Bonte and Vercauteren BMC Medical Genomics 2018, 11(Suppl 4):86
https://doi.org/10.1186/512920-018-0398-y

BMC Medical Genomics

RESEARCH Open Access

Privacy-preserving logistic regression

training
Charlotte Bonte™ and Frederik Vercauteren

From iDASH Privacy and Security Workshop 2017
Orlando, FL, USA. 14 October 2017

@ CrossMark

Abstract

logistic regression training.

Background: Logistic regression is a popular technique used in machine learning to construct classification models.
Since the construction of such models is based on computing with large datasets, it is an appealing idea to outsource
this computation to a cloud service. The privacy-sensitive nature of the input data requires appropriate privacy
preserving measures before outsourcing it. Homomorphic encryption enables one to compute on encrypted data
directly, without decryption and can be used to mitigate the privacy concerns raised by using a cloud service.

Methods: In this paper, we propose an algorithm (and its implementation) to train a logistic regression model on a
homomorphically encrypted dataset. The core of our algorithm consists of a new iterative method that can be seen as
a simplified form of the fixed Hessian method, but with a much lower multiplicative complexity.

Results: We test the new method on two interesting real life applications: the first application is in medicine and
constructs a model to predict the probability for a patient to have cancer, given genomic data as input; the second
application is in finance and the model predicts the probability of a credit card transaction to be fraudulent. The
method produces accurate results for both applications, comparable to running standard algorithms on plaintext data.
Conclusions: This article introduces a new simple iterative algorithm to train a logistic regression model that is
tailored to be applied on a homomorphically encrypted dataset. This algorithm can be used as a privacy-preserving
technique to build a binary classification model and can be applied in a wide range of problems that can be modelled
with logistic regression. Our implementation results show that our method can handle the large datasets used in
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Background

Introduction

Logistic regression is a popular technique used in machine
learning to solve binary classification problems. It starts
with a training phase during which one computes a model
for prediction based on previously gathered values for
predictor variables (called covariates) and corresponding
outcomes. The training phase is followed by a testing
phase that assesses the accuracy of the model. To this end,
the dataset is split into data for training and data for val-
idation. This validation is done by evaluating the model
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in the given covariates and comparing the output with
the known outcome. When the classification of the model
equals the outcome for most of the test data, the model is
considered to be valuable and it can be used to predict the
probability of an outcome by simply evaluating the model
for new measurements of the covariates.

Logistic regression is popular because it provides a
simple and powerful method to solve a wide range of prob-
lems. In medicine, logistic regression is used to predict
the risk of developing a certain disease based on observed
characteristics of the patient. In politics, it is used to pre-
dict the voting behaviour of a person based on personal
data such as age, income, sex, state of residence, previous
votes. In finance, logistic regression is used to predict the
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likelihood of a homeowner defaulting on a mortgage or a
credit card transaction being fraudulent.

As all machine learning tools, logistic regression needs
sufficient training data to construct a useful model. As
the above examples show, the values for the covariates
and the corresponding outcomes are typically highly sen-
sitive, which implies that the owners of this data (either
people or companies) are reluctant to have their data
included in the training set. In this paper, we solve this
problem by describing a method for privacy preserving
logistic regression training using somewhat homomor-
phic encryption. Homomorphic encryption enables com-
putations on encrypted data without needing to decrypt
the data first. As such, our method can be used to send
encrypted data to a central server, which will then per-
form logistic regression training on this encrypted input
data. This also allows to combine data from different
data owners since the server will learn nothing about the
underlying data.

