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Genetic interaction effects reveal lipid-
metabolic and inflammatory pathways
underlying common metabolic disease risks
Hyung Jun Woo and Jaques Reifman*

Abstract

Background: Common metabolic diseases, including type 2 diabetes, coronary artery disease, and hypertension,
arise from disruptions of the body’s metabolic homeostasis, with relatively strong contributions from genetic risk
factors and substantial comorbidity with obesity. Although genome-wide association studies have revealed many
genomic loci robustly associated with these diseases, biological interpretation of such association is challenging
because of the difficulty in mapping single-nucleotide polymorphisms (SNPs) onto the underlying causal genes and
pathways. Furthermore, common diseases are typically highly polygenic, and conventional single variant-based
association testing does not adequately capture potentially important large-scale interaction effects between
multiple genetic factors.

Methods: We analyzed moderately sized case-control data sets for type 2 diabetes, coronary artery disease, and
hypertension to characterize the genetic risk factors arising from non-additive, collective interaction effects, using a
recently developed algorithm (discrete discriminant analysis). We tested associations of genes and pathways with the
disease status while including the cumulative sum of interaction effects between all variants contained in each group.

Results: In contrast to non-interacting SNP mapping, which produced few genome-wide significant loci, our analysis
revealed extensive arrays of pathways, many of which are involved in the pathogenesis of these metabolic diseases but
have not been directly identified in genetic association studies. They comprised cell stress and apoptotic pathways for
insulin-producing β-cells in type 2 diabetes, processes covering different atherosclerotic stages in coronary artery
disease, and elements of both type 2 diabetes and coronary artery disease risk factors (cell cycle, apoptosis, and
hemostasis) associated with hypertension.

Conclusions: Our results support the view that non-additive interaction effects significantly enhance the level of
common metabolic disease associations and modify their genetic architectures and that many of the expected genetic
factors behind metabolic disease risks reside in smaller genotyping samples in the form of interacting groups of SNPs.

Keywords: Metabolic syndrome, Type 2 diabetes, Coronary artery disease, Hypertension, Epistasis, Genome-wide
association studies
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Background
A growing proportion of the world population suffers
from metabolic diseases, including type 2 diabetes
(T2D), coronary artery disease (CAD), and hypertension
(HT), many of which co-occur with obesity [1]. Major
symptoms of T2D are linked to the loss of control in the
body’s insulin-mediated glucose metabolism, leading to
hyperglycemia. Deficient insulin secretion by pancreatic
β-cells and, to a lesser extent, insulin resistance in per-
ipheral tissues with the resulting burden on normal
β-cell function, underlie T2D pathogenesis, which has
strong genetic risk factors [2–4]. Cardiovascular dis-
eases, such as CAD and HT, also have significant genetic
risk components [5]. In CAD, lipid plaques build up in
blood vessels and attract monocytes and induce inflamma-
tory responses, leading to rupture and thrombus forma-
tion in atherosclerosis [6]. High blood pressure (or HT) is
believed to be closely related to abnormalities in renal salt
excretion and vascular tone, affecting body fluid volume
and resistance to blood flow, respectively [7].
Significant advances in understanding the genetic basis

of the pathogenesis of these common metabolic diseases
have been made possible by genome-wide association
studies. In T2D, studies characterizing common variants
cumulatively led to the discovery of ~ 80 associated loci
[8–13], and additional insights have been gained by
more recent studies of rare variants [14]. The loci with
the strongest associations include those near TCF7L2
and CDKAL1 [9]. The specific mechanism by which the
TCF7L2 locus affects T2D susceptibility is under active
investigation, including potential roles played by alternative
polyadenylation of its intronic regions [15] that can be
characterized by high-throughput sequencing [16]. The loci
most strongly associated with CAD number up to ~ 50, in-
cluding 9p21 near CDKN2A/B and others [8, 17–22]. As-
sociation studies linking variants to blood pressure
measurements and HT also identified ~ 50 loci [23–28],
with evidence for enrichment of methylated
single-nucleotide polymorphisms (SNPs) associated with
these traits [29]. Such large-scale meta-analyses, which
evaluate most of the genome-wide variants with relatively
large minor allele frequencies, offer a powerful means to
discover and replicate susceptibility loci without potential
biases that could arise when selectively targeting candidate
genes or relying on manually curated gene sets.
However, the use of independent SNPs as the unit of

genetic factors leads to the ambiguity of the identity of
true causal SNPs and genes within a locus in which
SNPs are in linkage disequilibrium (LD). Therefore, it is
difficult to gain unequivocal biological insights from the
list of loci, despite the increasingly large sample sizes
and significance levels of associations discovered. Al-
though a conditional analysis can narrow down potential
lists of causal SNPs, it assumes that one or a few causal

SNPs in a locus underlie the associations of neighboring
SNPs in LD. However, many common diseases are highly
polygenic, with individual variants contributing only
small effects to the overall genetic susceptibility. These
polygenic risk factors likely contain non-additive inter-
action effects, which are not captured by independent
loci (IL; i.e., non-interacting SNPs) or pairwise tests.
In this work, we characterized the collective,

non-additive, genetic interaction effects associated with
three representative metabolic diseases (T2D, CAD, and
HT) using a recently developed discrete discriminant
analysis (DDA) approach [30]. We employed gene- and
pathway-based SNP groups as units of genetic factors,
and evaluated their association with the phenotypes
while including the net aggregated sum of interaction ef-
fects involving all SNPs within the group. In contrast to
approaches that test individual SNP pairs separately for
association, DDA forgoes pinpointing strongly associated
SNPs and variant pairs within a gene- or pathway-group.
Instead, it derives statistics that represent the combined
additive and interaction effects of the group of SNPs as
a whole. Although this approach shares its spirit with
other aggregated tests, such as the Sequence Kernel As-
sociation Test [31], it provides the unique advantage of
including interaction effects. We previously applied this
approach to age-related macular degeneration [30], auto-
immune diseases [32], and psychiatric disorders [33]. In
the latter work, we found arrays of genes and pathways
whose association was significant only when interactions
were taken into account.
For the three metabolic disease phenotypes, we used

the Wellcome Trust Case-Control Consortium
(WTCCC) datasets [8] and demonstrated that the col-
lective inference approach described above allows for
the discovery of a large array of pathway groups aligned
with the expected pathogenesis mechanisms. Compari-
sons with independent-SNP results and standard
enrichment-based gene/pathway analysis support the
view that the enhanced association of collectively inter-
acting gene sets is a recurring feature within the genetic
architecture of common polygenic diseases. To further
support our conclusions and gain additional insights into
collective inference outcomes derived from different
types of data, we additionally used a recent data set of
genome-wide characterizations of outbred mice to sup-
port our T2D-associated results.

Methods
Genotyping data
We obtained T2D, CAD, and HT datasets from the
WTCCC study [8]. We formed case and control data
sets based on the quality control reported in the original
study to obtain 2938 control individuals (shared) and
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1924 (T2D), 1926 (CAD), and 1952 (HT) case individ-
uals. We performed preliminary IL association analyses
on quality-controlled SNP data, selected SNPs with
independent-SNP p-values < 10−3, and removed those
with poor clustering in raw genotype-call intensity distri-
butions as well as those without associated SNPs in close
proximity. This procedure led to 392,615, 392,668, and
392,752 SNPs for T2D, CAD, and HT, respectively.
We used the Carworth Farm White mice genotyping

data reported by Nicod et al. [34] and formed control
and case groups of T2D by assigning animals with blood
glucose levels (“Bioch.Glucose”) higher than 14.0 mmol/
L as case individuals. This classification led to 61 case
and 1131 control animals. We used all quality-controlled
autosomal SNPs and rounded off imputed dosages into
integers to obtain 353,697 variants.

