPARC, VEGFB, VEGFC,
F5, TGFB2, PROS1

0,991 171,28 38.24 5 7

9 TGFB1, IL6, NFKB1, TP53, AKT1, MMP2, BCL2,
MYC, MMP9

0,989 194,56 52.33 2 6

1 IL6, IL2, STAT3, IFNG, STAT5A, JAK2, JAK1, SOCS3,
STAT1, IL6ST

0,989 210,2 39.60 1 4

8 MAPK1, MAPK3, NFKB1, IL2, STAT3, RELA, CSF2,
JAK2, MYC

0,989 210,67 44.89 0 14

5 AGT, AGTR1, BDKRB2, EDNRA, F2R, F2RL2, F2RL3,
GNA11, GNAQ, KNG1, OXTR, PIK3R1, PLCG1,
PROK1, RGS2, TAC1, TAC3, TACR1, TACR3, UTS2,
EDN1, EDNRB, HTR2A, KISS1, TACR2, TBXA2R

0,987 231,04 33.88 4 7

3 ADM, CRH, POMC, ADORA2B, PTGIR, TSHR,
ADRB2, ADRB3, CALCA, CRHR2, GNAS, FSHR

0,987 243,92 16.50 1 3

4 POMC, CCR5, AGT, APLN, BDKRB2, C3, CCL5,
CCR2, CXCL10, CXCR1, CXCR2, DRD4, IL8, KNG1,
NPY, PPBP, CXCL1

0,985 273,25 28.75 1 5

7 COL18A1, COL1A1, COL1A2, COL3A1, COL4A5,
COL2A1, COL4A1, COL4A2, COL4A6, COL5A1,
COL4A3, COL4A4

0,983 304,5 15.58 0 2
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ENG, HMOX1, VWF, TGFB1, TFPI, ADAM12, CRH,
PAPPA2, VEGFC, CP, MMP14, FN1, SERPINA3,
SIGLEC6, ACE2, PREP, FABP4, EGFR, FSTL3, IL6ST,
VDR, IGFBP5, MMP15, ITGA5, TRIM24, CGA, MET,
DUSP1, MIF, TAPBP, NR1H2, MMP11, HPN, GLRX
and the down-regulated are: ACVRL1, ADRB3, AGTR1,
ANGPT1, CD4, CD14, COL1A1, COL1A2, F5, F13A1,
FCER1G, FGF2, GHR, CFH, HGF, HSD11B2, CFI, IGF1,
IGFBP7, IL10RA, IDO1, JAK1, KLRD1, MMP1, NEDD4,
ENPP1, PLAUR, MAPK1, CCL2, SOD1, SPP1, TGFBR3,
THBS1, TLR4, VCAM1, APLN, HGS, ROCK2, PLAC1.
From these 80 genes 34 (42.5%) were located with a rank-
ing less than 180 (around the first 1% of the list) in the
consensus strategy prioritization.
Comparing the scores of consensus strategy and scores

obtained from the microarrays studies (Fig. 6) we can
arrive to some interesting results. Moreover, from these 80
genes 72 are also present in the 417 forming the inter-
action network and 19 are also part of some community.
We can evaluate the contribution of these 19 genes in each
community using the average GeneASi of the genes which
belong to a particular community in a similar way as we
did previously (Table 6). The corresponding weights for

each community are: 1 (0.062), 2(0.140), 3(0.072), 4(0.033),
5(0.014), 6(0.132), 7(0.054), 8(0.031) and 9(0.048). These
weights also confirm that communities 2 and 6 could be
the more relevant as previously presented.

Integrated metabolic network
Using RSpider [38] from the 476 genes only 272 were
mapped to a reference global network obtaining three
significant models (Table 8).
The p-value indicates the probability for a random

gene/protein list to have a maximal connected compo-
nent of the same or larger size. This p-value is computed
by Monte Carlo simulation as described in [38]. Beside
this statistical analysis, we should also consider that in
the initial data (476) there are 80 genes also matching
with microarray data while in the smallest network 23 of
98 are also present in the microarray information. This
enrichment is statistically different (p-value = 0.036) com-
pared to random gene extraction. The 23 genes are:
ANGPT1, COL1A1, COL1A2, F5, F13A1, FCER1G, FLT1,
FN1, IGF1, IGFBP5, ITGA5, JAK1, MET, MMP1, SER-
PINE1, PLAUR, SPP1, TFPI, THBS1, VEGFA, VEGFC,
VWF and PAPPA2. The network associated with Model 1

Fig. 5 Left) Venn diagrams between the five microarray studies. Right) Agreement between each microarray study and the consensus gene list

Fig. 6 Relationship between the score obtained from microarray data and the consensual strategy prioritization. The red line indicates and scores
in consensus prioritization equal to 0.7
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is presented in Fig. 7. The network in Model 3 of Table 8
is presented in Additional file 5.
The expanded integrated metabolic network (Model 3)

allows the entrance of 114 genes in order to bring con-
nections between initial genes. However, it also incorpo-
rates 32 compounds that also act as connectors. These
compounds obtained from the integrated network are
presented in Table 8, some of them could be very
generic like “fatty acids” o could be very specifics as
“serotonin” or “L-Homocysteine”. These compounds can
be easily grouped mainly in lipids, steroids, amino acids,
and purine metabolisms and will be further explored in
the discussion.

Discussion
Consensus prioritization and enrichment analysis
Our results confirm that the consensus strategy actually
improve the detection and prioritization of pathogenic
genes. Application of early recognition measures are im-
portant and should be considered together with identifi-
cation capabilities. The ability to rank the relevant genes
on the top of a long prioritized list will directly reduce
de cost of experimental validation. Previous authors had
being probed that consensual strategy in prioritization
improve the detection of genes related with specific
pathology [15, 16, 33]. However, we are proving here for
the first time that the consensus strategy also improves
the early enrichment ability of genes related with patho-
genesis (at least in PE).
Any study in gene-disease association is intrinsically

focused into pathogenesis discovery. During this process

obviously some relations could be established and not
necessarily because of pathogenesis but a secondary
modification (the experimental design will be directly
related with this type of result). If several prioritization
strategies are combined, then, the possibility of removing
noisy relationships (in pathogenesis terms) increases as
well as the agreement in relevant genes.
The biological processes as well as metabolic pathways

enrichment analysis lead us to already expected informa-
tion. Some of the biological processes, like those related
to blood pressure or vasoconstrictions have a direct
association with PE clinical development. Biological
processes associated with inflammation, angiogenesis,
cytokine, immune system and hormones regulation
could also be associated with PE clinical manifestation
or even pathogenesis [6, 7, 43, 44] and there are also
well related with the metabolic pathways enrichment re-
sults (Table 5). The pathway analysis also reflects a good
agreement with previous works. The cytokine pathway,
VEGF and PDGF signaling, immune system and even
some of the cancer related pathways were previously re-
ported by other authors [6, 7, 9, 14, 44, 45]. Signaling
pathways in general, are highly relevant as well as several
routes connected with cancer (see Additional file 4) which
also agree with the previous studies [14, 46, 47].