Related work
Private logistic regression with the aid of homomorphic
encryption has already been considered in [1, 2], but in a
rather limited form: both papers assume that the logistic
model has already been trained and is publicly available.
This publicly known model is then evaluated on homo-
morphically encrypted data in order to perform classifica-
tion of this data without compromising the privacy of the
patients. Our work complements these works by execut-
ing the training phase for the logistic regression model in
a privacy-preserving manner. This is a much more chal-
lenging problem than the classification of new data, since
this requires the application of an iterative method and a
solution for the nonlinearity in the minimization function.
Aono et al. [3] also explored secure logistic regres-
sion via homomorphic encryption. However, they shift
the computations that are challenging to perform homo-
morphically to trusted data sources and a trusted client.
Consequently, in their solution the data sources need
to compute some intermediate values, which they sub-
sequently encrypt and send to the computation server.
This allows them to only use an additively homomor-
phic encryption scheme to perform the second, easier,
part of the training process. Finally, they require a trusted
client to perform a decryption of the computed coeffi-
cients and use these coefficients to construct the cost
function for which the trusted client needs to determine
the minimum in plaintext space. Their technique is based
on a polynomial approximation of the logarithmic func-
tion in the cost function and the trusted client applies
the gradient descent algorithm as iterative method to per-
form the minimization of the cost function resulting from
the homomorphic computations. Our method does not
require the data owners to perform any computations
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(bar the encryption of their data) and determines the
model parameters by executing the minimization directly
on encrypted data. Again this is a much more challenging
problem.

In [4] Xie et al. construct PrivLogit which performs
logistic regression in a privacy-preserving but distributed
manner. As before, they require the data owners to per-
form computations on their data before encryption to
compute parts of a matrix used in the logistic regression.
Our solution starts from the encrypted raw dataset, not
from values that were precomputed by the centers that
collect the data. In our solution all computations that are
needed to create the model parameters, are performed
homomorphically.

Independently and in parallel with our research, Kim
et al. [5] investigated the same problem of performing
the training phase of logistic regression in the encrypted
domain. Their method uses a different approach than
ours: firstly, they use a different minimization method
(gradient descent) compared to ours (a simplification
of the fixed Hessian method), a different approximation
of the sigmoid function and a different homomorphic
encryption scheme. Their solution is based on a small
adaptation of the input values, which reduces the num-
ber of homomorphic multiplications needed in the com-
putation of the model. We assumed the dataset would
be already encrypted and therefore adaptations to the
input would be impossible. Furthermore, they tested their
method on datasets that contain a smaller number of
covariates than the datasets used in this article.

Contributions

Our contributions in this paper are as follows: firstly, we
develop a method for privacy preserving logistic train-
ing using homomorphic encryption that consists of a low
depth version of the fixed Hessian method. We show that
consecutive simplifications result in a practical algorithm,
called the simplified fixed Hessian (SFH) method, that
at the same time is still accurate enough to be useful.
We implemented this algorithm and tested its perfor-
mance and accuracy on two real life use cases: a medical
application predicting the probability of having cancer
given genomic data and a financial application predict-
ing the probability that a transaction is fraudulent. Our
test results show that in both use cases the model com-
puted is almost as accurate as the model computed by
standard logistic regression tools such as the ones present
in Matlab.

Technical Background

Logistic regression

Logistic regression can be used to predict the probability
that a dependent variable belongs to a class, e.g. healthy
or sick, given a set of covariates, e.g. some genomic data.
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In this article, we will consider binary logistic regres-
sion, where the dependent variable can belong to only two
possible classes, which are labelled {#1}. Binary logistic
regression is often used for binary classification by setting
a threshold for a given class up front and comparing the
output of the regression with this threshold. The logistic
regression model is given by:

1

14 e(—yﬂTX)
where the vector 8 = (Bo, ..., By) are the model param-
eters, y the class label (in our case {£1}) and the vector
x=(1,x1,...,%9) € R4+ the covariates.

Because logistic regression predicts probabilities rather
than classes, we can generate the model using the log like-
lihood function. The training of the model starts with a
training dataset (X,y) =[(x1,71),..., (XN, ¥N)], consist-
ing of N training vectors xi = (1,%;1,...,%;4) € R4+
and corresponding observed class y; € {—1,1}. The goal
is to find the parameter vector # that maximizes the log
likelihood function:

— Z log <1 + e(_yiﬂTxi)> . 2)

i=1

Pr(y = £1/x,8) = o (y87x) = (1)

Ip) =

When the parameters B are determined, they can be
used to classify new data vectors x"*V = (1 Y,
A"y e R4 by setting

new __ 1 ifp(y=1|x“ew,ﬂ)zr
YT -1 ifpiy=1x",8) <t

in which 0 < t < 1 is a variable threshold which typically
equals %

Datasets

As mentioned before, we will test our method in the con-
text of two real life use cases, one in genomics and the
other in finance.