Association scans
For all association scans, we used the genotypic model
with two degrees of freedom for each SNP and 4 degrees
of freedom for each interacting pair. We used the
non-interacting special case of DDA for IL analyses
shown in Manhattan plots in Figs. 1, 5, and 6. We down-
loaded the gene-set list of Reactome pathways on De-
cember 23, 2016 and considered all pathways excluding
those belonging to Disease class. We assigned SNPs into
genes by proximity (50 kb within the coding region) and
formed the union of SNPs for each gene set correspond-
ing to pathways, which led to 1580 pathways containing
20 SNPs or more for each data set. We scored each
pathway-based SNP group using the mean-field collect-
ive inference of DDA under 5-fold cross-validation,
where we maximized the area under the curve (AUC) of
the receiver operating characteristic with respect to the
regularization parameter ε by varying it between 0
(non-interacting) and 1 (fully interacting). We formed
analogous gene-based SNP groups containing one or
more unique sets of SNPs, obtaining 16,786, 16,785, and
16,785 SNP sets for T2D, CAD, and HT, respectively,
which were scored as for pathways. For outbred mice,
we used all mouse Reactome pathways with human
counterparts and formed SNP sets based on the corre-
sponding mouse ortholog gene sets. To reduce the high
degree of local LD within the mice genotyping data [34],
we pruned SNPs corresponding to each pathway prior to
inference using PLINK [35] with an LD threshold of 0.9.

Controlling false positives
We made a selection of genes and pathways containing
low numbers of SNPs and repeated collective inferences
for each SNP group with phenotype-label permutation.
The corresponding p-values were then estimated by the
fraction of instances for which the AUC was higher than

under the alternative hypothesis. We found that optimiz-
ing the AUC for each replicate under the null hypothesis
with respect to ε led to better agreement of the p-value
distribution with the expected null distribution (Fig. 4).

Results
Type 2 diabetes
We first characterized the genome-wide distribution of
the association level of individual SNPs with T2D disease
status, using the special case of DDA with interaction ef-
fects turned off. The IL p-value profile was consistent with
the original report [8], showing the strongest association
in the TCF7L2 locus [36], followed by the locus near FTO
on chromosome 16q, CDKAL1 on 6p22, and TSPAN8 on
chromosome 12 [37] (Fig. 1a). These loci represent a rela-
tively small subset of all known T2D-associated loci from
large meta-analyses [13], reflecting the smaller sample size
of the current data set—1924 case individuals in WTCCC
versus, e.g., 26,488 in [13].
We obtained gene- and pathway-based SNP groups by

forming the unions of all SNPs within a fixed distance
(50 kb) from the coding region of a gene or gene sets,
respectively. In collective inference, the overall level of
association of each variant group was then inferred by
estimating the cross-validation prediction score of dis-
ease status (80% of sample individuals were used for in-
ference and prediction was assessed for 20% of
individuals) represented by the area under the curve
(AUC) of the receiver operating characteristic. The AUC
is a measure of prediction performance of classifiers, de-
fined with respect to the receiver operating characteris-
tics, a parametric curve of sensitivity and specificity of
predictions obtained by choosing different cutoff values
of the statistic used for classification [38]. Its value
ranges from ~ 0.5 to 1 with increasing performance,
such that values close to 1 imply a capability to predict
the case-control status of a new individual based on ge-
notypes with high sensitivity and specificity. Although
the AUC is most commonly used as a measure of pre-
diction performance, for our purposes of association
testing, it can also serve as a statistic that is free of
biases arising from the size of variant sets (number of
SNPs contained), the overall composition of gene sets,
and other compounding factors that can potentially
affect enrichment-based scores [39, 40]. The main ad-
vantage of collective inference is the inclusion of inter-
action effects: the overall AUC scores—optimized with
respect to a penalizing parameter so that overfitting is
avoided—contain the effect of the aggregated sum of all
interactions between variants within the group.
We considered 1580 pathways (with a minimum of 20

SNPs) from the curated Reactome pathway database [41]
and used DDA collective loci (CL) analysis to infer their
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association with T2D disease status (Fig. 1b–e). To con-
vert the AUC values used as statistics into p-values (P) of
the pathway-based variant groups, we selected a subset of
SNP groups containing relatively small numbers of SNPs
and estimated p-values by phenotype-label permutation
[30]. The AUC and P were highly correlated (Fig. 1c; r2 =

0.98, quadratic polynomial regression) and led to an esti-
mated Bonferroni threshold (P < 3.2×10− 5) of AUC >
0.544. The top three pathways were Binding of TCF/
LEF:CTNNB1 to target gene promoters (P = 2×10− 6);
Incretin synthesis, secretion, and inactivation (P = 2×10− 6);
and Synthesis, secretion, and inactivation of glucagon-like
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peptide-1 (GLP-1) (P = 5×10− 6), whose association levels
were comparable to those without interactions. These
pathways contain the TCF7L2 gene, suggesting that this
locus largely acts in a monogenic fashion.
The remaining top-ranked pathways were highly asso-

ciated with disease status only when interaction effects
were included (Fig. 2a). The three TCF7L2-related path-
ways described above exceeded the Bonferroni threshold.
We also applied the Benjamini-Hochberg correction [42]
to p-values of all pathways derived from the AUC, and
found six additional pathways with a false discovery rate
(FDR) less than 0.05: Glycerophospholipid biosynthesis,
Potassium channels, Synaptic adhesion-like molecule
(SALM) protein interactions at the synapses, Peptide
ligand-binding receptors, Homology-directed repair
through homologous recombination or single-strand
annealing, and Repression of Wnt target genes (See
Additional file 1 for the full list).
The largely monogenic contribution of the

TCF7L2-proximal region to T2D risk explains the high
association of the top three pathways (Fig. 1d and e):
GLP-1 is a gut hormone produced by the intestinal

L-cells and stimulates insulin secretion from β-cells. The
transcription factor TCF4 encoded by TCF7L2 is a nu-
clear receptor acting in concert with the Wnt signaling
pathway in L-cells to trigger GLP-1 secretion [43]. We
also found high associations in pathways involving po-
tassium channels (Fig. 1d), which regulate
glucose-induced exocytosis of insulin-containing gran-
ules by β-cells [4]. The association of the SALM protein
interactions at the synapses pathway (P = 9.0×10− 4) was
entirely collective (P ~ 1 without interactions). The asso-
ciation of SALM proteins, which regulate synapse for-
mation via interactions with postsynaptic scaffolding
proteins [44], with T2D risk has not been reported previ-
ously. These pathways were associated with T2D risk via
their effects on β-cell insulin secretory dysfunction.
In contrast, the remaining pathways were highly asso-

ciated with T2D risk (Fig. 1d and e) via their effects on
reduced β-cell mass and insulin resistance [2, 3]. The
total β-cell mass is plastic over a patient’s lifetime,
adjusting via mitogenic division, neogenesis, and apop-
tosis to allow for responses to changes in load within
peripheral tissues (for example, from insulin resistance).
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Obesity is a major risk factor for insulin resistance,
where non-esterified fatty acids (FAs) (Glycerophospholi-
pid biosynthesis, Fig. 1d) are believed to play key roles
via the inflammatory responses of macrophages (Immu-
noregulatory interactions between a lympholid and a
non-lymphoid cell, Fig. 1e) in adipocytes, skeletal muscle,
and the liver [45–47]. The Cell cycle and DNA repair
pathways in Fig. 1d, as well as the p53-regulated tran-
scription pathways and Oncogene-induced senescence
pathway in Fig. 1e, support the roles of β-cell division
and apoptosis in T2D risk. In particular, mitochondrial
dysfunction contributes significantly to β-cell death [48]:
glucose-sensing by β-cells relies on ATP synthesis by
mitochondria, which is coupled to closing of the KATP