Protein-protein interaction network, communality analysis
and microarrays integration
The enrichment analysis can be helpful. However it is hard
to establish a ranking of the pathways according to their
implications in pathogenesis without further analysis. It is

Fig. 7 Integrated metabolic network with 98 genes colored according to our microarray data. The color are: green, red and blue, indicating
down-regulated, up-regulated and no information from microarray respectively
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the main reason to combine the analysis of the protein-
protein interaction network. The entire network contains
417 nodes but only 111 are part of some community. The
network with 417 already comprises 29 of the 35 predefined
pathogenic genes. The sub-network containing only genes
which belong to some community have 12 of 29 predefined
pathogenic genes. Moreover only 3 genes (HADHA, IDO1
and HLA-G) of the remaining 17 genes are not directly
connected with the sub-network. On the other hand, the
average degree of the pathogenic genes is 23.6 which is
statistically significant higher than non-pathogenic genes
(14.2) at p-value <0.05. This result indicates that the node
degree could be associated with pathogenesis in this net-
work. The black colored nodes represent those genes that
are present in more than one community and therefore are
usually those with higher connectivity degree as we can also
see in the Fig. 3 Right (and Table 6).
The top 20 genes with highest connectivity degree are:

PIK3R1, SRC, VEGFA, KNG1, AKT1, IL6, TP53, TGFB1,
STAT3, IGF1, AGT, EDN1, JAK2, INS, EGFR, SHC1,
MAPK8, MMP9, STAT5A and MAPK1. The majority of
them are located between communities (black colored)
and only 3 (EGFR, SHC1 and MAPK8) were not identi-
fied as member of any community. The community’s
analysis (Table 6) indicates that communities 2 and 6
could be considered as the more relevant showing: 1)
the highest scores; 2) the minimal average ranking and
3) both include the major number of pathogenic genes.
In terms of connectivity degree the community 2 have
the greater value instead community 6 which have a
middle one. Looking at genes in the community 2 we
can clearly identify elements of the VEGF signaling and
also NOS metabolism through AKT1 and generally a
core of possible mechanism well established in PE that
will be discussed later. Moreover, the prioritization of
the metabolic pathways shown that VEGF signaling
pathway is not only the most relevant pathway (Table 7)
but also it is exclusively enriched in community 2.
Actually we can notice that tops pathways primarily

involve communities 2 and 6. It indicates that those com-
munities as well as their genes are highly relevant in PE.
Additionally, the community number 5 is exclusively re-
lated with the Renin-angiotensin system and considering
that it is also enriched in neuroactive ligand-receptor inter-
action and vascular smooth muscle contraction, we can
suspect that this community has a strong connection with
the hypertensive disorder. Interestingly community 8 have
the major number of associated pathways. However,
most of them are related with signaling pathways like
TGF-beta signaling. The enrichment in signaling pro-
cesses could indicate that it is probably a central
group of genes acting as connectors between several
metabolic processes and therefore would be relevant
to comprehend PE heterogeneity.

Following the importance of community 2 and 6,
the major pathways ordered by relevance connected
to both communities are: VEGF signaling pathway, mTOR
signaling pathway, Adipocytokine signaling pathway,
Intestinal immune network for IgA production, Leukocyte
transendothelial migration, Progesterone-mediated oocyte
maturation, Cytokine-cytokine receptor interaction, Jak-
STAT signaling pathway, complement and coagulation
cascades, TGF-beta signaling pathway, focal adhesion and
regulation of actin cytoskeleton.
In order to explore our results using additional experimen-

tal information we included the microarrays analysis. The
worst genes overlapping with respect to prioritized list is with
the study A1 (Fig. 5), while the other four studies show more
consistent results. The reason for this difference in A1 is
mainly because is the only study that is not a meta-analysis.
We included it because it is the largest independent study.
Our result indicates that the study of Moslehi et al. [14]

identify more common genes and also better ranked in our
consensus strategy. Both studies using meta-analysis (A2
and A3) shown a better agreement with consensus than A4
and A5. The A5 is better that A4, and similar to A2 and A3
probably because the use of combat [48] and an increased
number of arrays. Also, A2 is the study that carried out the
largest microarray integration related with PE. The use of
combat in cross-platform normalization had being favored
in term of clinical and biological meaning agreement [42].
The differences in the percentage of genes (Fig. 5 Righ)
shared with consensus strategy is really small comparing
A3 with A2 and A5 studies. The A3 study also comprise
some similarities with A4 and A5 regarding initial micro-
array data. However, A3 study exclusively considers meta-
analysis in microarrays of early-onset preeclampsia. It is a
very important difference regarding other studies. We had
probed that consensus prioritization actually improve
pathogenic early recognition and we also known that
genes involved in early onset preeclampsia are probably
closer to pathogenesis than late-onset preeclampsia. This
could explain why the A3 have the highest average score
with our prioritized consensus list. Therefore it is a logical
result considering the previous analysis and also an indir-
ect validation of our consensus strategy. The A5 and A4,
consider similar microarrays than A3 but including other
do not exclusively related with early-onset preeclampsia.
Regarding all differences between microarrays studies, we

should remember that all genes extracted from microarray
data were statistically significant up or down-regulated in
each corresponding study. Moreover we carried out a
complete integration of the gene space between all microar-
rays data considered, so, to our effects we didn’t exclude
any genes because be part or not of a particular study.
Therefore, this disparity in microarrays studies could only
affect the GeneASi scoring. The score should be interpreted
as a commitment between agreement across methods and
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their statistical significance. Even when is reasonable to as-
sume that a gene with a simultaneously high agreement
and high statistical significance could be very important (i.e.
LEP, FLT1, INHA) (Fig. 6), also the condition of high agree-
ment with low statistically significance is equally relevant
(because actually leads to highest score). In other words, a
statistical significance don’t necessarily means that the gene
is more relevant to the disease than any other with a
reduced but significant change.
Previously we presented evidence indicating that con-

sensus prioritization is capable to identify genes with
high pathogenic probabilities in the first portion of the
data. It is clearly presented in Fig. 6 with VEGFA,

AGTR1, F5 and TGFB1 which are well related with
pathogenesis [49–55]; however, the score obtained from
microarray data is relatively low in these cases (less than
0.5). Considering a high cutoff value (i.e. >0.7) we can
identify: LEP, FLT1, INHA, ENG, PAPPA2, and CRH. There
are sufficient evidences to associate these genes with PE
pathogenesis or clinical manifestation [14, 52, 53, 56–60].
Our calculations also indicate that communities 6 and 2 are
those with highest enrichment of genes coming from
microarray data confirming our previous results using
the network and consensus prioritization (Table 6).
This consistency support that the prioritization strat-
egy is actually pointing us in the correct direction

Table 7 Pathways enrichment analysis in communities and their associated weights

Pathways PathRankScorek N Community PathGeneScorem PathScorem Community

VEGF signaling pathway 89,07 1 0,422 0,547 2

mTOR signaling pathway 130,18 2 0,445 0,505 2,6

Adipocytokine signaling pathway 169,98 3 0,518 0,479 1,2,8

Intestinal immune network for IgA production 171,28 1 0,497 0,467 6

Leukocyte transendothelial migration 89,07 1 0,303 0,463 2

Progesterone-mediated oocyte maturation 89,07 1 0,301 0,462 2

Cytokine-cytokine receptor interaction 185,95 4 0,529 0,455 1,2,4,6

Jak-STAT signaling pathway 176,12 4 0,468 0,445 1,2,8,9

Renin-angiotensin system 231,04 1 0,804 0,443 5

MAPK signaling pathway 149,87 2 0,378 0,439 8,9

Complement and coagulation cascades 225,19 3 0,708 0,432 4,5,6

TGF-beta signaling pathway 190,97 2 0,486 0,427 6,8

Focal adhesion 188,28 3 0,464 0,422 2,6,7

Apoptosis 194,56 1 0,431 0,396 9

Regulation of actin cytoskeleton 171,28 1 0,326 0,378 6

Natural killer cell mediated cytotoxicity 210,67 1 0,453 0,375 8

ErbB signaling pathway 210,67 1 0,451 0,374 8

Fc epsilon RI signaling pathway 210,67 1 0,450 0,374 8

T cell receptor signaling pathway 210,67 1 0,436 0,368 8

Neurotrophin signaling pathway 202,61 2 0,339 0,338 8,9

Toll-like receptor signaling pathway 226,16 3 0,432 0,335 4,8,9

NOD-like receptor signaling pathway 241,96 2 0,510 0,326 4,8

Dorso-ventral axis formation 210,67 1 0,331 0,321 8

B cell receptor signaling pathway 210,67 1 0,328 0,319 8

Cell cycle 194,56 1 0,252 0,303 9

Chemokine signaling pathway 231,37 3 0,370 0,300 1,4,8

Gap junction 231,04 1 0,351 0,293 5

Calcium signaling pathway 237,48 2 0,363 0,284 3,5

Neuroactive ligand-receptor interaction 237,48 2 0,343 0,276 3,5

Vascular smooth muscle contraction 237,48 2 0,327 0,270 3,5

Melanogenesis 231,04 1 0,281 0,262 5

ECM-receptor interaction 304,50 1 0,478 0,040 7
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and also justify the idea that the associated pathways
could also be highly relevant.

