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Abstract

Background: With the development of sequencing technology, more and more long non-coding RNAs (lncRNAs)
have been identified. Some lncRNAs have been confirmed that they play an important role in the process of
development through the dosage compensation effect, epigenetic regulation, cell differentiation regulation and
other aspects. However, the majority of the lncRNAs have not been functionally characterized. Explore the function of
lncRNAs and the regulatory network has become a hot research topic currently.

Methods: In the work, a network-based model named BiRWLGO is developed. The ultimate goal is to predict the
probable functions for lncRNAs at large scale. The new model starts with building a global network composed of
three networks: lncRNA similarity network, lncRNA-protein association network and protein-protein interaction (PPI)
network. After that, it utilizes bi-random walk algorithm to explore the similarities between lncRNAs and proteins.
Finally, we can annotate an lncRNA with the Gene Ontology (GO) terms according to its neighboring proteins.

Results: We compare the performance of BiRWLGO with the state-of-the-art models on a manually annotated
lncRNA benchmark with known GO terms. The experimental results assert that BiRWLGO outperforms other methods
in terms of both maximum F-measure (Fmax) and coverage.

Conclusions: BiRWLGO is a relatively efficient method to predict the functions of lncRNA. When protein interaction
data is integrated, the predictive performance of BiRWLGO gains a great improvement.
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Background
The results of the entire human genome sequencing show
that only 1.5-2.0% of genes code for proteins. The remain-
ing genes correspond to large non-coding protein regions,
which include amounts of transcriptional regulatory ele-
ments and non-coding RNA genes. Generally, non-coding
RNAs are not capable of encoding proteins [1]. Accord-
ing to the number of bases, non-coding RNAs are divided
into long non-coding RNA (lncRNA) and small non-
coding RNA (sncRNA). LncRNAs are more than 200 nt
in length and highly conserved in their secondary and
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tertiary structures [2]. With the rapid development of
high through-put deep sequencing technology, more and
more lncRNAs have been discovered in eukarya in recent
years. Especially there is large number of lncRNAs are
found in humans and mice [3, 4]. lncRNAs take part
in many important regulational processes, such as X
chromosome silence, genomic imprinting, chromatin
modification, transcription activation, transcription inter-
ference, nuclear transport etc [5–7]. Many recent stud-
ies have reported that lncRNAs are closely related with
occurrence, development, diagnosis and treatment of the
disease [8, 9].

With the development of lncRNA research, amounts of
data related to lncRNAs emerged. In order to make better
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use of these information, lots of bioinformatics databases
have been built up. These databases contain information
about lncRNAs, including structure information, expres-
sion information, interaction information of lncRNAs
and other relevant information. They play an impor-
tant role in the research of lncRNAs. Moreover, the data
curated by these databases may contribute to research of
lncRNAs with computational methods. A brief descrip-
tion of some databases is outlined as follows. NONCODE
provides ncRNA related information for 17 species. The
information not only includes the basic information of
lncRNA such as location, strand, exon number, length
and sequence, but also the advanced information such
as the expression profiles, conservation info, predicted
function and disease relation [10]. LncRNAdb curates
the experimentally supported functional lncRNAs [11].
Entries in LncRNAdb are manually curated from refer-
enced literature. ChIPBase aims to explore the transcrip-
tional regulatory networks of ncRNAs and protein-coding
genes according to the ChIP-Seq data [12]. lncRNome is
a comprehensive searchable biologically oriented knowl-
edgebase for lncRNAs in Humans, which provides various
information including chromosomal locations, the types,
description on the biological functions and disease associ-
ations of lncRNAs [13]. LncRNADisease provides exper-
imentally supported lncRNA-disease associations, which
contains approximately 480 entries of high-quality asso-
ciations [14]. Besides these databases mentioned above,
there are still a number of resources about lncRNA, such
as GeneCards [15], lncRNASNP [16], lncRNAMap [17],
and LncRNA2Target [18] etc.