channel, membrane depolarization, calcium influx, and
exocytosis of insulin granules [3]. The associations of in-
trinsic apoptotic pathways involving mitochondria—Ac-
tivation, myristoylation of BH3-interacting domain (BID)
and translocation to mitochondria; Activation of p53 up-
regulated modulator of apoptosis (PUMA) and transloca-
tion to mitochondria (Fig. 1e [49, 50])—supports this
view of β-cell death as a key contributor to T2D risk.
Unfolded protein response (Fig. 1d) is integral to endo-
plasmic reticulum (ER) stress processes implicated in
both inflammatory responses leading to insulin resist-
ance and mitochondria-mediated apoptosis of β-cells

[51]. We additionally found high association with T2D
for Tachykinin receptor bind tachykinins, consistent with
the finding that substance P-binding neurokinin-1 recep-
tor contributes to insulin resistance in adipocytes [52].
While the level of association with T2D for pathways

suggested that the TCF7L2 locus implicates the GLP-1
and Wnt signaling pathways via independent-SNP ef-
fects, the remaining pathways near or immediately below
the Bonferroni threshold were mostly associated with
T2D via collective effects (Fig. 2a). The latter groups to-
gether encompassed a large portion of the suspected
pathogenesis mechanisms of T2D. To further assess the
increase in association strengths arising from collective
effects, we scored the same set of pathways using the re-
cently proposed algorithm Pascal. This method allows
for an improved enrichment-based scoring of gene- and
pathway-based SNP groups using summary statistics
alone [53]. The results were largely similar to those of
DDA without interaction effects (Fig. 2b, c), suggesting
that collective inference is essential to capture the wide
range of T2D risk factors identified (Fig. 1d, e).
We scored the association level of all gene-based SNP

groups with T2D analogously (Fig. 3a). Comparing the
distribution of the estimated p-values of genes with
those for independent SNPs with quantile-quantile plots,
we found that roughly 10 of the highest-ranked genes
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showed noticeable deviations from the null distribution
(Fig. 4a). The two genes exceeding the
Bonferroni-corrected threshold for α < 0.05 were ZFAT
(P = 7×10− 12) and TCF7L2 (P = 6×10− 9). The latter find-
ing was in line with the top non-interacting SNPs in its
locus (Fig. 1a), whereas the association of the former
with T2D appeared to be completely collective in nature
(IL P ~ 1). The ZFAT gene encodes a nuclear zinc finger
protein essential for maintaining peripheral T cell
homeostasis [54, 55]. Adaptive immunity affects T2D
risk via inflammatory responses to free FAs in adipocytes
[47], and insulin resistance is closely tied to regulatory T
cells in adipose tissues [56, 57]. Our finding of the asso-
ciation of ZFAT with T2D, which has not been described

previously, suggests potential roles of the transcriptional
regulation of adaptive immune cells via its effects on in-
sulin resistance. Among other gene products, RAB18, a
Ras-related small GTPase involved in vesicle-mediated
transport, has been reported to regulate lipid droplets in
adipocytes [58].

Coronary artery disease
The non-interacting SNP p-value landscape for CAD
(Fig. 5a) was dominated by the CDKN2A/B locus on
chromosome 9p21, while no other locus showed signifi-
cant association [8]. The two genes CDKN2A and
CDKN2B encode cyclin-dependent kinase inhibitors
regulating the cell cycle, and the associated SNPs lie in
enhancer regions known to affect interferon-γ signaling
in vascular endothelial cells [59]. However, the direct
relevance of this locus in CAD disease mechanisms re-
mains incompletely understood.
The distribution of association levels for pathway-based

SNP groups (Fig. 5b) suggested a moderately more pro-
nounced increase in association with the increasing num-
ber of SNPs when compared to T2D (Fig. 1b). As in T2D,
the regression of collective inference p-values on the AUC
showed a high correlation (Fig. 5c) and indicated three
pathways exceeding the Bonferroni-corrected significance
threshold: Antigen processing and cross presentation (P =
2×10− 6), Negative epigenetic regulation of rRNA expression
(P = 1×10− 5), and Synthesis of ketone bodies (P = 2×10− 5).
There were 30 pathways with FDR < 0.05 (Fig. 5b), of
which only three contained CDKN2A/B genes (Cellular
responses to stress, Oncogene/oxidative stress-induced sen-
escence, and Regulation of TP53 degradation; Add-
itional file 2). As expected, for these three pathways, the
association levels were similar with or without interac-
tions, while they were substantially different for ~ 16 of
the remaining pathways (Additional file 2), suggesting that
they were associated with CAD primarily via non-additive
collective interaction effects.
CAD, or atherosclerosis, progresses via a gradual accu-

mulation of apolipoprotein B-containing lipoproteins
(LPs) in the extracellular matrix (ECM) beneath the
endothelial layer of arterial blood vessels [6]. The inflam-
matory responses to LPs attract monocytes, which differ-
entiate into macrophages and ingest LP-derived
cholesterols to become foam cells. The recruitment of
monocytes into the intima involves the concerted action
of chemokines and the neuronal axon guidance machin-
ery [60]; we found associations in axon guidance path-
ways, including ephrin signaling and cell adhesion
molecules, in addition to cell-ECM interactions (Fig. 5f ).
The pathway with the highest association in our results,
Antigen processing and cross presentation, and its
sub-pathway, the ER-phagosome pathway (Fig. 5d), de-
scribe the uptake, processing, and presentation of
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exogenous antigens by dendritic cells and other phago-
cytes via major histocompatibility complex class I mole-
cules [61]. The high association levels of these pathways
strongly implicates the uptake of low-density lipopro-
teins (LDLs) by macrophages via phagocytosis, macropi-
nocytosis, and scavenger receptors, notably the class B
receptor CD36 [60, 62] (Scavenging by class B receptors,
Fig. 5e). The ingested LPs are digested in the lysosome,