The genomic dataset was provided by the iDASH com-
petition of 2017 and consists of 1581 records (each cor-
responding to a patient) consisting of 103 covariates and
a class variable indicating whether or not the patient has
cancer. The challenge was to devise a logistic regression
model to predict the disease given a training data set of at
least 200 records and 5 covariates. However, for scalability
reasons the solution needed to be able to scale up to 1000
records with 100 covariates. This genomic dataset consists
entirely of binary data.

The financial data was provided by an undisclosed bank
that provided anonymized data with the goal of pre-
dicting fraudulent transactions. Relevant data fields that
were selected are: type of transaction, effective amount
of the transaction, currency, origin and destination, fees
and interests, etc. This data has been subject to prepro-
cessing by firstly representing the non-numerical values
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with labels and secondly computing the minimum and
maximum for each of the covariates and using these to
normalise the data by computing —*—mi»— The resulting
financial dataset consists of 20,000 records with 32 covari-
ates, containing floating point values between 0 and 1.

The FV scheme
Our solution is based on the somewhat homomorphic
encryption scheme of Fan and Vercauteren [6], which
can be used to compute a limited number of additions
and multiplications on encrypted data. The security of
this encryption scheme is based on the hardness of the
ring learning with error problem (RLWE) introduced by
Lyubashevsky et al. in [7]. The core objects in the FV
scheme are elements of the polynomial ring R = Z[ X] /
(f(X)), where typically one chooses f(X) = XP 4 1 for
D = 2" (in our case D = 4096). For an integer modulus
M € Z we denote with Rys the quotient ring R/ (MR).

The plaintext space of the FV scheme is the ring R; for
t > 1 a small integer modulus and the ciphertext space
is R; x Ry for an integer modulus g > t. For a € Ry,
we denote by [a], the element in R obtained by applying
[-14 to all its coefficients a;, with [a;]; = @; mod q given
53
probability distributions on R,: one is denoted by xiey and
is used to sample the secret key of the scheme, the other is
denoted yerr and will be used to sample error polynomials
during encryption. The exact security level of the FV scheme
is based on these probability distributions, the degree D
and the ciphertext modulus g and can be determined using
an online tool developed by Albrecht et al. [8].

Given parameters D, ¢, t and the distributions Xkey and
Xerr» the core operations are then as follows:

by a representative in ( ] The FV scheme uses two

® KeyGen: the private key consists of an element
§ < Xkey and the public key pk = (b, a) is computed
asa < Ry uniformly at random and b =[ —(as + e)],
with e < xerr.

e Encrypt(pk, m): given m € Ry, sample error
polynomials e1, €2 € Xerr and # € Xey and compute

= Am + bu + e1 and ¢ = au + ey with

A = |g/t], the largest integer smaller than %. The
ciphertext is then ¢ = (cp, ¢1).

e Decrypt(sk, ¢): compute 1 =[ ¢ + c15]4, divide the
coefficients of m by A and round and reduce the
result into R;.

Computing the sum of two ciphertexts simply amounts
to adding the corresponding polynomials in the cipher-
texts. Multiplication, however, requires a bit more work
and we refer to [6] for the precise details.