Metabolic involvement
In all previous analysis, the VEGF signaling pathways had
being selected as the most relevant in PE. This pathway is
presented (Fig. 6) with the genes: VEGFA, VEGFB, VEGFC,
FLT1, KDR, FLT4, PGF, NRP2 and NRP1. These genes are
directly connected with arginine (NOS1, NOS2 and NOS3)
and nitric oxide metabolisms (NOSIP and HSP90AA1).
Considering the previous results in communities and
pathways enrichment analysis we should conclude that
this processes will be actually the most significant for
PE pathogenesis. Interestingly the involvement of
VEGF, FLT1 and several elements in arginine metabol-
ism, including NO production, was proposed in [61] as
the primary mechanism in placenta leading to PE.
In the protein-protein interaction network analysis we

can noticed that genes like VEGFA, NOS3, SRC and AKT1
are highly connected (community 2 in Table 6 and Fig. 4)
but in the integrated metabolic network (Model 1, Fig. 7)
their connectivity is not so elevated (or even in the ex-
tended integrated metabolic network showed in Additional
file 5). The reason for these differences is a direct
consequent of the pathway representation in KEGG and
Reactome. For example, VEGF mediates the ezrin/calpain/
PI3K/Akt pathway-dependent stimulation of NOS3 phos-
phorylation leading to Ca2+ independent NO generation
[62–64]. This connection will be reflected in the PPI as an
edge between VEGFA and NOS3 or even between VEGFA
and PIK3R1 (distant nodes in Fig. 6) and these both inter-
actions will not be seen in the Fig. 7. This is why we should
additionally use the Model 3 for integrated pathway
(presented in Additional file 5) and consider the pathway in
Fig. 7 as the simplest representation of the biological mean-
ing of genes involved in PE. Form the metabolic integrated
network (Fig. 6) we can clearly identify some well-known
mechanisms related with VEGF and PE and other relevant
effects that will be discussed further.
The increment in FLT1 production (noticed by the

microarray data) could lead to the increment in the
soluble-Flt1 rescuing the extracellular VEGFA [65, 66].
Therefore the increment in VEGFA expression in
placenta could be a compensatory response to restore
normal angiogenesis [67]. This mechanism of interaction
between soluble-Flt1 and VEGFA as well as soluble-Eng
and TGFB1 (also present in community 2) had being long
term related with PE pathogenesis [66]. The increment in
VEGFA could also be associated with an increment in
HSP90, also acting with SRC in the NOS3 expression and
NO production. As we previously explained, this can also
be accomplished through PI3K and the involvement of
AKT1. The expression of HSP90 could be polemic be-
cause apparently it is related with the disease progression

and also placenta location [68]. However several authors
had being found an increment in the placenta expression
of HSP90 in PE [68–70] at mRNA and protein levels.
Moreover, this increment can be a protective reaction that
is stimulated by HIF1A [71] and consequently connected
to disease progression as described in [68]. Actually, there
are differences in HIF1A placenta expression in early-
onset PE and late-onset PE [72] showing that both stages
have different hypoxia compensatory mechanism. Interest-
ingly the HIF1A gene is part of our prioritized list (ranking
at 46) and PPI network. HIF1A is not part of any commu-
nity but connected to several of them, especially with
community 2 (HIF1A is not connected with communities
1 and 7) and it is also missing in the integrated metabolic
models. There are not studies of HSP90 (or closely related
HSP70) gene variations or promoter polymorphism in PE
to know for sure if the protective roll could be compro-
mised leading to early or late PE manifestation.
In the extended model (Model 3, in Additional file 5)

the VEGF pathways is connected with several members
of the HLA family through CD247 and PAK2 but also to
another variety of pathways through ROCK2 and
FGD3. Both connections can be related with apoptosis,
trophoblastic affectation and endothelial cells organization
[73, 74]. Even when PAK2 had being poorly studied in PE,
we know that it is directly involved in gestational tropho-
blastic disease [45] and that endothelial cells PAK and/or
CDC42 are directly involved with KDR and consequently
essential for endothelial cells organization [74, 75].
The roll of angiogenesis in PE pathogenesis is clearly re-

vealed in our theoretical analysis as well as scientific litera-
ture. However, we should discuss other aspects related
with pathogenesis, specially the renin-angiotensin pathway
and the roll of catechol-O-methyltransferase (COMT).
We can notice in our prioritization list that AGT and

AGTR1 are the first two genes in our ranking (ACE and
AGTR2 were also found in position 7 and 19 respectively)
but interestingly only AGTR1 was found down-regulated
in our microarray data. The down-regulation of AGTR1
from microarray data was only identified (considering our
microarray data) in [6, 8], however, other authors [76, 77]
found an increment in AGTR1 expression. In any case
there are evidences that renin-angiotensin system is modi-
fied in hypoxic conditions [77, 78] and it is well connected
with the HIF1A previously discussed. In our list of patho-
genic genes, we should notice the AGT derive from 1) the
AT1-AA auto-antibody that interact with AGTR1 or 2)
from some polymorphism in AGT that had being associ-
ated with increased risk of preeclampsia [54, 79, 80]. The
origin of AT1-AA in PE is quite unknown [50, 51, 81] but
some authors shown that it is related to B-cells and it is
connected with IL10 during pregnancy as well as with
other cytokines (i.e. TNF) [82, 83]. Other authors indicates
that an increment in CD4(+) T-cells and a decrement in T
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regulatory cells stimulates TNF, IL6, endothelin (EDN1),
IL-17 and B-cells production of AT1-AA [83–85]. Some of
these genes are clearly involved in our networks and com-
munities, especially EDN1 and IL6. We can’t clearly state
that renin-angiotensin pathway is not part of PE patho-
genesis but our network based results reduce the import-
ance of this pathway. These suggest that its finding in the
top prioritized gene list is actually a consequence of the
hypertension effect more than the PE pathogenesis.
The additional consideration of the compounds in-

volved in the integrated metabolic network (Model 3)
(Table 8) also leads us to interesting points. A deregula-
tion in ammonia and urea cycles as well as in phospho-
lipid and bile acid metabolism has being reported
previously in metabolomics analysis [86, 87]. We know
that steroid hormones are related with vascular endothe-
lium, for instance, estradiol and progesterone/estradiol ra-
tios are altered in placenta of PE women probably related
with NO metabolism [88]. However, one of the most rele-
vant results in this Table 9 and in the expanded integrated
metabolic network (Model 3) is the presence of catechol-
O-methyltransferase (COMT) and 2-methoxyoestradiol.
In our prioritized gene list (see Additional file 3) the
COMT gene is ranked at position 47 and we know

that pregnant mouse with a deficiency in catechol-O-
methyltransferase (COMT) (consequently no 2-
methoxyoestradiol) lead to PE phenotype [89]. This
animal model was not considered in our initial patho-
genic data analysis but it is clearly expressed in the in-
tegrated pathway and prioritization strategy. In the
model 3 (Additional file 5), the COMT gene is quite far
connected with VEGF, however, was recently showed
that 2-methoxyestradiol has an anti-angiogenic effect
connected to KDR and HIF1A probably through a
different mechanism not involving sFlt-1 [90].
Our results confirm that consensus prioritization strat-

egy lead us to genes with pathogenic involvement, at least
in PE. Moreover, the introductions of network and enrich-
ment analysis are capable to narrow the metabolic and
gene space leading us toward reasonable conclusions in
agreement with our scientific knowledge of the disease.
However, the proposed strategies need to be further im-
proved in several topics. For instance: a) the inclusion of
prioritization algorithms based in learning strategies, b)
the inclusion of other network processing methods to re-
duce the gene lost and 3) the differentiation between early
and late-onset preeclampsia. Additionally, as previously
stated, there are several genes relevant in our analysis with
poor or almost no information in their PE involvement.
Therefore further experimental analysis will needed to val-
idate the participation of these genes in PE pathogenesis
or clinical manifestation.