producing free cholesterols, whose cytosolic accumula-
tion lies at the heart of inflammatory responses leading
to macrophage apoptosis. The free cholesterols are
re-esterified in the ER and stored as cholesteryl FAs
(‘foams’) or transported out into LPs via lipid efflux pro-
cesses [63]. The pathways in the Vesicle-mediated trans-
port group (Fig. 5e) are relevant to these lipid transport
processes involving lysosomes and the ER.
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In CAD, free cholesterols can also become enriched in
the cytoplasmic membrane lipid rafts, triggering
pro-inflammatory pattern recognition receptors, notably
Toll-like receptors (TLRs) [64–66]. Consistent with this
evidence, we found high association levels in a large
array of TLR cascade pathways involving myeloid differ-
entiation factor 88 (MyD88), along with other innate im-
mune pathways (Fig. 5d). As expected from the central
roles played by FAs in atherosclerosis risks, FA metabol-
ism and related lipid metabolic pathways were also
highly ranked (Fig. 5d). In particular, among the
highest-ranked was the Synthesis of ketone bodies path-
way, which produces ketone bodies in the liver from FA
oxidation-derived acetyl CoA, which in turn can com-
pensate for glucose-derived molecules in the mitochon-
drial tricarboxylic acid cycle producing ATP under fasting
conditions [67]. These reversible reactions are coupled not
only to energy metabolism but also to lipogenesis and
cholesterol synthesis. For example, in macrophages, free
FAs activate peroxisome proliferator-activated receptor
(PPAR) α (PPARα activates gene expression, Fig. 5d), which
regulates the expression of FA oxidation genes and CD36,
generally acting as anti-inflammatory factor [68].
3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2), the
mitochondrial enzyme involved in ketone body synthesis,
is regulated by PPARα, insulin (Insulin receptor recycling,
Fig. 5e), and glucagon (Glucagon signaling in metabolic
regulation, Fig. 5d) [67]. The closely related PPARγ inhibits
the nuclear factor κB-mediated activation of inflammatory
factors via TLR4 signaling, where SUMOylation of
PPARγ plays a key role (SUMOylation of transcription
factors, Fig. 5d) [68]. Ketogenesis and its regulation by
PPARs are controlled by sirtuins [67], a class of histone
deacetylases regulating diverse aspects of lipid metabol-
ism [69]. Both sirtuins and the nucleolar remodeling
complex act via epigenetic control of rRNA expression
[70], which explains the high association levels found for
Negative epigenetic regulation of rRNA expression and tran-
scription pathways involving RNA polymerase I (Fig. 5e).
The overloading of free cholesterol in foam cells can

lead to ER stress and cell death by apoptosis (Cellular re-
sponses to stress in Fig. 5f) regulated by p53 (Regulation of
TP53 degradation and related pathways, Fig. 5e) during
the cell cycle (Cell cycle pathways in Fig. 5d). FA oxida-
tion, metabolism, and apoptotic reactions primarily occur
in mitochondria, which explains the Mitochondrial trans-
lation pathways in Fig. 5f. Inflammatory responses of mac-
rophages eventually lead to increased risks for the rupture
of fibrous caps separating the intima and lumen, culminat-
ing in myocardial infarction (‘stroke’) via thrombosis [60].
It is during this advanced stage of pathogenesis, where risk
factors for increased blood pressure, such as the
renin-angiotensin-aldosterone system (Metabolism of
angiotensinogen to angiotensins, Fig. 5d), related signaling

pathways (Signaling by vascular endothelial growth factors,
Fig. 5e), and Hemostasis pathways (Fig. 5f), likely exert
their effects on atherosclerosis [71].
We used collective inference to score the association

levels of all gene-based SNP groups (Fig. 3b). There were
two genes near or above the Bonferroni-corrected
threshold with an FDR less than 0.05: CHID1 and
DTX3L. CHID1 encodes stabilin-1 interacting
chitinase-like protein (SI-CLP) [72], which interacts with
stabilin-1, an endocytic scavenger receptor expressed on
alternatively activated macrophages capable of LDL up-
take [73]. Stabilin-1 shuttles newly synthesized SI-CLP
proteins from Golgi compartments to late endosomes
for secretion [73]. A recent structural study suggested
that SI-CLP possesses saccharide-binding properties
[74]. Our previously undescribed finding of the high as-
sociation level of the CHID1 gene, along with the pres-
ence of scavenger receptor and vesicle-mediated
transport pathways in Fig. 5e, suggest potential roles of
stabilin-1-mediated secretion of SI-CLP by activated
macrophages within an atherosclerotic legion, likely dur-
ing the stage of monocyte recruitment by endothelial
cells, where numerous glycoproteins are involved [60].
DTX3L encodes an E3 ubiquitin ligase recently shown

to regulate endosomal sorting of the chemokine receptor
CXCR4 for lysosomal degradation [75]. One possible
source of its association, therefore, is its effect on mono-
cyte recruitment. The third highest ranked gene, PARP9,
encodes a poly(ADP-ribose) polymerase that acts to-
gether with DTX3L in DNA damage response [76, 77]
and apoptosis [78]. Together, the high association levels
of these two genes suggest their roles within apoptotic
foam cells during atherosclerosis. BDKRB1 and BDKRB2
encode bradykinin receptors B1 and B2, respectively.
These G protein-coupled receptors are central to the
regulation of vascular tone and vasoconstriction; infu-
sion of bradykinins binding to B1 and B2 receptors
expressed on vascular and smooth muscle cells cause
vasodilation [79]. FAR2 encodes the enzyme fatty
acyl-CoA reductase 2, which catalyzes the first step of
Wax biosynthesis (Fig. 5d) converting FAs into fatty al-
cohols [80]. Its association with CAD most likely over-
laps with that of other FA/ketone body metabolism
pathways.

Hypertension
The IL profile of levels of association with HT did not
show any genome-wide significant loci (Fig. 6a) [8]. In
contrast, under collective inference, we found three path-
ways above or at the Bonferroni-corrected threshold
[Incretin synthesis, secretion, and inactivation, P = 8×10−6;
Class B/2 (secretin family receptors), P = 4×10−5; Ligan-
d-independent caspase activation via DCC, P = 5×10−5]
and 11 with an FDR less than 0.05 (Fig. 6b; see
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Additional file 3 for the full list). Arterial blood pressure is
determined by the product of two main factors, blood flow
and resistance (Ohm’s law) [7], which are sensitive to
overall blood volume and vascular tone, respectively. Both
aspects of HT risk pathogenesis are affected by obesity
[81]. In particular, the high association level of the incretin
metabolism pathway group with HT (Fig. 6d) parallels that
with T2D (Fig. 1d) and is consistent with extensive evi-
dence for the involvement of the incretin system in car-
diovascular disease pathogenesis [82]. Notably, the lack of
monogenic loci in Fig. 6a suggested that the high

association level of incretin pathways with HT is collective
in nature, in contrast to that with T2D where the TCF7L2
locus made the dominant contribution (Fig. 1a). Insulin
resistance in peripheral adipocytes contributes to HT risk
under obesity, which explains the association of lipid me-
tabolism/signaling pathways with HT in Fig. 6d [Synthesis
of (16–20)- hydroxyeicosatetraenoic acids (HETE), Gluca-
gon signaling in metabolic regulation, and AMP-activated
protein kinase inhibits carbohydrate response element
binding protein (ChREBP) transcription activity] and that
of the Glucagon-type ligand receptors pathway in Fig. 6e.
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ChREBP is a key transcriptional regulator of lipid metab-
olism in the liver associated with obesity and T2D [83].
The association of Cell cycle, apoptosis pathways, Axon

guidance, and the hemostasis pathway (Thrombin signal-
ing through proteinase-activated receptors) with HT (Fig.
6d and e) parallels that with CAD (Fig. 5). Together with
ECM organization (Fig. 6e), these associations suggest in-
creased HT risks via elevated vascular resistance from ath-
erosclerotic lesions.
We also found high association levels for Transmem-

brane transport of small molecules pathways (Fig. 6d),
including Bicarbonate transporters and Ligand-gated ion
channel transport. Bicarbonate, a major waste product of
mitochondrial respiration, must be disposed of to main-
tain body pH, and affects cardiovascular functions via
pH imbalance in the heart [84]. Dysfunctions of renal fil-
tering of salts can result in abnormal retention of so-
dium and cause osmotic expansion of blood volume [7].
Neuronal system pathways (Presynaptic function of
kainate receptors, Potassium channels; Fig. 6e), on the
other hand, suggest the relevance of the sympathetic
nervous system controlling vasoconstriction.