The relation between a ciphertext and the underlying
plaintext can be described as [ co+c15]; = Am+e, where e
is the noise component present in the ciphertext. This also
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shows that if the noise e grows too large, decryption will
no longer result in the original message, and the scheme
will no longer be correct. Since the noise present in the
resulting ciphertext will grow with each operation we per-
form homomorphically, it is important to choose param-
eters that guarantee correctness of the scheme. Knowing
the computations that need to be performed up front
enables us to estimate the size of the noise in the result-
ing ciphertext, which permits the selection of suitable
parameters.

w-NIBNAF

In order to use the FV scheme, we need to transform the
input data into polynomials of the plaintext space R;. To
achieve this, our solution makes use of the w-NIBNAF
encoding, because this encoding improves the perfor-
mance of the homomorphic scheme. The w-NIBNAF
encoding is introduced in [9] and expands a given num-
ber 6 with respect to a non-integral base 1 < b, < 2.
By replacing the base b, by the variable X, the method
encodes any real number 6 as a Laurent polynomial:

0 =a,X" +a, 1 X'+ +mX+ag—a_ X!

- a_sz_z — = a_st_s. ®

A final step then maps this Laurent polynomial into the
plaintext space R; and we refer the reader to [9] for the
precise details.

The w-NIBNAF encoding is constructed such that the
encoding of a number will satisfy two conditions: the
encoding has coefficients in the set {—1,0,1} and each
set of w consecutive coefficients will have no more than
one non-zero coefficient. Both conditions ensure that the
encoded numbers are represented by very sparse polyno-
mials with coefficients in the set {—1, 0, 1}, which can be
used to bound the size of the coefficients of the result
of computations on these representations. In particular,
this encoding results in a smaller plaintext modulus ¢,
which improves the performance of the homomorphic
encryption scheme. Since larger values for w increase the
sparseness of the encodings and hence reduce the size of ¢
even more, one would like to select the value for w to be as
large as possible. However, similar to encryption one has
to consider a correctness requirement for the encoding.
More specifically, decoding of the final polynomial should
result in the correct answer, hence the base b,, and conse-
quently also the value of w should be chosen with care.

Methods

Privacy preserving training of the model

Newton-Raphson method

To estimate the parameters of our logistic regression
model, we need to compute the parameter vector § that
maximizes Eq. (2). Typically, one would differentiate the
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log likelihood equation with respect to the parameters,
set the derivatives equal to zero and solve these equations
to find the maximum. The gradient of the log likelihood
function [(B), i.e. the vector of its partial derivatives [ 9//
3B, 91/3B1, ..., 3l/9B,] is given by:

Vgl(B) = Z (1 -0 (yiﬂTXi)>ini~

12

In order to estimate the parameters §, this equation will
be solved numerically by applying the Newton-Raphson
method, which is a method to numerically determine the
zeros of a function. The iterative formula of the Newton-
Raphson method to calculate the root of a univariate
function f(x) is given by:
[

S’
with f/(x) the derivative of f(x). Since we now compute

with a multivariate objective function /(B), the (k + 1)th
iteration for the parameter vector g is given by:

Bii1=Br —H ' (Bx) Val (Bx) » (5)

with Vg/(B) as defined above and H(B) = Vél(ﬂ) the
Hessian of /(B), being the matrix of its second partial
derivatives H;; = 821/8ﬁi8ﬁj, given by:

HB)=-)_ (1 -0 (}’iﬂTxt)) o (}’iﬂTXi) x)* .

4

(4)

Xk+1 = Xk

Homomorphic logistic regression
The downside of Newton’s method is that exact evaluation
of the Hessian and its inverse are quite expensive in com-
putational terms. In addition, the goal is to estimate the
parameters of the logistic regression model in a privacy-
preserving manner using homomorphic encryption,
which will further increase the computational challenges.
Therefore, we will adapt the method in order to make it
possible to compute it efficiently in the encrypted domain.
The first step in the simplification process is to approx-
imate the Hessian matrix with a fixed matrix instead of
updating it every iteration. This technique is called the
fixed Hessian Newton method. In [10], Bohning and Lind-
say investigate the convergence of the Newton-Raphson
method and show it converges if the Hessian H(B) is
replaced by a fixed symmetric negative definite matrix B
(independent of B) such that H(8) > B for all feasible
parameter values B, where “ > " denotes the Loewner
ordering. The Loewner ordering is defined for symmetric
matrices A, B and denoted as A > B iff their differ-
ence A — B is non-negative definite. Given such B, the
Newton-Raphson iteration simplifies to

Bii1=Br— B 'Val(By).