Although many databases which provide a wide variety
of information about lncRNAs have been developed, there
are few databases which are focused on function annota-
tion of lncRNAs. Therefore, the functional investigation
of lncRNAs has attracted the attentions of many biolo-
gists and bioinformaticians [19]. However, sophisticated
molecular regulatory mechanisms of lncRNAs remain an
enigma. At present, there are still a lot of obstacles to
determine the functions of lncRNAs. Biological experi-
ments are the mainly methods to identify the functions of
lncRNAs. However, it has the limits with higher cost and
time-consuming. In recent years, researchers have devel-
oped several computational methods to infer lncRNA
functions [20]. Guo et al. [21] proposed a network-based
approach, lnc-GFP, to annotate lncRNAs. In lnc-GFP, a
bi-colored biological network is built firstly according
to co-expression data and protein interaction data, then
lncRNAs are annotated by running a global propagation
algorithm on the bi-colored network. Jiang et al. [22]
developed a method named LncRNA2Function which uti-
lizes hyper-geometric test to predict lncRNA functions.
Recently, Zhang et al. [23] calculated the neighboring
protein-coding genes of each lncRNA according to the

KATZ measure and predicted the functions of lncRNAs
in terms of their neighboring genes.

This work is motivated by the promising performance
of bi-random walk in predicting the disease-gene asso-
ciation [24, 25] and protein function [26]. In this work,
a global network-based approach, BiRWLGO, is pro-
posed to predict potential functions of lncRNAs at large
scale. In BiRWLGO, a global network is built by integrat-
ing the lncRNA similarity network, the protein-protein
interaction (PPI) network and lncRNA-protein associa-
tions. Then, the probability score of each lncRNA-protein
pair is obtained from applying the bi-random walk algo-
rithm on the global network. Finally, the functions of a
query lncRNA can be predicted according to its neigh-
boring proteins. To evaluate the performance of the pro-
posed model, an independent test is performed on the
manually annotated 55 lncRNAs with 129 GO terms.
Furthermore, we compare the new model with three
state-of-the-art models: lnc-GFP [21], LncRNA2Function
[22] and KATZLGO [23]. The experimental results show
that BiRWLGO achieves F-measure value of 0.345 and
outperforms the prediction performance of the other
three models. Moreover, case studies also demonstrate
the superiority of BiRWLGO on the prediction of the
potential functions of lncRNAs.

Methods
LncRNA co-expression similarity
The expression profiles of lncRNAs are downloaded
from NONCONDE 2016 database [10] that includes the
expression profiles of 90062 lncRNAs in 24 human tissues
or cells. The evaluation of lncRNA co-expression sim-
ilarity is conducted by calculating Pearson’s correlation
coefficient. And according to the results obtained, we
successfully establish the lncRNA similarity network.

Protein-protein interaction
The PPI data are obtained from STRING V10.0 [27], a
database covering data about more than 2000 organisms.
The interactions in the database are curated according
to high-throughput screening, computational prediction,
and information retrieval.

LncRNA-protein associations
The lncRNA-protein associations are built based on
lncRNA-protein interaction data and co-expression data.
First, the data about 15941 human lncRNAs and 20284
protein-coding genes from GENCODE Release 24 are
downloaded [28]. Then based on the following three sets
of data, the genome-wide lncRNA and protein-coding
gene associations are obtained:

1 Co-expression data from COXPRESdb [29]
COXPRESdb reveals the relationships between
co-expressed genes in animal species, e.g. human,
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mouse and fly [28]. From this database, we firstly
extract three preprocessed co-expression datasets for
human species (Hsa.c4-1, Hsa2.c2-0 and Hsa3.c1-0),
including pre-calculated pairwise Pearson’s
correlation coefficients (PCC). The correlations are
calculated according to the following formula:

C(l, p) = 1 −
K∏

k=1
(1 − Ck(l, p)) if Ck(l, p) > 0

Here, C(l, p) represents the overall correlation
between lncRNA l and protein-coding gene p,
Ck(l, p) represents the correlation score between l
and p in dataset k, and K is the number of datasets
where l and p are positively correlated. The gene
pairs with negative correlation scores are excluded.