Conclusions
From all the prioritization methods used in our work
MetaRanker brings the better results. However, our results
confirm that consensus strategy of several prioritization
tools improve the detection and initial enrichment of
pathogenic genes, at least in preeclampsia condition.

Table 8 Compound list of metabolic species present in the expanded integrated metabolic network model

3-Oxopalmitoyl-CoA C05259 Deoxyadenosine C00559

Corticosterone C02140 Deoxyinosine C05512

Arachidonate C00219 Tetrahydrofolate (THF) C00101

3alpha,7alpha-Dihydroxy-5beta-cholestanoyl-CoA C04644 Bromobenzene-3,4-oxide C14839

11beta-Hydroxyandrost-4-ene-3,17-dione C05284 Parathion (DNTP) C06604

3alpha,7alpha-Dihydroxy-5beta-cholestanate; C04554 Oxitriptan C00643

2-Methoxy-17beta-estradiol C05302 Bilirubin C00486

Triglyceride C00422 Docosahexaenoic acid (DHA) C06429

5(S)-HPETE C05356 Nicotinamide mononucleotide (NMN) C00455

16alpha-Hydroxyestrone C05300 dAMP C00360

Prostaglandin G2 C05956 Melatonin C01598

L-Homocysteine C00155 Nicotinamide C00153

Glutathione (GSH) C00051 Serotonin C00780

Serine C00065 N(omega)-Hydroxyarginine; C05933

Table 9 Results of integrated metabolic pathways

Models Number of
initial genes

p-value

Model 1 (0 missing gene(s)
are allowed)

98 < 0.005

Model 2 (1 missing gene(s)
are allowed)

209 < 0.005

Model 3 (2 missing gene(s)
are allowed)

231 < 0.005
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The combination of around the first percent of the
prioritized genes and protein-protein interaction net-
work followed by communality analysis brings the possi-
bilities to reduce the gene space and actually group well
known genes related with pathogenesis. In this analysis
communities connected with VEGF-signaling pathway
are highly enriched. This pathway is also enriched con-
sidering the microarray data. Actually the pathways
weighting strategy together with network analysis agrees
with the results obtained in microarray data.
The integrated metabolic pathway clearly indicates main

routes involved in preeclampsia pathogenesis. Our result
could support previous publications indicating that hyp-
oxia and also angiotensin pathways are secondary manifes-
tations and could be actually connected with disease
progression or differentiation between early and late onset
preeclampsia development. Our result point to VEGF,
FLT1, KDR as relevant pathogenic genes, as well as those
connected with NO metabolism. However, other genes like
HSP90, PAK2, CD247 and others included in the first 1%
of the prioritized list need to be further explored in pre-
eclampsia pathogenesis through experimental approaches.

Additional files

Additional file 1: Identification of pathogenic genes. The file comprises
the literature and several observations considered for the selection of our
pathogenic gene list. (DOCX 86 kb)

Additional file 2: Microarrays consensus. The file comprises all
information concerning the microarray data as well as the integration.
(XLSX 141 kb)

Additional file 3: Prioritized genes. The file comprises our final
prioritized genes as well as the consensus score. (XLSX 28 kb)

Additional file 4: Enrichment analysis. The file comprises all the
enrichment analysis: gene ontology and metabolic pathways.
(XLSX 292 kb)

Additional file 5: Integrated metabolic network. The file comprises the
Integrated Metabolic Network corresponding with Model 3 of Table 8 as
well as the list of all compounds contained in the metabolic network.
(DOCX 1116 kb)

Abbreviations
AUAC: Under the accumulation curve; BEDROC: Boltzmann-enhanced
discrimination of ROC; EF: Enrichment factor; PE: Preeclampsia; RIE: Robust
initial enhancement (RIE); ROC: Receiver operating curve

Funding
This project was partially supported by Foundation for Science and
Technology (FCT) and FEDER/COMPETE (Grants UID/QUI/00081/2013, POCI-
01-0145-FEDER-006980, and NORTE-01-0145-FEDER-000028). The authors also
thank the COST action CA15135 (Multi-Target Paradigm for Innovative Ligand
Identification in the Drug Discovery Process, MuTaLig) for support. MC-M (Grant
SFRH/BPD/90673/2012) was also supported by FCT and FEDER/COMPETE funds.

Availability of data and materials
All data generated or analyzed during this study are included in this
published article and its supplementary information files.

Authors’ contributions
ET, MC, AS and YPC were responsible for methodologies and algorithms
development. Specifically, ET and MC worked in the consensus strategy and

metabolic network while YPC and AS worked in protein-protein interaction
network. GB and ME were involved in data recollection from literature
concerning to gene-disease confirmed associations as well as microarray
data integration. FB, NC and CP were involved genes-disease validation
analysis and results discussion. IR was involved in metabolic analysis and
genetic results integration with possible interpretation in preeclampsia. All
authors were involved in manuscript corrections. All authors had read and
approved the manuscript for publication.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Facultad de Medicina, Universidad de Las Américas, Av. de los Granados
E12-41y Colimes esq, EC170125 Quito, Ecuador. 2Department of Molecular
and Cellular Pharmacology, Miller School of Medicine and Center for
Computational Science, University of Miami, FL 33136 Miami, USA.
3Department of General Education, West Coast University—Miami Campus,
Doral FL 33178, USA. 4Departamento de Ciencias Naturales, Universidad
Técnica Particular de Loja, Calle París S/N, EC1101608, Loja, Ecuador. 5Escuela
de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito,
Ecuador. 6CIQUP/Departamento de Quimica e Bioquimica, Faculdade de
Ciências, Universidade do Porto, 4169-007 Porto, Portugal. 7REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of
Porto, 4169-007 Porto, Portugal. 8Centro de Investigaciones genética y
genómica, Facultad de Ciencias de la Salud, Universidad Tecnológica
Equinoccial, Quito, Ecuador. 9Faculty of Pharmacy, University of Porto, Porto,
Portugal. 10UCIBIO@REQUIMTE, Caparica, Portugal.