Furthermore, they suggest a lower bound specifically for
the Hessian of the logistic regression problem, which is
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defined as H = —iX TX and demonstrate that this is a
good bound. This approximation does not depend on f,
consequently it is fixed throughout all iterations and it
only needs to be computed once as desired. Since the Hes-
sian is fixed, so is its inverse, which means it only needs to
be computed once.

In the second step, we will need to simplify this approx-
imation even more, since inverting a square matrix whose
dimensions equal the number of covariates (and thus
can be quite large), is nearly impossible in the encrypted
domain. To this end, we replace the matrix / by a diagonal
matrix for which the method still converges. The entries
of the diagonal matrix are simply the sums of the rows of
the matrix A, so our new approximation A of the Hessian
becomes:

Z?:() /:l(),,' 0 REE 0
4 0 Yloh... 0
0 0 Y hay

To be able to use this approximation as lower bound for
the above fixed Hessian method we need to assure our-
selves it satisfies the condition H(8) > H. As mentioned
before we already know from [10] that H(8) > _TIX T,
so it is sufficient to show that %X TX > H, which we now
prove more generally.

Lemma 1 Let A € R"*" be a symmetric matrix with all
entries non-positive, and let B be the diagonal matrix with
diagonal entries By =Y ¢, Ax;fork=1,...,n, then A>B.

Proof By definition of the matrix B, we have that C =
A — B has the following entries: for i # jwe have C;; = A
and C;; = — ZZ:Lk;ﬁz‘Ai,k In particular, the diagonal ele-
ments of C are minus the sum of the off-diagonal elements
on the i-th row. We can bound the eigenvalues A; of C
by Gerschgorin’s circle theorem [11], which states that for
every eigenvalue X of C, there exists an index i such that

A= Ciil <> IGyl

J#i
Note that by construction of C we have that C;; =
Zi;éi |Cijl, and so every eigenvalue A satisfies [ — C;;| <
C;,; for some i. In particular, since C;; > 0, we conclude
that & > O for all eigenvalues A and thus that A > B. O

ie{l,2,...,n}.

Our approximation H for the Hessian also simplifies
the computation of the inverse of the matrix, since we
simply need to invert each diagonal element separately.
The inverse will be again computed using the Newton-
Raphson method: assume we want to invert the number
a, then the function f(x) will be equal to % — a and
the iteration is given by xxy; = w¢ (2 — axy). For the
Newton-Raphson method to converge, it is important to
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determine a good start value. Given the value range of the
input data and taking into account the dimensions of the
training data, we estimate a range of the size of the num-
ber we want to invert. This results in an estimation of the
order of magnitude of the solution that is expected to be
found by the Newton-Raphson algorithm. By choosing the
initial value of our Newton-Raphson iteration close to the
constructed estimation of the inverse, we can already find
an acceptable approximation of the inverse by performing
only one iteration of the method.

In the third and final step, we simplify the non-linearity
coming from the sigmoid function. Here, we simply use
the Taylor series: extensive experiments with plaintext
data showed that approximating o (yiﬂ Tx,-) by % + J%Tx"
is enough to obtain good results.

The combination of the above techniques finally results
in our simplified fixed Hessian (SFH) method given in
Algorithm 1.

Algorithm 1 8 < simplified fixed Hessian(X, Y, uo, «)

1: Input: X(N,d + 1): training data with in each row
the values for the covariates for one record and start-
ing with a column of ones to account for the constant
coefficient

2: Y(N, 1): labels of the training data

3: up: start value for the Newton-Raphson iteration that
computes the inverse

4: k: the required number of iterations

Output: B: the parameters of the logistic regression

model

o

B = 0.001 * ones(d + 1, 1)
sum = zeros(N, 1);
fori=1:Ndo

100 forj=1:d+1do

11: sum(i)+ = X(1,))

12:  end for

13: end for

14: forj=1:d+1do

5. temp=0;