2 Co-expression data from ArrayExpress [30] and GEO
The co-expression data is extracted from the
research of Jiang et al. [22]. The raw RNA-Seq data in
19 human normal tissues are downloaded from
ArrayExpress (accession no.E-MTAB-513) and GEO
(accession no.GSE30554), respectively. Then, the
expression levels of all human lncRNAs and
protein-coding genes are calculated through Tophat
and cufflinks with the default parameters. The
co-expression of lncRNA-protein pairs is evaluated
by computing the Pearson’s correlation coefficients.

3 LncRNA-protein interaction data from NPinter [31]
The known interactions between lncRNAs and
proteins are obtained from NPinter v3.0, which
contains 491416 experimentally-verified interactions
between ncRNAs and other biomolecules. After that,
the lncRNA-protein interaction pairs are filtered by
restricting the target organisms to “Homo sapiens”.
The interactions between lncRNA and protein can be
denoted by an binary matrix, each element of which
represents whether there is an interaction between
an lncRNA and a protein.

The Gene Ontology annotation
So far, the functions of lncRNAs have not been manu-
ally annotated. Hence, in our study, lncRNAs are indi-
rectly annotated according to the existing annotations
of proteins. The proteins and their annotations are
obtained from the Gene Ontology Annotation (GOA)
database [32].

The BiRWLGO method
A number of methods for predicting the functions of pro-
teins are based on the principle of ’guilty by association’
that a protein tends to exert identical or similar func-
tions with their interacting partners within the protein
interaction network. Similarly, the proposed method, BiR-
WLGO, also exploits the basis. In this work, we annotate

lncRNAs according to the known annotations of proteins.
Thus, an accurate measurement of the degree of corre-
lation between an lncRNA and annotated proteins is the
key for predicting the specific functions of lncRNAs. Fur-
thermore, for measuring the degrees of relevance between
lncRNAs and proteins, it is of the first importance to
find the mapping between the nodes of the two networks,
i.e. lncRNA similarity network and protein interaction
network. In the lncRNA similarity network, the adjacent
lncRNAs are more possibly mapped to the same pro-
tein in protein interaction network. Similarly, proteins
that are adjacent in the protein interaction network are
likely to be mapped to the same lncRNA in lncRNA sim-
ilarity network. The correlations among lncRNA-protein
associations can be featured by circular bigraph pat-
terns (CBGs) [33, 34]. A CBG is a subgraph that con-
tains an lncRNA path l1, l2, · · · , lk and a protein path
p1, p2, · · · , pw. The ends of the two paths are connected
by two known lncRNA-protein associations. The length
of the longer one in the two paths is defined as the length
of a CBG (Fig. 1). In reality, CBGs with small lengths can
capture most associations in the lncRNA-protein asso-
ciations. By capturing the CBG patterns with different
lengths, the potential lncRNA-protein associations can be
revealed.

The bi-random walk approach proposed can be used
to discover the lncRNA-protein correlations by captur-
ing the CBG patterns in the lncRNA similarity network
and protein interaction network. In the algorithm, the
degree of correlation between an lncRNA and a protein is
evaluated by its distance to the other associations in the
lncRNA similarity network and protein interaction net-
work. Hence, the bi-random walk is a global method to
conduct the association map.

Based on the description above, we propose BiRWLGO
to annotate lncRNAs by computing the degrees of corre-
lation between lncRNAs and proteins. The flowchart of
BiRWLGO is exhibited in Fig. 2. Firstly, a global hetero-
geneous network consisting of an lncRNA similarity net-
work, a protein interaction network, and lncRNA-protein
associations modeled by a bipartite graph is established.
Secondly, according to the known lncRNA-protein asso-
ciations, we run the algorithm of bi-random walk on the
lncRNA similarity network and protein interaction net-
work. As a result of the running, the probability scores of
association between lncRNAs and proteins are obtained.
Finally, the probable functions of lncRNAs are annotated
with GO terms according to the high-ranked neighbor-
ing protein-coding genes. In the heterogeneous network,
L(u ∗ u), P(v ∗ v) and A(u ∗ v) denote the adjacency
matrices of the lncRNA similarity network, the protein
interaction network and the lncRNA-protein associations
respectively, in which u represents the number of lncR-
NAs and v represents the number of proteins. Due to
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Fig. 1 CBGs with different length in the lncRNA-protein association network