Received: 8 February 2017 Accepted: 28 July 2017

References
1. Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R. Pre-eclampsia part

1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014;10:
466–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25003615

2. Fisher SJ. Why is placentation abnormal in preeclampsia? Am J Obstet
Gynecol. 2015;213:S115–22. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/26428489

3. Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human
cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of
defective endovascular invasion in this syndrome? J Clin Invest. 1997;99:2152–
64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9151787

4. Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, et al. NCBI
GEO: archive for functional genomics data sets–10 years on. Nucleic Acids
Res. 2011;39:D1005–10. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/21097893

5. Parkinson H, Sarkans U, Kolesnikov N, Abeygunawardena N, Burdett T, Dylag M,
et al. ArrayExpress update–an archive of microarray and high-throughput
sequencing-based functional genomics experiments. Nucleic Acids Res. 2011;
39:D1002–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21071405

6. van Uitert M, Moerland PD, Enquobahrie DA, Laivuori H, van der Post JAM,
Ris-Stalpers C, et al. Meta-analysis of placental Transcriptome data identifies
a novel molecular pathway related to preeclampsia. PLoS One. 2015;10:
e0132468. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26171964

7. Yong HEJ, Melton PE, Johnson MP, Freed KA, Kalionis B, Murthi P, et al.
Genome-wide transcriptome directed pathway analysis of maternal pre-
eclampsia susceptibility genes. PLoS One. 2015;10:e0128230. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/26010865

8. Leavey K, Bainbridge SA, Cox BJ. Large scale aggregate microarray analysis
reveals three distinct molecular subclasses of human preeclampsia. PLoS

Tejera et al. BMC Medical Genomics  (2017) 10:50 Page 16 of 19

dx.doi.org/10.1186/s12920-017-0286-x
dx.doi.org/10.1186/s12920-017-0286-x
dx.doi.org/10.1186/s12920-017-0286-x
dx.doi.org/10.1186/s12920-017-0286-x
dx.doi.org/10.1186/s12920-017-0286-x
http://www.ncbi.nlm.nih.gov/pubmed/25003615
http://www.ncbi.nlm.nih.gov/pubmed/26428489
http://www.ncbi.nlm.nih.gov/pubmed/26428489
http://www.ncbi.nlm.nih.gov/pubmed/9151787
http://www.ncbi.nlm.nih.gov/pubmed/21097893
http://www.ncbi.nlm.nih.gov/pubmed/21097893
http://www.ncbi.nlm.nih.gov/pubmed/21071405
http://www.ncbi.nlm.nih.gov/pubmed/26171964
http://www.ncbi.nlm.nih.gov/pubmed/26010865


One. 2015;10:e0116508. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/25679511

9. Rabaglino MB, Post Uiterweer ED, Jeyabalan A, Hogge WA, Conrad KP.
Bioinformatics approach reveals evidence for impaired endometrial
maturation before and during early pregnancy in women who developed
preeclampsia. Hypertension. 2015;65:421–9. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/25421975

10. Tejera E, Bernardes J, Rebelo I. Co-expression network analysis and genetic
algorithms for gene prioritization in preeclampsia. BMC Med Genet. 2013;6:
51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24219996

11. Tejera E, Bernardes J, Rebelo I. Preeclampsia: a bioinformatics approach
through protein-protein interaction networks analysis. BMC Syst Biol. 2012;6:
97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22873350

12. Song Y, Liu J, Huang S, Zhang L. Analysis of differentially expressed genes in
placental tissues of preeclampsia patients using microarray combined with
the connectivity map database. Placenta. 2013;34:1190–5. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/24125805

13. Vaiman D, Calicchio R, Miralles F. Landscape of transcriptional deregulations
in the preeclamptic placenta. PLoS One. 2013;8:e65498. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/23785430

14. Moslehi R, Mills JL, Signore C, Kumar A, Ambroggio X, Dzutsev A. Integrative
transcriptome analysis reveals dysregulation of canonical cancer molecular
pathways in placenta leading to preeclampsia. Sci Rep. 2013;3:2407.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/23989136

15. Börnigen D, Tranchevent L-C, Bonachela-Capdevila F, Devriendt K, De Moor
B, De Causmaecker P, et al. An unbiased evaluation of gene prioritization
tools. Bioinformatics. 2012;28:3081–8. Available from: http://www.ncbi.nlm.
nih.gov/pubmed/23047555

16. Tranchevent L-C, Capdevila FB, Nitsch D, De Moor B, De Causmaecker P,
Moreau Y. A guide to web tools to prioritize candidate genes. Brief Bioinform.
2011;12:22–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21278374

17. Liekens AML, De Knijf J, Daelemans W, Goethals B, De Rijk P, Del-Favero J.
BioGraph: unsupervised biomedical knowledge discovery via automated
hypothesis generation. Genome Biol. 2011;12:R57. BioMed Central, Available
from: http://www.ncbi.nlm.nih.gov/pubmed/21696594

18. Hutz JE, Kraja AT, McLeod HL. Province MA. CANDID: a flexible method for
prioritizing candidate genes for complex human traits. Genet Epidemiol. 2008;
32:779–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18613097

19. Jourquin J, Duncan D, Shi Z, Zhang B. GLAD4U: deriving and prioritizing
gene lists from PubMed literature. BMC Genomics. 2012;13(Suppl 8):S20.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/23282288

20. Cheng D, Knox C, Young N, Stothard P, Damaraju S, Wishart DS. PolySearch:
a web-based text mining system for extracting relationships between
human diseases, genes, mutations, drugs and metabolites. Nucleic Acids
Res. 2008;36:W399–405. Oxford University Press, Available from: http://www.
ncbi.nlm.nih.gov/pubmed/18487273

21. Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of
human disease genes. Mol Syst Biol. 2008;4:189. European Molecular
Biology Organization, Available from: http://www.ncbi.nlm.nih.gov/
pubmed/18463613

22. Guney E, Garcia-Garcia J, Oliva B. GUILDify: a web server for phenotypic
characterization of genes through biological data integration and network-
based prioritization algorithms. Bioinformatics. 2014;30:1789–90. Available
from: http://www.ncbi.nlm.nih.gov/pubmed/24532728

23. Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-Mehren A, Baron
M, et al. DisGeNET: a discovery platform for the dynamical exploration of
human diseases and their genes. Database (Oxford). 2015;2015:bav028.
Oxford University Press, Available from: http://www.ncbi.nlm.nih.gov/
pubmed/25877637

24. Yu W, Wulf A, Liu T, Khoury MJ, Gwinn M, Rebbeck T, et al. Gene prospector:
an evidence gateway for evaluating potential susceptibility genes and
interacting risk factors for human diseases. BMC Bioinformatics. 2008;9:528.
BioMed Central, Available from: http://bmcbioinformatics.biomedcentral.
com/articles/10.1186/1471-2105-9-528

25. Fontaine J-F, Priller F, Barbosa-Silva A, Andrade-Navarro MA. Génie:
literature-based gene prioritization at multi genomic scale. Nucleic Acids
Res. 2011;39:W455–61. Oxford University Press, Available from: http://www.
ncbi.nlm.nih.gov/pubmed/21609954

26. Yue P, Melamud E, Moult J. SNPs3D: candidate gene and SNP selection for
association studies. BMC Bioinformatics. 2006;7:166. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/16551372

27. Seelow D, Schwarz JM, Schuelke M. GeneDistiller–distilling candidate genes
from linkage intervals. PLoS One. 2008;3:e3874. Available from: http://www.
ncbi.nlm.nih.gov/pubmed/19057649

28. Pers TH, Dworzyński P, Thomas CE, Lage K, Brunak S. MetaRanker 2.0: a web
server for prioritization of genetic variation data. Nucleic Acids Res. 2013;41:
W104–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23703204

29. Gonzalez GH, Tahsin T, Goodale BC, Greene AC, Greene CS. Recent
advances and emerging applications in text and data Mining for Biomedical
Discovery. Brief Bioinform. 2016;17:33–42. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/26420781

30. Helguera AM, Perez-Castillo Y, Cordeiro MN DS, Tejera E, Paz-Y-Miño C,
Sánchez-Rodríguez A, et al. Ligand-based virtual screening using tailored
ensembles: a prioritization tool for dual A2AAdenosine receptor antagonists
/ monoamine Oxidase B inhibitors. Curr Pharm Des. 2016;22:3082–96.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/26932160

31. Perez-Castillo Y, Helguera AM, Cordeiro MNDS, Tejera E, Paz-Y-Miño C,
Sánchez-Rodríguez A, et al. Fusing docking scoring functions improves the
virtual screening performance for discovering Parkinson’s disease dual
target Ligands. Curr Neuropharmacol. 2017 [cited 2017 Mar 29]; Available
from: http://www.ncbi.nlm.nih.gov/pubmed/28067172.