16: fori=1:Ndo

17: temp+ = X(i,j)sum(i);
18:  end for

19 H(j)(j) = — temp;

200 HYG)() = 2uo — H(G)(Gu;
21: end for

22: fork=1:« do

23: fori=1:Ndo

2 g+t =G - y()Xa,Hp)YHXG,)
25:  end for

2w B=p—Hlg

27: end for

R N
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We implemented the SFH algorithm in Matlab and ver-
ified the accuracy for a growing number of iterations.
One can see from Algorithm 1 that each iteration requires
5 homomorphic multiplications, so performing one iter-
ation is quite expensive. In addition, Table 1 indicates
that improving the accuracy significantly requires multi-
ple iterations. We will therefore restrict our experiments
to one single iteration.

Results
Accuracy of the SFH method
Table 2 shows the confusion matrix of a general binary
classifier.

From the confusion matrix, we can compute the true
positive rate (TPR) and the false positive rate (FPR) which
are given by

_ #TP
" #TP + #FN

#FP
#FP + #TN
(6)

By computing the TPR and FPR for varying thresholds
0 < 7 < 1, we can construct the receiver operating
characteristic curve or ROC-curve. The ROC-curve is
constructed by plotting the (FPR, TPR) pairs for each pos-
sible value of the threshold . In the ideal situation there
would exists a point with (FPR,TPR) = (0, 1), which
would imply that there exists a threshold for which the
model classifies all test data correctly.

The area under the ROC-curve or AUC-value will be
used as the main indicator of how well the classifier works.
Since our SFH method combines several approximations,
we need to verify the accuracy of our model first on unen-
crypted data and later on encrypted data. For well chosen
system parameters, there will be no difference between
accuracy for unencrypted vs. encrypted data since all
computations on encrypted data are exact.

The first step is performed by comparing our SFH
method with the standard logistic regression functional-
ity of Matlab. This is done by applying our method with
all its approximations to the plaintext data and comparing
the result to the result of the “glmfit” function in Mat-
lab. The function b = glmfit(X, y, distr) returns a vector

TPR and FPR =

Table 1 Performance for the financial dataset with 31 covariates
and 700 training records and 19,300 testing records

# iterations AUC SFH
1 09418
5 0.9436
10 0.9448
20 0.9466
50 09517

100 0.9599
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Table 2 Comparing actual and predicted classes

Actual class

-1 1

Predicted -1
Class 1

True negative (TN) False negative (FN)

False positive (FP) True positive (TP)

b of coefficient estimates for a generalized linear model of
the responses y on the predictors in X, using distribution
distr. Generalized linear models unify various statistical
models, such as linear regression, logistic regression and
Poisson regression, by allowing the linear model to be
related to the response variable via a link function. We
use the “binomial” distribution, which corresponds to the
“logit” link function and y a binary vector indicating suc-
cess or failure to compute the parameters of the logistic
regression model with “glmfit”.

From Figs. 1 and 2 one can see that the SFH method
classifies the data approximately as well as “glmfit” in Mat-
lab, in the sense that one can always select a threshold
that gives approximately the same true positive rate and
false positive rate. One can thus conclude that the SFH
method, with all its approximations, performs well com-
pared to the standard Matlab method, which uses much
more precise computations. By computing the TPR and
FPR for several thresholds, we found that the approxima-
tions of our SFH method shifts the model a bit such that
we need a slightly larger threshold to get approximately
the same TPR and FPR as for the Matlab model. Since
the ideal situation would be to end up with a true posi-
tive rate of 1 and false positive rate of 0, we see from Fig. 1
that for the genomics dataset both models are perform-
ing rather poorly. The financial fraud use case is, however,
much more amenable to binary classification as shown in
Fig. 2. The main conclusion is that our SFH method per-
forms almost as well as standard methods such as those
provided by Matlab.