the distinct topologies and structures of lncRNA simi-
larity network and protein interaction network, the step
numbers of random walk on the two networks might be
different from each other. Therefore, the step numbers of
random walk on the two sides are restricted by setting two
parameters l and r as the numbers of maximal iterations
in the left/right random walk on the two networks. The
process of iterative random walk is written as follows:

Left walk on the lncRNA similarity network:

RL = α ∗ LN ∗ Rt−1 + (1 − α) A

Right walk on the protein interaction network:

RP = α ∗ Rt−1 ∗ PN + (1 − α) A

Here, α refers to the decay factor. RL and RP refer to
the correlations between lncRNAs and proteins based on
the walk on these two networks respectively. Theoreti-
cally, the iterative process on two networks could converge
to a unique solution and the probability in steady state is
defined as the correlation score between an lncRNA and a
protein. The algorithm is outlined as Algorithm 1.

In Algorithm 1, DL and DP are both diagonal
matrix with diagonal elements DL(i, i)=∑

j Lij and
DP(i, i)=∑

j Pij respectively. The result of sum(A) is a vec-
tor where the entry i is defined as

∑
j Aij. The algorithm

will end as it reaches the maximum number of itera-
tions. Finally, the association probability score matrix Rt is
acquired, which can represent the relevance probabilities
between all lncRNA-protein pairs.

As mentioned above, the functions of a query lncRNA
are annotated according to the function information of its
top N neighboring proteins in a descending order of Rt
[35]. The probability Pl(Ti) for each GO term Ti assigned
to the query lncRNA l is defined as the sum of weights of

Algorithm 1 Bi-random-walk algorithm
Require: L: lncRNA similarity matrix, P: protein interac-

tion matrix, A: lncRNA-protein association matrix, α:
decay factor, l: iteration steps in the left random walk, r:
iteration steps in the right random walk

Ensure: Rt : the predicted association score matrix
LN = D−1/ 2

L LD−1/ 2
L

PN = D−1/ 2
P PD−1/ 2

P
R0 = A = A

sum(A)

for t=1 to max(l, r)
m = n = 0

if t <= l
RL = α ∗ LN ∗ Rt−1 + (1 − α) A
m = 1

if t <= r
RP = α ∗ Rt−1 ∗ PN + (1 − α) A
n = 1

Rt = (m ∗ RL + n ∗ Rp)/(m + n)

end for
Return Rt

neighboring proteins annotated with the term Ti:

Pl(Ti) =
N∑

i=1

Slp(i)∑N
j=1 Slp(j)

· Ind(Ti), (1)

where Slp represents the correlation score between the
query lncRNA l and its neighboring proteins p, Ind(Ti) is
used to indicate whether a protein is annotated with the
term Ti. Ind(Ti) is written as follows:

Ind(Ti) =
{

1 if Ii has the annotation Ti

0 otherwise
. (2)
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Fig. 2 Flowchart of BiRWLGO. It incudes three steps: a) build the global network; b) run the bi-random walk algorithm on the global network; c)
annotate lncRNAs with GO terms according to their high ranked neighboring protein-coding genes