32. Truchon J-F, Bayly CI. Evaluating virtual screening methods: good and bad
metrics for the &quot;early recognition&quot; problem. J Chem Inf Model.
47:488–508. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17288412

33. Cruz-Monteagudo M, Borges F, Paz-y-Miño C, Cordeiro MNDS, Rebelo I, Perez-
Castillo Y, et al. Efficient and biologically relevant consensus strategy for
Parkinson’s disease gene prioritization. BMC Med Genet. 2016;9:12. BioMed
Central, Available from: http://www.biomedcentral.com/1755-8794/9/12

34. Mackey MD, Melville JL. Better than random? The chemotype enrichment
problem. J Chem Inf Model. 2009;49:1154–62. Available from: http://www.
ncbi.nlm.nih.gov/pubmed/19397275

35. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of
large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:
44–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19131956

36. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists.
Nucleic Acids Res. 2009;37:1–13. Available from: http://www.ncbi.nlm.nih.
gov/pubmed/19033363

37. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes
long lists of gene ontology terms. PLoS One. 2011;6:e21800. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/21789182

38. Antonov AV, Schmidt EE, Dietmann S, Krestyaninova M, Hermjakob H. R
spider: a network-based analysis of gene lists by combining signaling and
metabolic pathways from Reactome and KEGG databases. Nucleic Acids Res.
2010;38:W78–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/
20519200

39. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J,
et al. STRING v10: protein-protein interaction networks, integrated over the
tree of life. Nucleic Acids Res. 2015;43:D447–52. Available from: http://www.
ncbi.nlm.nih.gov/pubmed/25352553

40. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.
Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res. 2003;13:2498–504. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/14597658

41. Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community
structure of complex networks in nature and society. Nature. 2005;435:814–
8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15944704

42. Walsh CJ, Hu P, Batt J, Dos SCC. Microarray meta-analysis and cross-platform
normalization: integrative genomics for robust biomarker discovery.
Microarrays (Basel, Switzerland). 2015;4:389–406. Multidisciplinary Digital
Publishing Institute (MDPI), Available from: http://www.ncbi.nlm.nih.gov/
pubmed/27600230

43. Cox B. Bioinformatic approach to the genetics of preeclampsia. Obstet
Gynecol. 2014;124:633. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/25162267

44. Jia R, Li J, Rui C, Ji H, Ding H, Lu Y, et al. Comparative proteomic profile of
the human umbilical cord blood Exosomes between normal and
preeclampsia pregnancies with high-resolution mass spectrometry. Cell
Physiol Biochem. 2015;36:2299–306. Available from: http://www.ncbi.nlm.nih.
gov/pubmed/26279434

45. Tejera E, Bernardes J, Rebelo I. Preeclampsia: a bioinformatics approach through
protein-protein interaction networks analysis. BMC Syst Biol. 2012;2012:97.

Tejera et al. BMC Medical Genomics  (2017) 10:50 Page 17 of 19

http://www.ncbi.nlm.nih.gov/pubmed/25679511
http://www.ncbi.nlm.nih.gov/pubmed/25679511
http://www.ncbi.nlm.nih.gov/pubmed/25421975
http://www.ncbi.nlm.nih.gov/pubmed/25421975
http://www.ncbi.nlm.nih.gov/pubmed/24219996
http://www.ncbi.nlm.nih.gov/pubmed/22873350
http://www.ncbi.nlm.nih.gov/pubmed/24125805
http://www.ncbi.nlm.nih.gov/pubmed/23785430
http://www.ncbi.nlm.nih.gov/pubmed/23989136
http://www.ncbi.nlm.nih.gov/pubmed/23047555
http://www.ncbi.nlm.nih.gov/pubmed/23047555
http://www.ncbi.nlm.nih.gov/pubmed/21278374
http://www.ncbi.nlm.nih.gov/pubmed/21696594
http://www.ncbi.nlm.nih.gov/pubmed/18613097
http://www.ncbi.nlm.nih.gov/pubmed/23282288
http://www.ncbi.nlm.nih.gov/pubmed/18487273
http://www.ncbi.nlm.nih.gov/pubmed/18487273
http://www.ncbi.nlm.nih.gov/pubmed/18463613
http://www.ncbi.nlm.nih.gov/pubmed/18463613
http://www.ncbi.nlm.nih.gov/pubmed/24532728
http://www.ncbi.nlm.nih.gov/pubmed/25877637
http://www.ncbi.nlm.nih.gov/pubmed/25877637
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-528
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-528
http://www.ncbi.nlm.nih.gov/pubmed/21609954
http://www.ncbi.nlm.nih.gov/pubmed/21609954
http://www.ncbi.nlm.nih.gov/pubmed/16551372
http://www.ncbi.nlm.nih.gov/pubmed/16551372
http://www.ncbi.nlm.nih.gov/pubmed/19057649
http://www.ncbi.nlm.nih.gov/pubmed/19057649
http://www.ncbi.nlm.nih.gov/pubmed/23703204
http://www.ncbi.nlm.nih.gov/pubmed/26420781
http://www.ncbi.nlm.nih.gov/pubmed/26420781
http://www.ncbi.nlm.nih.gov/pubmed/26932160
http://www.ncbi.nlm.nih.gov/pubmed/28067172
http://www.ncbi.nlm.nih.gov/pubmed/17288412
http://www.biomedcentral.com/1755-8794/9/12
http://www.ncbi.nlm.nih.gov/pubmed/19397275
http://www.ncbi.nlm.nih.gov/pubmed/19397275
http://www.ncbi.nlm.nih.gov/pubmed/19131956
http://www.ncbi.nlm.nih.gov/pubmed/19033363
http://www.ncbi.nlm.nih.gov/pubmed/19033363
http://www.ncbi.nlm.nih.gov/pubmed/21789182
http://www.ncbi.nlm.nih.gov/pubmed/20519200
http://www.ncbi.nlm.nih.gov/pubmed/20519200
http://www.ncbi.nlm.nih.gov/pubmed/25352553
http://www.ncbi.nlm.nih.gov/pubmed/25352553
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://www.ncbi.nlm.nih.gov/pubmed/15944704
http://www.ncbi.nlm.nih.gov/pubmed/27600230
http://www.ncbi.nlm.nih.gov/pubmed/27600230
http://www.ncbi.nlm.nih.gov/pubmed/25162267
http://www.ncbi.nlm.nih.gov/pubmed/25162267
http://www.ncbi.nlm.nih.gov/pubmed/26279434
http://www.ncbi.nlm.nih.gov/pubmed/26279434


46. Khangura RK, Khangura CK, Desai A, Goyert G, Sangha R. Metastatic
colorectal cancer resembling severe preeclampsia in pregnancy. Case Rep
Obstet Gynecol. 2015;2015:487824. Available from: http://www.ncbi.nlm.nih.
gov/pubmed/26770850

47. Romero R, Grivel J-C, Tarca AL, Chaemsaithong P, Xu Z, Fitzgerald W, et al.
Evidence of perturbations of the cytokine network in preterm labor. Am J
Obstet Gynecol. 2015;213:836.e1. Available from: http://www.ncbi.nlm.nih.
gov/pubmed/26232508

48. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/16632515

49. Iriyama T, Wang W, Parchim NF, Song A, Blackwell SC, Sibai BM, et al.
Hypoxia-independent upregulation of placental hypoxia inducible factor-1α
gene expression contributes to the pathogenesis of preeclampsia.
Hypertension. 2015;65:1307–15. Available from: http://www.ncbi.nlm.nih.
gov/pubmed/25847948

50. Xia Y, Kellems RE. Angiotensin receptor agonistic autoantibodies and
hypertension: preeclampsia and beyond. Circ Res. 2013;113:78–87. Available
from: http://www.ncbi.nlm.nih.gov/pubmed/23788505