ROC for Classification by Logistic Regression

TPR

—glmfit
- -fixed Hessian

0 0.2 0.4 0.6 0.8 1
FPR

Fig. 1 ROC curve for the cancer detection scenario of iDASH with
1000 training records and 581 testing records, all with 20 covariates
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ROC for Classification by Logistic Regression

—glmfit
- -fixed Hessian

0.2 0.4 0.6 0.8 1
FPR

Fig. 2 ROC curve for the financial fraud detection with 1000 training
records and 19,000 testing records, all with 31 covariates

Implementation details and performance

Our implementation uses the FV-NFLIib software library
[12] which implements the FV homomorphic encryption
scheme. The system parameters need to be selected taking
into account the following three constraints:

1 the security of the somewhat homomorphic FV
scheme,

2 the correctness of the somewhat homomorphic FV
scheme,

3 the correctness of the w-NIBNAF encoding.

The security of a given set of system parameters can be
estimated using the work of Albrecht, Player and Scott
[13] and the open source learning with error (LWE) hard-
ness estimator implemented by Albrecht [8]. This pro-
gram estimates the security of the LWE problem based on
the following three parameters: the degree D of the poly-

nomial ring, the ciphertext modulus g and o = ¥2%%

where o is the standard deviation of the error distribution
Xerr- The security estimation is based on the best known
attacks for the learning with error problem. Our system
parameters are chosen to be g = 2%, D = 4096 and

o = 20 (and thus o = @) which results in a security of
78 bits.

As explained in the section on the FV scheme, the
error in the ciphertext encrypting the result, should be
small enough to enable correct decryption. By estimating
the infinity norm of the noise we can select parameters
that keep this noise under the correctness bound and in
particular, we obtain an upper bound fpx of the plain-
text modulus. Similarly, to ensure correct decoding, the
coefficients of the polynomial encoding the result must
remain smaller than the size of the plaintext modulus ¢.
This condition results in a lower bound on the plaintext
modulus tmin.

It turns out that these bounds are incompatible for the
chosen parameters, so we have to rely on the Chinese
Remainder Theorem to decompose the plaintext space
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into smaller parts that can be handled correctly. The plain-
text modulus ¢ is chosen as a product of small prime
numbers 1, ty, ..., t, withVi € {1, ..., n}: t; < tmax
and t = [[_; & > tmin, Where fmax is determined by
the correctness of the FV scheme and £,y by the correct-
ness of the w-NIBNAF decoding. The CRT then gives the
following ring isomorphism:

Ry = Ry <. . xRy, : g(X) = (@(X)modt1, ..., g(X)modty) .
and instead of performing the training algorithm directly
over R;, we compute with each of the R;,’s by reducing the
w-NIBNAF encodings modulo ¢;. The resulting choices for
the plaintext spaces are given in Table 3.

Since we are using the Chinese Remainder Theorem,
each record will be encrypted using two (for the financial
fraud case) or three (for the genomics case) ciphertexts.
As such, a time-memory trade off is possible depending
on the requirements of the application. One can choose
to save computing time by executing the algorithm for the
different ciphertexts in parallel; or one can choose to save
memory by computing the result for each plaintext space
Ry, consecutively and overwriting the intermediate values
of the computations in the process.

The memory required for each ciphertext is easy to
estimate: a ciphertext consists of 2 polynomials of R, =
Zg[ X] /(XP 4+ 1), so its size is given by 2D log, g which is
~ 186kB for the chosen parameter set. Due to the use of
the CRT, we require T (with T = 2 or T = 3) cipher-
texts to encrypt each record, so the general formula for the
encrypted dataset size is given by:

T(d+1)N2Dlog,q bits,

with T the number of prime factors used to split the plain-
text modulus £ and d+1 (resp. N) the number of covariates
(resp. records) used in the training set.

The time complexity of our SFH method is also easy
to estimate, but one has to be careful to perform the
operations in a specific order. If one would naively com-
pute the matrix A by first computing A and subsequently
summing each row, the complexity would be O(Ndz).