Results
Benchmarks
Since the golden-standard dataset of human lncRNA
functions has not been established, we first manually
annotate 55 lncRNAs with 129 GO terms as the inde-
pendent test set(lncRNA2GO-55). In lncRNA2GO-55,
the lncRNAs are functionally described based on the
results from knockdown or overexpression experiments.
In these annotations, referenced information about lncR-
NAs is included, including sequences, structures, genomic
context, expression, subcellular localization, conserva-
tion, functional evidence etc. The dataset is presented in
Additional file 1.
Evaluation measures
In the proposed model, the output for each term in the GO
is a score within [0, 1]. The higher scores indicate more
confident predictions. Hence, we introduce a threshold t

to determine the final predictions. The set of the predicted
GO terms is denoted by P(t), and the set of experimen-
tally determined GO terms is denoted by T. The accuracy
of prediction is determined by how well the predicted
terms match the real ones, which is measured by three
well-known statistic metrics, precision (Pr), recall (Rc)
and F-measure (F). In this work, for each lncRNA i and
threshold t, the precision and recall are calculated as
follows:

Pri(t) =
∑

f ∈O I(f ∈ Pi(t) ∧ f ∈ Ti)∑
f ∈O I(f ∈ Pi(t))

and

Rci(t) =
∑

f ∈O I(f ∈ Pi(t) ∧ f ∈ Ti)∑
f ∈O I(f ∈ Ti)
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where f denotes a GO term and O represents the set of
GO terms in our experiment. The indicator function I(x)

is written as follows:

I(x) =
{

1 x = true
0 x = false

Given a dataset containing N lncRNA-protein pairs, the
average precision over a set of z(t) (≤N) lncRNAs on
which at least one prediction was made above threshold t
is defined as:

Pr(t) = 1
z(t)

·
z(t)∑

i=1
Pri(t).

Similarity, the average recall is defined as:

Rc(t) = 1
N

·
N∑

i=1
Rci(t)

on the entire set of N lncRNAs.
Large threshold brings about few GO terms being

assigned to each lncRNA and results in high precision
and low recall. On the other hand, low threshold brings
about each lncRNA having many GO terms, and results
in high recall and low precision. To solve the problem, we
use the maximum F-measure to overall evaluate different
methods. The maximum F-measure is written as:

Fmax = max
t

(
2 · Pr(t) · Rc(t)
Pr(t) + Rc(t)

)
.

Moreover, coverage is employed to evaluate these meth-
ods. It is defined as the ratio of the portion of lncRNAs
which are correctly annotated with GO terms to the whole
number of lncRNAs.

Parameter selection
There are four parameters (α, l, r and N) to be tuned in
BiRWLGO. The parameter α is the decay factor, which is
introduced to dampen the importance of a CBG when its
path is being longer. The parameters l and r are employed
to limit the number of random walk steps in the lncRNA
similarity network and the protein interaction network
respectively. A specific lncRNA is annotated according to
the GO terms of its top N neighboring proteins in Rt in
descending order. Therefore, N may have an effect on the
functional annotations of lncRNAs.

Nevertheless, it is unrealistic to obtain the optimal solu-
tion by using exhaustive method. Therefore, in this work,
we preset some parameters and then discuss the other
parameters. According to other researchers’ work [36], we
first set l and r to (2,2), and then adjust the values of other
parameters. First, we calculate the values of Fmax when α

is increasing from 0.2 to 0.9 with step size 0.1. As shown in
Table 1, the variation of α ranging from 0.2 to 0.7 has lit-
tle effect on the prediction performance. The Fmax values

Table 1 The Fmax values when α ranges in [0.2, 0.9]

α 0.2 0.3 0.4 0.5

Fmax 0.294 0.305 0.298 0.301

α 0.6 0.7 0.8 0.9

Fmax 0.299 0.300 0.319 0.315

are smaller when α ranges from 0.8 to 1. Consequently, we
fix α = 0.8 in the following experiments. Then, we evalu-
ate the performance of BiRWLGO when setting different
values of N from 20 to 80. The Fmax values of BiRWLGO
under different assignments to N are reported in Fig. 3.
The results show that BiRWLGO achieves the best perfor-
mance when parameter N is set to 47. Hence, in our work,
we set N = 47.