51. Parrish MR, Murphy SR, Rutland S, Wallace K, Wenzel K, Wallukat G, et al. The
effect of immune factors, tumor necrosis factor-alpha, and agonistic
autoantibodies to the angiotensin II type I receptor on soluble fms-like
tyrosine-1 and soluble endoglin production in response to hypertension
during pregnancy. Am J Hypertens. 2010;23:911–6. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/20431529

52. Maynard SE, Min J-Y, Merchan J, Lim K-H, Li J, Mondal S, et al. Excess
placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to
endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J
Clin Invest. 2003;111:649–58. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/12618519

53. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, et al. Soluble
endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12:
642–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16751767

54. Staines-Urias E, Paez MC, Doyle P, Dudbridge F, Serrano NC, Ioannidis JPA,
et al. Genetic association studies in pre-eclampsia: systematic meta-analyses
and field synopsis. Int J Epidemiol. 2012;41:1764–75. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/23132613

55. Li X, Shen L, Tan H. Polymorphisms and plasma level of transforming growth
factor-Beta 1 and risk for preeclampsia: a systematic review. PLoS One. 2014;9:
e97230. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24823830

56. Macintire K, Tuohey L, Ye L, Palmer K, Gantier M, Tong S, et al. PAPPA2 is
increased in severe early onset pre-eclampsia and upregulated with
hypoxia. Reprod Fertil Dev. 2014;26:351–7. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/23484525

57. Wagner PK, Otomo A, Christians JK. Regulation of pregnancy-associated
plasma protein A2 (PAPPA2) in a human placental trophoblast cell line
(BeWo). Reprod Biol Endocrinol. 2011;9:48. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/21496272

58. Fong FM, Sahemey MK, Hamedi G, Eyitayo R, Yates D, Kuan V, et al.
Maternal genotype and severe preeclampsia: a HuGE review. Am J
Epidemiol. 2014;180:335–45. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/25028703

59. Nezi M, Mastorakos G, Mouslech Z. Corticotropin releasing hormone and
the immune/inflammatory response [internet]. Endotext. 2000. Available
from: http://www.ncbi.nlm.nih.gov/pubmed/25905246.

60. Song J, Li Y, An RF. Identification of early-onset preeclampsia-related genes
and MicroRNAs by bioinformatics approaches. Reprod Sci. 2015;22:954–63.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/25717061

61. Noris M, Perico N, Remuzzi G. Mechanisms of disease: pre-eclampsia. Nat
Clin Pract Nephrol. 2005;1:98–114. Nature Publishing Group, Available from:
http://www.nature.com/doifinder/10.1038/ncpneph0035

62. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM.
Activation of nitric oxide synthase in endothelial cells by Akt-dependent
phosphorylation. Nature. 1999;399:601–5. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/10376603.

63. Cindrova-Davies T, Sanders DA, Burton GJ, Charnock-Jones DS. Soluble FLT1
sensitizes endothelial cells to inflammatory cytokines by antagonizing VEGF
receptor-mediated signalling. Cardiovasc Res. 2011;89:671–9. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/21139021.

64. Nagai A, Sado T, Naruse K, Noguchi T, Haruta S, Yoshida S, et al.
Antiangiogenic-induced hypertension: the molecular basis of signaling

network. Gynecol Obstet Investig. 2012;73:89–98. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/22222493.

65. Chappell JC, Taylor SM, Ferrara N, Bautch VL. Local guidance of emerging
vessel sprouts requires soluble Flt-1. Dev Cell. 2009;17:377–86. Available
from: http://www.ncbi.nlm.nih.gov/pubmed/19758562

66. Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal
endothelium: the role of antiangiogenic factors and implications for later
cardiovascular disease. Circulation. 2011;123:2856–69. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/21690502

67. Sundrani DP, Reddy US, Joshi AA, Mehendale SS, Chavan-Gautam PM,
Hardikar AA, et al. Differential placental methylation and expression of VEGF,
FLT-1 and KDR genes in human term and preterm preeclampsia. Clin.
Epigenetics. BioMed Central. 2013;5:6. Available from: http://
clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/1868-7083-5-6

68. Hromadnikova I, Dvorakova L, Kotlabova K, Kestlerova A, Hympanova L,
Novotna V, et al. Assessment of placental and maternal stress responses in
patients with pregnancy related complications via monitoring of heat shock
protein mRNA levels. Mol Biol Rep. 2015;42:625–37. Available from: http://
link.springer.com/10.1007/s11033-014-3808-z

69. Shu C, Liu Z, Cui L, Wei C, Wang S, Tang JJ, et al. Protein profiling of preeclampsia
placental tissues. Buratti E, editor. PLoS One. 2014;9:e112890. Public Library of
Science, Available from: http://dx.plos.org/10.1371/journal.pone.0112890.

70. Padmini E, Venkatraman U, Srinivasan L. Mechanism of JNK signal regulation
by placental HSP70 and HSP90 in endothelial cell during preeclampsia.
Toxicol Mech Methods. 2012;22:367–74. Available from: http://www.
tandfonline.com/doi/full/10.3109/15376516.2012.673091.

71. Padmini E, Uthra V, Lavanya S. Effect of HSP70 and 90 in modulation of JNK, ERK
expression in Preeclamptic placental endothelial cell. Cell Biochem Biophys. 2012;
64:187–95. Available from: http://link.springer.com/10.1007/s12013-012-9371-0.

72. Khodzhaeva ZS, Kogan YA, Shmakov RG, Klimenchenko NI, Akatyeva AS,
Vavina OV, et al. Clinical and pathogenetic features of early- and late-onset
pre-eclampsia. J Matern Neonatal Med. 2015;2015:1–7. Available from:
http://www.tandfonline.com/doi/full/10.3109/14767058.2015.1111332.

73. Siu MKY, Yeung MCW, Zhang H, Kong DSH, Ho JWK, Ngan HYS, et al. p21-
activated kinase-1 promotes aggressive phenotype, cell proliferation, and
invasion in gestational trophoblastic disease. Am J Pathol. 2010;176:3015–22.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/20413688.

74. Barry DM, Xu K, Meadows SM, Zheng Y, Norden PR, Davis GE, et al. Cdc42 is
required for cytoskeletal support of endothelial cell adhesion during blood
vessel formation in mice. Development. 2015;142:3058–70. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/26253403.

75. Dubrac A, Genet G, Ola R, Zhang F, Pibouin-Fragner L, Han J, et al.
Targeting NCK-mediated endothelial cell front-rear polarity inhibits
NeovascularizationCLINICAL PERSPECTIVE. Circulation. 2016;133:409–21.
Available from: http://circ.ahajournals.org/lookup/doi/10.1161/
CIRCULATIONAHA.115.017537.

76. Mistry HD, Kurlak LO, Broughton Pipkin F. The placental renin-angiotensin
system and oxidative stress in pre-eclampsia. Placenta. 2013;34:182–6.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/23246097.

77. Kurlak LO, Williams PJ, Bulmer JN, Broughton Pipkin F, Mistry HD. Placental
expression of adenosine A2A receptor and hypoxia inducible factor-1 alpha
in early pregnancy, term and pre-eclamptic pregnancies: interactions with
placental renin-angiotensin system. Placenta. 2015;36:611–3. Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0143400415008103.

78. Kurlak LO, Mistry HD, Cindrova-Davies T, Burton GJ, Broughton Pipkin F.
Human placental renin-angiotensin system in normotensive and pre-
eclamptic pregnancies at high altitude and after acute hypoxia-
reoxygenation insult. J Physiol. 2016;594:1327–40. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/26574162.

79. Ni S, Zhang Y, Deng Y, Gong Y, Huang J, Bai Y, et al. AGT M235T
polymorphism contributes to risk of preeclampsia: evidence from a meta-
analysis. J Renin-Angiotensin-Aldosterone Syst. 2012;13:379–86. Available
from: http://www.ncbi.nlm.nih.gov/pubmed/22513276.