In comparison to IL, ~ 10 gene-based groups
showed substantially stronger deviations from the null
distribution (Fig. 4c) with two genes significantly ex-
ceeding the Bonferroni-corrected threshold for HT:
IGSF21 (P = 8×10−13) and OR52I2 (P = 1×10−9).

Type 2 diabetes in mice
To further support our results, we analyzed an independent
data set reflecting a T2D phenotype in mice. We used a re-
cent genome-wide data set of outbred mice by Nicod et al.
[34], who characterized the animals with a comprehensive
list of physiological and behavioral traits. Using a glucose
level cutoff typical for diabetic mice [85], we formed a
case-control data set (61 case and 1131 control animals).
The genome-wide IL association levels of SNPs were low
and no variants exceeded the Bonferroni-corrected thresh-
old (Fig. 7a), reflecting the smaller sample size of the mouse
data set compared to the human data sets. Although the
overall range of AUC values for pathways from the mouse
data (Fig. 7b) was higher than that of their human counter-
parts (Figs. 1b, 5b, and 6b), p-value estimation revealed that
the absolute significance levels of highly ranked pathways

−
lo

g 1
0

P
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2

4

6

A
T2D (mice)

10 102 103 104

No. of SNPs

0.50

0.60

0.70

A
U

C

B

0

1

2

3

4

0.50 0.6 0.7

AUC

0

1

2

3

4

−
lo

g 1
0 

P r2 = 0.9

C

0.65

0.70

0.75

A
U

C

Nico
tin

at
e 

m
et

ab
.

M
ito

ch
. t

ra
ns

l.

M
ito

ch
. t

ra
ns

l. e
lon

g.

M
ito

ch
. t

ra
ns

l. t
er

m
.

Sca
ve

ng
ing

 by
 cl

as
s B

 R
.

G−p
ro

t. 
be

ta
:g

am
m

a 
sig

.

G b
et

a:
ga

m
m

a 
sig

. t
hr

u 
PI3

Kga
m

m
a

Dea
cti

v. 
of

 b
et

a−
ca

te
nin

 tr
an

sa
cti

v. 
co

m
ple

x

M
ET R

. a
cti

v.

Plat
ele

t a
cti

v.,
 si

g.
 &

 a
gg

re
g.

GPVI−
m

ed
. a

cti
v. 

ca
sc

ad
e

Fa
cil

ita
tiv

e 
Na+

−in
de

p. 
glu

co
se

 tr
an

sp
or

te
rs

RIG
−I

/M
DA5−

m
ed

. in
du

ct.
 o

f I
FN−a

lph
a/

be
ta

Reg
. o

f s
ig.

 by
 C

BL

M
et

ab
oli

sm

M
et

ab
. o

f p
ro

te
ins

Ve
sic

le−
m

ed
. t

ra
ns

p.

Sign
al 

tra
ns

du
cti

on

Hem
os

ta
sis

Tra
ns

m
em

b. 
tra

ns
p.

Im
m

un
e 

sy
s.

2

3

4

−
lo

g 1
0 

P

D

Fig. 7 Association test results for type 2 diabetes in mice. a Non-interacting SNPs. b Distribution of pathway scores with interaction effects.
c Regression of p-values against the AUC. d Top-ranked pathways with AUC > 0.63. Aggreg., aggregation; GPVI, glycoprotein VI; induct., induction;
MDA5, melanoma differentiation-associated protein 5; mitoch., mitochondrial; RIG-I, retinoic acid-inducible gene I

Woo and Reifman BMC Medical Genomics  (2018) 11:54 Page 11 of 15



were lower (P > 10−3, Fig. 7b and c) as expected from the
smaller sample size.
Nevertheless, the top-ranked pathways (Fig. 7d) were

highly concordant with T2D pathogenesis and comple-
mented the analysis outcome of human data (Fig. 1d
and e): among the top-ranked pathways, we found De-
activation of beta-catenin transactivation complex of
Wnt signaling, Mitochondrial translation pathways, and
the Facilitative Na+-independent glucose transporters
pathway (Fig. 7d). The appearance of the Wnt signaling
pathway is consistent with its strong association in hu-
man T2D (Fig. 1e), where the role of mitochondrial
translation in apoptotic β-cell death has also been noted
(programmed cell death pathways in Fig. 1e).

Discussion
Together, our analyses of data sets for three metabolic
diseases (T2D, CAD, and HT; Figs. 1, 5, 6) demonstrate
that collective inference, which incorporates the cumula-
tive sum of non-additive interaction effects involving
variants within a pathway group, can reveal novel associ-
ations not detectable by IL methods. Notably, these as-
sociations arose from data sets of relatively small sizes
for which IL yielded few (T2D and CAD) or no (HT)
genome-wide significant loci. The absolute significance
levels of top-ranked pathways generally were near or
below the Bonferroni-corrected thresholds, which are
substantially more conservative for pathways than for
SNPs because most pathways are hierarchically related.
In a different meta-analysis of psychiatric disorders using
DDA [33], we performed down-sampling to find evi-
dence that the absolute association levels of the
top-ranked pathways become comparable to those ob-
tained with the Bonferroni-corrected threshold under
sample sizes of around several thousands. The signifi-
cance levels we observed in this study (Figs. 1, 5, 6) are
therefore consistent with this trend under the current
sample sizes (n ~ 5000; case/control combined).
Although recent large-scale meta-analyses have

achieved high power with combined sample sizes of n ~ 104

or more, interpretations of IL analysis face the difficulty
of assigning causal genes from which the lead SNP (or
its correlated partner in LD) derives its effect, making
the biological interpretation of established loci ambigu-
ous. Existing gene- and pathway-based scoring methods
that combine IL p-values into statistical significance
scores for each variant group [39] overcome this diffi-
culty, but with the use of minimum or geometric mean
of IL p-values for each group, lack the means to ac-
count for interaction effects. At the expense of requir-
ing individual-level genotype data instead of summary
statistics, our approach provides association scores of
variant groups while including collective interaction ef-
fects via the AUC, a measure of disease status

prediction evaluated by cross-validation. As shown in
Figs. 1c, 5c, and 6c, this measure is in general highly
correlated with the p-values of the variant groups, and
suggests that the significance threshold of a pathway
(P < 10− 5) is achieved much earlier than prediction
fidelity (AUC > 0.7) with increasing power. By compar-
ing DDA with the existing pathway-scoring approach
Pascal utilizing summary statistics only (Fig. 2), we con-
clude that the performance of DDA without interaction
effects (IL) is similar to those of other methods,
whereas DDA collective inference discovers many
hidden associations for which interaction effects play
dominant roles.
For all three of the metabolic disease data sets consid-

ered, the top-ranked pathways near or below the
Bonferroni-corrected thresholds together covered large
parts of known or suspected disease mechanisms, suggest-
ing their biological relevance. For T2D (Fig. 1d and e),
they comprised (monogenic) GLP-1-related pathways
stimulating secretion of insulin-containing granules by
β-cells, potassium channels regulating glucose-induced ac-
tion potential firing, and the group of pathways underlying
stress-induced β-cell death, including unfolded protein re-
sponse, cell cycle/DNA repair regulated by p53, and mito-
chondrial apoptosis pathways. For CAD, the pathways
covered different stages of atherosclerosis progression
(Fig. 5d–f ); recruitment of circulating monocytes by ECM
interactions and axon guidance pathways; lipoprotein up-
take by macrophages via phagocytosis; inflammatory re-
sponse via scavenger receptors, TLR, and
cross-presentation pathways; macrophage apoptosis via
cellular stress; and thrombosis of ruptured atherosclerotic
lesions. Elements of T2D (GLP-1 signaling, lipid metabol-
ism) and CAD risk factors (cell cycle, axon guidance,
ECM organization, apoptosis, and hemostasis) were
present in HT (Fig. 6d-e), in addition to transmembrane
transport pathways related to salt retention. Many devel-
opmental pathways we observed in the CAD outcome
may affect disease risk via indirect means, such as tran-
scription factor expression regulation by miRNAs [28, 86].
Although gene-based scoring revealed relatively fewer