The effects of protein interaction data
In our method, we incorporate protein interaction data
to help improve the effectiveness of function prediction
for lncRNAs. To validate this, BiRWLGO is tested on
three different network configurations: the network with-
out PPIs (all PPIs are excluded), the network including
50% PPIs and the entire network (including all PPIs). The
performance of BiRWLGO on the three configurations is
tested in terms of Fmax on the lncRNA2GO-55 dataset.
The results are depicted in Fig. 4. The Fmax scores are
0.293 for the network without PPIs, 0.322 for the net-
work including 50% PPIs and 0.345 for the entire network.
The demonstration reveals that the proposed method can
benefit from the integration of the PPI data.

Performances
Generally, the methods for investigating lncRNA func-
tions are commonly based on ‘guilt-by-association’ from
co-expression patterns, namely lncNRAs share similar

Fig. 3 The values of Fmax when varying N from 20 to 80. The
predictive performance of BiRWLGO is sensitive to the actual choice
of N and the Fmax comes to the max value when N equals 47
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Fig. 4 The Fmax scores when BiRWLGO is tested on three different
network configurations

functions with their protein-coding counterparts [37].
Among these methods, lnc-GFP is aimed to massively
annotate the potential functions of lncRNAs. According
to gene expression profiles and PPI data, a coding-non-
coding bi-colored biological network is established. Then
a global propagation algorithm is employed to run on the
network to predict the possible functions of unannotated
lncRNAs [21]. LncRNA2Function is a statistical approach,
which predicts the interested functions according to the
correlation between lncRNA expression and expression
of protein-coding genes by the hypergeometric test [22].
Recently, Zhang et al. developed a global method, KAT-
ZLGO, which can achieve massive prediction of lncRNA
functions by integrating multiple biological networks. In
KATZLGO, a query lncRNA is annotated according to the
GO terms of its neighboring proteins, while the associ-
ations between the lncRNA and proteins are calculated
based on the KATZ measure [23].

To assess the predictive performance of BiRWLGO, we
compare it with the three methods described above by
an independent test on the lncRNA2GO-55 dataset. GO
terms contain three categories, including cellular compo-
nent, molecular function, and biological process, among
which biological process is dominantly emphasized in our
experiments for that many well-characterized lncRNAs
are involved in the biological process by interacting with
proteins and most lncRNAs in lncRNA2GO-55 dataset
are annotated with biological terms. The predictive results
obtained from different methods on lncRNA2GO-55
dataset are shown in detail in Fig. 5. As shown, our
method gains the highest value of Fmax, which is signifi-
cantly higher than the other three methods. As for recall,
our method also obtains a competitive score of 0.552.
Moreover, our method achieves the highest value of preci-
sion. Also, we count the number of lncRNAs that are cor-
rectly annotated by different methods, and the results are
depicted in Table 2. Compared with the other three meth-
ods, BiRWLGO correctly annotates 47 lncRNAs, which is
the most among the four methods.

Fig. 5 Performance comparison with other methods

Case studies
In order to illustrate the prediction ability of BiRWLGO
for inferring the potential functions of lncRNAs, we per-
formed case studies in this section. The functions for each
selected lncRNAs were confirmed by the literatures.

Case study 1: GHET1. GHET1, gastric carcinoma high
expressed transcript 1, is located in an intergenic region
on chromatin 7. Yang et al. [38] investigated the biologi-
cal function of GHET1 in gastric carcinoma. Their results
demonstrated that GHET1 promoted gastric carcinoma
cell proliferation, specifically increases the stability of
c-Myc mRNA and up-regulates its expression. In the clini-
cal analyzing, compared with adjacent tissues, the GHET1
gene and protein expressions were significantly increased
in the gastric cancer tissues. In the cell experiment, down-
regulation of GHET1 had suppressed the cell prolifera-
tion, invasion and migration activities and enhanced the
cell apoptosis and G1 phase [39].