80 Zhao L, Dewan AT, Bracken MB. Association of maternal AGTR1
polymorphisms and preeclampsia: a systematic review and meta-analysis. J
Matern Fetal Neonatal Med. 2012;25:2676–80. Available from: http://www.
ncbi.nlm.nih.gov/pubmed/22758920.

81. Dechend R, Gratze P, Wallukat G, Shagdarsuren E, Plehm R, Bräsen J-H, et al.
Agonistic autoantibodies to the AT1 receptor in a transgenic rat model of
preeclampsia. Hypertension. 2005;45:742–6. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/15699466.

Tejera et al. BMC Medical Genomics  (2017) 10:50 Page 18 of 19

http://www.ncbi.nlm.nih.gov/pubmed/26770850
http://www.ncbi.nlm.nih.gov/pubmed/26770850
http://www.ncbi.nlm.nih.gov/pubmed/26232508
http://www.ncbi.nlm.nih.gov/pubmed/26232508
http://www.ncbi.nlm.nih.gov/pubmed/16632515
http://www.ncbi.nlm.nih.gov/pubmed/25847948
http://www.ncbi.nlm.nih.gov/pubmed/25847948
http://www.ncbi.nlm.nih.gov/pubmed/23788505
http://www.ncbi.nlm.nih.gov/pubmed/20431529
http://www.ncbi.nlm.nih.gov/pubmed/20431529
http://www.ncbi.nlm.nih.gov/pubmed/12618519
http://www.ncbi.nlm.nih.gov/pubmed/12618519
http://www.ncbi.nlm.nih.gov/pubmed/16751767
http://www.ncbi.nlm.nih.gov/pubmed/23132613
http://www.ncbi.nlm.nih.gov/pubmed/23132613
http://www.ncbi.nlm.nih.gov/pubmed/24823830
http://www.ncbi.nlm.nih.gov/pubmed/23484525
http://www.ncbi.nlm.nih.gov/pubmed/23484525
http://www.ncbi.nlm.nih.gov/pubmed/21496272
http://www.ncbi.nlm.nih.gov/pubmed/21496272
http://www.ncbi.nlm.nih.gov/pubmed/25028703
http://www.ncbi.nlm.nih.gov/pubmed/25028703
http://www.ncbi.nlm.nih.gov/pubmed/25905246
http://www.ncbi.nlm.nih.gov/pubmed/25717061
http://www.nature.com/doifinder/10.1038/ncpneph0035
http://www.ncbi.nlm.nih.gov/pubmed/10376603
http://www.ncbi.nlm.nih.gov/pubmed/10376603
http://www.ncbi.nlm.nih.gov/pubmed/21139021
http://www.ncbi.nlm.nih.gov/pubmed/22222493
http://www.ncbi.nlm.nih.gov/pubmed/22222493
http://www.ncbi.nlm.nih.gov/pubmed/19758562
http://www.ncbi.nlm.nih.gov/pubmed/21690502
http://www.ncbi.nlm.nih.gov/pubmed/21690502
http://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/1868-7083-5-6
http://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/1868-7083-5-6
http://link.springer.com/10.1007/s11033-014-3808-z
http://link.springer.com/10.1007/s11033-014-3808-z
http://dx.plos.org/10.1371/journal.pone.0112890
http://www.tandfonline.com/doi/full/10.3109/15376516.2012.673091
http://www.tandfonline.com/doi/full/10.3109/15376516.2012.673091
http://link.springer.com/10.1007/s12013-012-9371-0
http://www.tandfonline.com/doi/full/10.3109/14767058.2015.1111332
http://www.ncbi.nlm.nih.gov/pubmed/20413688
http://www.ncbi.nlm.nih.gov/pubmed/26253403
http://circ.ahajournals.org/lookup/doi/10.1161/CIRCULATIONAHA.115.017537
http://circ.ahajournals.org/lookup/doi/10.1161/CIRCULATIONAHA.115.017537
http://www.ncbi.nlm.nih.gov/pubmed/23246097
http://linkinghub.elsevier.com/retrieve/pii/S0143400415008103
http://www.ncbi.nlm.nih.gov/pubmed/26574162
http://www.ncbi.nlm.nih.gov/pubmed/26574162
http://www.ncbi.nlm.nih.gov/pubmed/22513276
http://www.ncbi.nlm.nih.gov/pubmed/22758920
http://www.ncbi.nlm.nih.gov/pubmed/22758920
http://www.ncbi.nlm.nih.gov/pubmed/15699466
http://www.ncbi.nlm.nih.gov/pubmed/15699466


82. Fettke F, Schumacher A, Costa S-D, Zenclussen AC. B cells: the old new
players in reproductive immunology. Front Immunol. 2014;5:285. Available
from: http://www.ncbi.nlm.nih.gov/pubmed/25002862.

83 Spradley FT, Palei AC, Granger JP. Immune mechanisms linking obesity and
preeclampsia. Biomol Ther. 2015;5:3142–76. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/26569331.

84. Harmon AC, Cornelius DC, Amaral LM, Faulkner JL, Cunningham MW,
Wallace K, et al. The role of inflammation in the pathology of preeclampsia.
Clin Sci (Lond). 2016;130:409–19. Portland Press Limited, Available from:
http://www.ncbi.nlm.nih.gov/pubmed/26846579.

85. Dhillion P, Wallace K, Herse F, Scott J, Wallukat G, Heath J, et al. IL-17-
mediated oxidative stress is an important stimulator of AT1-AA and
hypertension during pregnancy. Am J Phys Regul Integr Comp Phys. 2012;
303:R353–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/
22718806.

86. Austdal M, Thomsen LCV, Tangerås LH, Skei B, Mathew S, Bjørge L, et al.
Metabolic profiles of placenta in preeclampsia using HR-MAS MRS
metabolomics. Placenta. 2015;36:1455–62. Available from: http://www.ncbi.
nlm.nih.gov/pubmed/26582504.

87. Bahado-Singh RO, Syngelaki A, Akolekar R, Mandal R, Bjondahl TC, Han B, et
al. Validation of metabolomic models for prediction of early-onset
preeclampsia. Am J Obstet Gynecol. 2015;213:530.e1–530.e10. Available
from: http://www.ncbi.nlm.nih.gov/pubmed/26116099.

88. Zheng J-J, Wang H-O, Huang M, Zheng F-Y. Assessment of ADMA, estradiol,
and progesterone in severe preeclampsia. Clin Exp Hypertens. 2016;38:347–
51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27152507.

89. Kanasaki K, Palmsten K, Sugimoto H, Ahmad S, Hamano Y, Xie L, et al.
Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is
associated with pre-eclampsia. Nature. 2008;453:1117–21. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/18469803.

90. Lee DK. Nevo O. 2-Methoxyestradiol regulates VEGFR-2 and sFlt-1
expression in human placenta. Placenta. 2015;36:125–30. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/25499009.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Tejera et al. BMC Medical Genomics  (2017) 10:50 Page 19 of 19

http://www.ncbi.nlm.nih.gov/pubmed/25002862
http://www.ncbi.nlm.nih.gov/pubmed/26569331
http://www.ncbi.nlm.nih.gov/pubmed/26569331
http://www.ncbi.nlm.nih.gov/pubmed/26846579
http://www.ncbi.nlm.nih.gov/pubmed/22718806
http://www.ncbi.nlm.nih.gov/pubmed/22718806
http://www.ncbi.nlm.nih.gov/pubmed/26582504
http://www.ncbi.nlm.nih.gov/pubmed/26582504
http://www.ncbi.nlm.nih.gov/pubmed/26116099
http://www.ncbi.nlm.nih.gov/pubmed/27152507
http://www.ncbi.nlm.nih.gov/pubmed/18469803
http://www.ncbi.nlm.nih.gov/pubmed/25499009