highly associated groups than pathways, it suggested
novel genes potentially implicated in pathogenesis not
found in IL analyses, notably for CAD (Fig. 3). Overall,
the increased level of association found for pathways in
comparison to genes under relatively smaller sample
sizes is consistent with our previous observation in psy-
chiatric disorders [33], and suggests that polygenicity of
common diseases is better captured by gene sets than by
individual genes.
The T2D-associated pathways (β-catenin/Wnt signal-

ing and mitochondrial translation) from the outbred
mice suggest that our inference algorithm produces con-
sistent results not only over different populations
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(humans versus mice) and phenotype classes (T2D
diagnosis versus glucose levels), but also under both
high and low power with disparate sample sizes (~ 1000
versus less than 100 case individuals).

Conclusions
We analyzed lipid-metabolic and inflammatory pathways
underlying common metabolic diseases, using an algo-
rithm that takes into account large-scale epistatic effects.
This analysis approach enabled us to discover SNP
groups whose association was primarily many-bodied in
nature. These SNP groups consisted of arrays of path-
ways previously thought to be linked to metabolic dis-
eases. Thus, pathway-based testing approaches
incorporating large-scale interaction effects can reveal
hidden association effects, using samples sizes much
smaller than those needed to achieve similar levels of
statistical significance in single-SNP-based methods.

Additional files

Additional file 1: List of top-ranked pathways associated with type 1
diabetes. (XLSX 20 kb)

Additional file 2: List of top-ranked pathways associated with coronary
artery disease. (XLSX 21 kb)

Additional file 3: List of top-ranked pathways associated with hyperten-
sion. (XLSX 19 kb)

Abbreviations
AUC: Area under the curve; CAD: Coronary artery disease;
ChrREBP: Carbohydrate response element binding protein; CL: Collective loci;
DDA: Discrete discriminant analysis; ECM: Extracellular matrix;
ER: Endoplasmic reticulum; FA: Fatty acid; FDR: False discovery rate;
HT: Hypertension; IL: Independent loci; LD: Linkage disequilibrium; LDL: Low-
density lipoprotein; LP: Lipoprotein; PPAR: Peroxisome proliferator-activated
receptor; SALM: Synaptic adhesion-like molecules; SI-CLP: Stabilin-1
interacting chitinase-like protein; SNP: Single nucleotide polymorphism;
T2D: Type 2 diabetes; TLR: Toll-like receptor; WTCCC: Wellcome Trust Case-
Control Consortium

Acknowledgments
We thank Samantha Hornby for help with data acquisition, Joy Hoffman for
computational resource management, and Tatsuya Oyama for editorial
suggestions. Computations were performed using the high-performance
computing resources at the U.S. Army Research Laboratory, the U.S. Air Force
Research Laboratory, and the U.S. Army Engineer Research and Development
Center. The opinions and assertions contained herein are the private views
of the authors and are not to be construed as official or as reflecting the
views of the U.S. Army or of the U.S. Department of Defense. This paper has
been approved for public release with unlimited distribution.

Funding
This work was supported by the U.S. Army Medical Research and Materiel
Command (Ft. Detrick, Maryland).

Availability of data and materials
The data sets we used were obtained from the Wellcome Trust Case-Control
Consortium at http://www.wtccc.org.uk and https://wp.cs.ucl.ac.uk/outbredmice/.
The software used (GeDI) is available at https://github.com/BHSAI/GeDI.

Authors’ contributions
HJW and JR conceived the study. HJW carried out the analysis. HJW wrote
the manuscript. Both authors have read and approved the final version of
the manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 5 July 2017 Accepted: 12 June 2018

References
1. O'Rahilly S. Human genetics illuminates the paths to metabolic disease.

Nature. 2009;462(7271):307–14.
2. Rhodes CJ. Type 2 diabetes-a matter of beta-cell life and death? Science.

2005;307(5708):380–4.
3. Ashcroft FM, Rorsman P. Diabetes mellitus and the beta cell: the last ten

years. Cell. 2012;148(6):1160–71.
4. Rorsman P, Braun M. Regulation of insulin secretion in human pancreatic

islets. Annu Rev Physiol. 2013;75:155–79.
5. Kathiresan S, Srivastava D. Genetics of human cardiovascular disease. Cell.

2012;148(6):1242–57.
6. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell.

2011;145(3):341–55.
7. Coffman TM. Under pressure: the search for the essential mechanisms of

hypertension. Nat Med. 2011;17(11):1402–9.
8. Wellcome Trust Case Control Consortium. Genome-wide association study

of 14,000 cases of seven common diseases and 3,000 shared controls.
Nature. 2007;447(7145):661–78.

9. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini
E, Huth C, Aulchenko YS, Thorleifsson G, et al. Twelve type 2 diabetes
susceptibility loci identified through large-scale association analysis. Nat
Genet. 2010;42(7):579–89.

10. Kooner JS, Saleheen D, Sim X, Sehmi J, Zhang W, Frossard P, Been LF, Chia
KS, Dimas AS, Hassanali N, et al. Genome-wide association study in
individuals of south Asian ancestry identifies six new type 2 diabetes
susceptibility loci. Nat Genet. 2011;43(10):984–9.

11. Cho YS, Chen CH, Hu C, Long J, Ong RT, Sim X, Takeuchi F, Wu Y, Go MJ,
Yamauchi T, et al. Meta-analysis of genome-wide association studies
identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2011;
44(1):67–72.

12. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V,
Strawbridge RJ, Khan H, Grallert H, Mahajan A, et al. Large-scale association
analysis provides insights into the genetic architecture and pathophysiology
of type 2 diabetes. Nat Genet. 2012;44(9):981–90.

13. DIAbetes Genetics Replication And Meta-analysis Consortium, Asian Genetic
Epidemiology Network Type 2 Diabetes Consortium, South Asian Type 2
Diabetes Consortium, Mexican American Type 2 Diabetes Consortium, Type
2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-
Ethnic Samples Consortium, Mahajan A, Go MJ, Zhang W, Below JE, Gaulton
KJ, et al. Genome-wide trans-ancestry meta-analysis provides insight into
the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014,
46(3):234–44.

14. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ,
Ma C, Fontanillas P, Moutsianas L, McCarthy DJ, et al. The genetic
architecture of type 2 diabetes. Nature. 2016;536(7614):41–7.

15. Locke JM, Da Silva Xavier G, Rutter GA, Harries LW. An alternative
polyadenylation signal in TCF7L2 generates isoforms that inhibit T cell
factor/lymphoid-enhancer factor (TCF/LEF)-dependent target genes. Diab
Tologia. 2011;54(12):3078–82.