However, the formula of the k-th diagonal element of
is given by 7! /‘.1:11 (Zfil xklix/,i), which can be rewrit-

ten as = SN X (Z;iill xj,i). This formula shows that

Table 3 The parameters defining plaintext encoding

W t

5179-5189 - 5197
2237 - 2239

Genomic data Q) 71
Financial data ) 150
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Table 4 Performance for the genomic dataset with a fixed
number of covariates equal to 20

Page 20 of 55

Table 6 Performance for the financial dataset with a fixed
number of covariates equal to 31

# training records Computation time AUC SFH AUC glmfit  # training records Computation time AUC SFH AUC glmfit
500 22 min 0.6348 0.6287 700 30 min 0.9416 0.9619
600 26 min 0.6298 0.6362 800 36 min 09411 0.9616
800 35 min 0.6452 0.6360 900 40 min 0.9409 0.9619
1000 44 min 0.6561 0.6446 1000 45min 0.9402 0.9668

The number of testing records is for each row equal to the total number of input
records (1581) minus the number of training records

it is more efficient to first sum all the rows of X and then
perform a matrix vector multiplication with complexity
O(Nd).

This complexity is clearly visible in the tables, more
specifically in Tables 4 and 5 for the genomic use case, and
Tables 6 and 7 for the financial use case. All these tables
show a linear growth of the computation time for a grow-
ing number of records or covariates as expected by the
chosen order of the computations in the implementation.

In Tables 4 and 5 we see that often the AUC value of
the SFH model is slightly higher than the AUC value of the
glmfit model. However, as mentioned before both mod-
els perform poorly on this dataset. Since our SFH model
contains many approximations we expect it to perform
slightly worse than the “glmfit” model. Only slightly worse
because Figs. 1 and 2 already showed that the SFH mod-
els classifies the data almost as well as the “glmfit” model.
This is consistent with the results for the financial dataset
shown in Tables 6 and 7, which we consider more relevant
than the results of the genomic dataset due to the fact that
both models perform better on this dataset.

Discussion

The experiments of this article show promising results
for the simple iterative method we propose as an algo-
rithm to compute the logistic regression model. A first
natural question is whether this technique is generaliz-
able to other machine learning problems. In [14], B6hning
describes how to adapt the lower bound method to make
it applicable to multinomial logistic regression, it is likely
this adaption will also apply to our SFH technique and
hence our SFH technique can most likely also be applied
to construct a multinomial logistic regression model. In

Table 5 Performance for the genomic dataset with a fixed
number of training records equal to 500 and the number of
testing records equal to 1081

The number of testing records is for each row equal to the total number of input
records (20,000) minus the number of training records

the case of neural networks we can refer to [15]; in order
to construct the neural network one needs to rank all the
possibilities and only keep the best performing neurons
for the next layer. Constructing this ranking homomor-
phically is not straightforward and not considered at all in
our algorithm, hence neural networks will require more
complicated algorithms.

When we look purely at the performance of the FV
homomorphic encryption scheme, we might consider a
residue number system (RNS) variant of the FV scheme
as described in [16] to further improve the running time
of our implementation. One could also consider single
instruction multiple data (SIMD) techniques as suggested
in [17] or look further into a dynamic rescaling proce-
dure for FV as mentioned in [6]. These techniques will
presumably further decrease the running time of our
implementation, which would render our solution even
more valuable.

Conclusions

The simple, but effective, iterative method presented in
this paper allows one to train a logistic regression model
on homomorphically encrypted input data. Our method
can be used to outsource the training phase of logis-
tic regression to a cloud service in a privacy preserving
manner. We demonstrated the performance of our logis-
tic training algorithm on two real life applications using
different numeric data types. In both cases, the accuracy
of our method is only slightly worse than standard algo-
rithms to train logistic regression models. Finally, the time
complexity of our method grows linearly in the number of
covariates and the number of training input data points.

Table 7 Performance for the financial dataset with a fixed
number of records equal to 500 and the number of testing
records equal to 19,500

# covariates Computation time AUC SFH AUC glmfit  # covariates Computation time AUC SFH AUC glmfit
5 7 min 0.65 0.6324 5 5 min 0.8131 0.8447
10 12 min 0.6545 0.6131 10 8 min 0.9403 0.9409
15 17 min 0.6446 0.6241 15 11 min 0.9327 0.9492
20 22 min 0.6348 0.6272 20 15 min 0.9401 0.9629
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