Woo and Reifman BMC Medical Genomics  (2018) 11:54 Page 13 of 15

https://doi.org/10.1186/s12920-018-0373-7
https://doi.org/10.1186/s12920-018-0373-7
https://doi.org/10.1186/s12920-018-0373-7
http://www.wtccc.org.uk
https://wp.cs.ucl.ac.uk/outbredmice/
https://github.com/BHSAI/GeDI


16. Ni T, Yang Y, Hafez D, Yang W, Kiesewetter K, Wakabayashi Y, Ohler U, Peng
W, Zhu J. Distinct polyadenylation landscapes of diverse human tissues
revealed by a modified PA-seq strategy. BMC Genomics. 2013;14:615.

17. Lettre G, Palmer CD, Young T, Ejebe KG, Allayee H, Benjamin EJ, Bennett F,
Bowden DW, Chakravarti A, Dreisbach A, et al. Genome-wide association
study of coronary heart disease and its risk factors in 8,090 African
Americans: the NHLBI CARe project. PLoS Genet. 2011;7(2):e1001300.

18. Wang F, Xu CQ, He Q, Cai JP, Li XC, Wang D, Xiong X, Liao YH, Zeng QT,
Yang YZ, et al. Genome-wide association identifies a susceptibility locus for
coronary artery disease in the Chinese Han population. Nat Genet. 2011;
43(4):345–9.

19. Peden JF, Farrall M. Thirty-five common variants for coronary artery disease: the
fruits of much collaborative labour. Hum Mol Genet. 2011;20(R2):R198–205.

20. Davies RW, Wells GA, Stewart AF, Erdmann J, Shah SH, Ferguson JF, Hall AS,
Anand SS, Burnett MS, Epstein SE, et al. A genome-wide association study
for coronary artery disease identifies a novel susceptibility locus in the
major histocompatibility complex. Circ Cardiovasc Genet. 2012;5(2):217–25.

21. CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, Willenborg C,
Farrall M, Assimes TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J,
et al. Large-scale association analysis identifies new risk loci for coronary
artery disease. Nat Genet. 2013;45(1):25–33.

22. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, Saleheen D,
Kyriakou T, Nelson CP, Hopewell JC, et al. A comprehensive 1,000 genomes-
based genome-wide association meta-analysis of coronary artery disease.
Nat Genet. 2015;47(10):1121–30.

23. Levy D, Larson MG, Benjamin EJ, Newton-Cheh C, Wang TJ, Hwang SJ,
Vasan RS, Mitchell GF. Framingham heart study 100K project: genome-wide
associations for blood pressure and arterial stiffness. BMC Med Genet. 2007;
8(Suppl 1):S3.

24. Padmanabhan S, Melander O, Johnson T, Di Blasio AM, Lee WK, Gentilini D,
Hastie CE, Menni C, Monti MC, Delles C, et al. Genome-wide association
study of blood pressure extremes identifies variant near UMOD associated
with hypertension. PLoS Genet. 2010;6(10):e1001177.

25. Wain LV, Verwoert GC, O'Reilly PF, Shi G, Johnson T, Johnson AD, Bochud M,
Rice KM, Henneman P, Smith AV, et al. Genome-wide association study
identifies six new loci influencing pulse pressure and mean arterial pressure.
Nat Genet. 2011;43(10):1005–11.

26. International Consortium for Blood Pressure Genome-Wide Association
Studies, Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman
DI, Smith AV, Tobin MD, Verwoert GC, et al. Genetic variants in novel
pathways influence blood pressure and cardiovascular disease risk. Nature.
2011;478(7367):103–9.

27. Guo Y, Tomlinson B, Chu T, Fang YJ, Gui H, Tang CS, Yip BH, Cherny SS, Hur
YM, Sham PC, et al. A genome-wide linkage and association scan reveals novel
loci for hypertension and blood pressure traits. PLoS One. 2012;7(2):e31489.

28. Lu X, Wang L, Lin X, Huang J, Charles Gu C, He M, Shen H, He J, Zhu J, Li H,
et al. Genome-wide association study in Chinese identifies novel loci for
blood pressure and hypertension. Hum Mol Genet. 2015;24(3):865–74.

29. Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, Kelly TN, Saleheen
D, Lehne B, Mateo Leach I, et al. Trans-ancestry genome-wide association
study identifies 12 genetic loci influencing blood pressure and implicates a
role for DNA methylation. Nat Genet. 2015;47(11):1282–93.

30. Woo HJ, Yu C, Kumar K, Gold B, Reifman J. Genotype distribution-based
inference of collective effects in genome-wide association studies: insights
to age-related macular degeneration disease mechanism. BMC Genomics.
2016;17:695.

31. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing
for sequencing data with the sequence kernel association test. Am J Hum
Genet. 2011;89(1):82–93.

32. Woo HJ, Yu C, Reifman J. Collective genetic interaction effects and the role
of antigen-presenting cells in autoimmune diseases. PLoS One. 2017;12(1):
e0169918.

33. Woo HJ, Yu C, Kumar K, Reifman J. Large-scale interaction effects reveal
missing heritability in schizophrenia, bipolar disorder and posttraumatic
stress disorder. Transl Psychiatry. 2017;7(4):e1089.

34. Nicod J, Davies RW, Cai N, Hassett C, Goodstadt L, Cosgrove C, Yee BK,
Lionikaite V, McIntyre RE, Remme CA, et al. Genome-wide association of
multiple complex traits in outbred mice by ultra-low-coverage sequencing.
Nat Genet. 2016;48(8):912–8.

35. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J,
Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-genome

association and population-based linkage analyses. Am J Hum Genet. 2007;
81(3):559–75.

36. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J,
Helgason A, Stefansson H, Emilsson V, Helgadottir A, et al. Variant of
transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes.
Nat Genet. 2006;38(3):320–3.

37. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI,
Abecasis GR, Almgren P, Andersen G, et al. Meta-analysis of genome-wide
association data and large-scale replication identifies additional
susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638–45.

38. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.

39. Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-
wide association studies. Nat Rev Genet. 2010;11(12):843–54.

40. Segre AV, Diagram Consortium, Magic investigators, Groop L, Mootha VK,
Daly MJ, Altshuler D. Common inherited variation in mitochondrial genes is
not enriched for associations with type 2 diabetes or related glycemic traits.
PLoS Genet. 2010;6(8):e1001058.

41. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R,
Jassal B, Jupe S, Korninger F, McKay S, et al. The Reactome pathway
knowledgebase. Nucleic Acids Res. 2016;44(D1):D481–7.

42. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J Royal Stat Soc. 1995;57(1):289–300.

43. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):
1409–39.

44. Mah W, Ko J, Nam J, Han K, Chung WS, Kim E. Selected SALM (synaptic
adhesion-like molecule) family proteins regulate synapse formation. J
Neurosci. 2010;30(16):5559–68.

45. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance.
Annu Rev Physiol. 2010;72:219–46.

46. Hotamisligil GS. Inflammation, metaflammation and immunometabolic
disorders. Nature. 2017;542(7640):177–85.

47. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat
Rev Immunol. 2011;11(2):98–107.

48. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes.
Science. 2005;307(5708):384–7.

49. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the
mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94(4):491–501.

50. Culmsee C, Mattson MP. p53 in neuronal apoptosis. Biochem Biophys Res
Commun. 2005;331(3):761–77.

51. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of
metabolic disease. Cell. 2010;140(6):900–17.

52. Karagiannides I, Bakirtzi K, Kokkotou E, Stavrakis D, Margolis KG, Thomou T,
Giorgadze N, Kirkland JL, Pothoulakis C. Role of substance P in the
regulation of glucose metabolism via insulin signaling-associated pathways.
Endocrinology. 2011;152(12):4571–80.

53. Lamparter D, Marbach D, Rueedi R, Kutalik Z, Bergmann S. Fast and rigorous
computation of gene and pathway scores from SNP-based summary
statistics. PLoS Comput Biol. 2016;12(1):e1004714.

54. Doi K, Fujimoto T, Okamura T, Ogawa M, Tanaka Y, Mototani Y, Goto M, Ota
T, Matsuzaki H, Kuroki M, et al. ZFAT plays critical roles in peripheral T cell
homeostasis and its T cell receptor-mediated response. Biochem Biophys
Res Commun. 2012;425(1):107–12.

55. Ishikura S, Iwaihara Y, Tanaka Y, Luo H, Nishi K, Doi K, Koyanagi M, Okamura T,
Tsunoda T, Shirasawa S. The nuclear zinc finger protein Zfat maintains FoxO1
protein levels in peripheral T cells by regulating the activities of autophagy
and the Akt signaling pathway. J Biol Chem. 2016;291(29):15282–91.

56. Ilan Y, Maron R, Tukpah AM, Maioli TU, Murugaiyan G, Yang K, Wu HY,
Weiner HL. Induction of regulatory T cells decreases adipose inflammation
and alleviates insulin resistance in ob/ob mice. Proc Natl Acad Sci U S A.
2010;107(21):9765–70.

57. Bapat SP, Myoung Suh J, Fang S, Liu S, Zhang Y, Cheng A, Zhou C, Liang Y,
LeBlanc M, Liddle C, et al. Depletion of fat-resident Treg cells prevents age-
associated insulin resistance. Nature. 2015;528(7580):137–41.

58. Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG. Regulated localization of
Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid
droplet catabolism. J Biol Chem. 2005;280(51):42325–35.

59. Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren B,
Fu XD, Topol EJ, Rosenfeld MG, et al. 9p21 DNA variants associated with
coronary artery disease impair interferon-gamma signalling response.
Nature. 2011;470(7333):264–8.

Woo and Reifman BMC Medical Genomics  (2018) 11:54 Page 14 of 15



60. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic
balance. Nat Rev Immunol. 2013;13(10):709–21.

61. Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic
cells. Nat Rev Immunol. 2012;12(8):557–69.

62. Podrez EA, Poliakov E, Shen Z, Zhang R, Deng Y, Sun M, Finton PJ, Shan L,
Gugiu B, Fox PL, et al. Identification of a novel family of oxidized
phospholipids that serve as ligands for the macrophage scavenger receptor
CD36. J Biol Chem. 2002;277(41):38503–16.

63. Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease.
Nature. 2005;438(7068):612–21.

64. Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, Akira S,
Rajavashisth TB, Arditi M. Lack of toll-like receptor 4 or myeloid
differentiation factor 88 reduces atherosclerosis and alters plaque
phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A.
2004;101(29):10679–84.

65. Bjorkbacka H, Kunjathoor VV, Moore KJ, Koehn S, Ordija CM, Lee MA, Means
T, Halmen K, Luster AD, Golenbock DT, et al. Reduced atherosclerosis in
MyD88-null mice links elevated serum cholesterol levels to activation of
innate immunity signaling pathways. Nat Med. 2004;10(4):416–21.

66. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ,
Boyer L, Zhong R, Frazier WA, et al. CD36 ligands promote sterile
inflammation through assembly of a toll-like receptor 4 and 6 heterodimer.
Nat Immunol. 2010;11(2):155–61.

67. Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and
cardiovascular disease. Am J Physiol Heart Circ Physiol. 2013;304(8):H1060–76.

68. Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by
lipid-activated nuclear receptors. Nature. 2008;454(7203):470–7.

69. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism
and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–38.

70. McStay B, Grummt I. The epigenetics of rRNA genes: from molecular to
chromosome biology. Annu Rev Cell Dev Biol. 2008;24:131–57.

71. Rader DJ, Daugherty A. Translating molecular discoveries into new therapies
for atherosclerosis. Nature. 2008;451(7181):904–13.

72. Kzhyshkowska J, Mamidi S, Gratchev A, Kremmer E, Schmuttermaier C,
Krusell L, Haus G, Utikal J, Schledzewski K, Scholtze J, et al. Novel stabilin-1
interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively
activated macrophages and secreted via lysosomal pathway. Blood. 2006;
107(8):3221–8.

73. Kzhyshkowska J, Krusell L. Cross-talk between endocytic clearance and
secretion in macrophages. Immunobiology. 2009;214(7):576–93.

74. Meng G, Zhao Y, Bai X, Liu Y, Green TJ, Luo M, Zheng X. Structure of human
stabilin-1 interacting chitinase-like protein (SI-CLP) reveals a saccharide-
binding cleft with lower sugar-binding selectivity. J Biol Chem. 2010;285(51):
39898–904.

75. Holleman J, Marchese A. The ubiquitin ligase deltex-3l regulates endosomal
sorting of the G protein-coupled receptor CXCR4. Mol Biol Cell. 2014;25(12):
1892–904.

76. Zhang Y, Mao D, Roswit WT, Jin X, Patel AC, Patel DA, Agapov E, Wang Z,
Tidwell RM, Atkinson JJ, et al. PARP9-DTX3L ubiquitin ligase targets host
histone H2BJ and viral 3C protease to enhance interferon signaling and
control viral infection. Nat Immunol. 2015;16(12):1215–27.

77. Yan Q, Xu R, Zhu L, Cheng X, Wang Z, Manis J, Shipp MA. BAL1 and its
partner E3 ligase, BBAP, link poly(ADP-ribose) activation, ubiquitylation, and
double-strand DNA repair independent of ATM, MDC1, and RNF8. Mol Cell
Biol. 2013;33(4):845–57.

78. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL.
Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-
induced cell death. Proc Natl Acad Sci U S A. 2006;103(48):18314–9.

79. Leeb-Lundberg LM, Marceau F, Muller-Esterl W, Pettibone DJ, Zuraw BL,
International union of pharmacology. XLV. Classification of the kinin
receptor family: from molecular mechanisms to pathophysiological
consequences. Pharmacol Rev. 2005;57(1):27–77.

80. Cheng JB, Russell DW. Mammalian wax biosynthesis. I. Identification of two
fatty acyl-Coenzyme A reductases with different substrate specificities and
tissue distributions. J Biol Chem. 2004;279(36):37789–97.

81. DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in
patients with obesity. Nat Rev Endocrinol. 2014;10(6):364–76.

82. Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr
Rev. 2012;33(2):187–215.

83. Postic C, Dentin R, Denechaud PD, Girard J. ChREBP, a transcriptional
regulator of glucose and lipid metabolism. Annu Rev Nutr. 2007;27:179–92.

84. Cordat E, Casey JR. Bicarbonate transport in cell physiology and disease.
Biochem J. 2009;417(2):423–39.

85. Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet-induced
type II diabetes in C57BL/6J mice. Diabetes. 1988;37(9):1163–7.

86. Wang F, Liu D, Zhang RR, Yu LW, Zhao JY, Yang XY, Jiang SS, Ma D, Qiao B,
Zhang F, et al. A TBX5 3'UTR variant increases the risk of congenital heart
disease in the Han Chinese population. Cell Discov. 2017;3:17026.

Woo and Reifman BMC Medical Genomics  (2018) 11:54 Page 15 of 15


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Genotyping data
	Association scans
	Controlling false positives

	Results
	Type 2 diabetes
	Coronary artery disease
	Hypertension
	Type 2 diabetes in mice

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