To evaluate whether BiRWLGO can functionally anno-
tate the lncRNA GHET1 with functions described above,
we apply our method to GHET1. The results show that
GHET1 is annotated with 731 GO terms in total. The top
20 GO biological processes are depicted in Table 3. Of the
20 GO biological processes, 8 GO terms are related to reg-
ulation as expected. GO:0006417, GO:0042035 and others
are involved in the processes that modulate the frequency,
rate or extent of the chemical reactions, which have asso-
ciation with cell proliferation. GO:0017148 represents
negative regulation of translation, which is consistent with
the experimental results in [39]. GO:0010628 is involved

Table 2 The numbers of lncRNAs correctly annotated by
different methods

Methods Unannotated Annotated

lnc-GFP 22 23

lncRNA2Function 37 18

KATZLGO 10 45

BiRWLGO 8 47
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Table 3 The top 20 predicted GO biological process terms for
lncRNA GHET1 by BiRWLGO

ID GO term GO name

1 GO:0070934 CRD-mediated mRNA stabilization

2 GO:0006417 Regulation of translation

3 GO:0006810 Transport

4 GO:0017148 Negative regulation of translation

5 GO:0010467 Gene expression

6 GO:0051028 Regulation of cytokine biosynthetic process

7 GO:0042035 Regulation of cytokine biosynthetic process

8 GO:0097150 Neuronal stem cell population maintenance

9 GO:0010610 Regulation of mRNA stability involved in
response to stress

10 GO:0006403 RNA localization

11 GO:0022013 Pallium cell proliferation in forebrain

12 GO:0006355 Regulation of transcription, DNA-templated

13 GO:0008380 RNA splicing

14 GO:0006397 mRNA processing

15 GO:0000398 mRNA splicing, via spliceosome

16 GO:0007165 Signal transduction

17 GO:0042981 Regulation of apoptotic process

18 GO:0045944 Positive regulation of transcription from RNA
polymerase II promoter

19 GO:0010628 Positive regulation of gene expression

20 GO:0001501 Skeletal system development

in the positive regulation of gene expression, which is
demonstrated in [38]. Taken together, the results show
that BiRWLGO can successfully predict the functions for
lncRNA GHET1.

Case study 2: HOTAIRM1. HOTAIRM1 is located
between the HOXA1 and HOXA2 genes and expressed
specifically in cells of a myeloid lineage [40]. It can play
a regulatory role in myeloid maturation by modulat-
ing integrin-controlled cell cycle progression at the gene
expression level [41]. In the research of Wan et al. [42],
HOTAIRM1 expression was drastically reduced in col-
orectal cancer tissues compared with matched normal
tissues. Moreover, the knockdown of HOTAIRM1 pro-
moted colorectal cell proliferation and over-expression
of HOTAIRM1 repressed cell proliferation. It meant
that HOTAIRM1 played a role of tumour suppressor
in colorectal cancer. Xin et al. [43] demonstrated that
HOTAIRM1 competitively bound to miR-3960 and finally
regulated the process of hematopoiesis, which revealed a
novel regulatory mechanism of lncRNA function.

To examine whether the lncRNA HOTAIRM1 is pre-
dicted to have the functions of regulation and differenti-
ation, we apply the method of BiRWLGO to it and find
that it is annotated with 271 GO terms. The Table 4

Table 4 The top 20 predicted GO biological process terms for
lncRNA HOTAIRM1 by BiRWLGO

ID GO term GO name

1 GO:0006355 Regulation of transcription, DNA-templated

2 GO:0006351 Transcription, DNA-templated

3 GO:0007049 Cell cycle

4 GO:0006397 mRNA processing

5 GO:0008380 RNA splicing

6 GO:0045892 Negative regulation of transcription,
DNA-templated

7 GO:0045893 Positive regulation of transcription,
DNA-templated

8 GO:0006810 Transport

9 GO:0051260 Protein homooligomerization

10 GO:0016032 Viral process

11 GO:0000398 mRNA splicing, via spliceosome

12 GO:0006366 Transcription from RNA polymerase II
promoter

13 GO:0030154 Cell differentiation

14 GO:0045087 Innate immune response

15 GO:0002376 Immune system process

16 GO:0007165 Signal transduction

17 GO:0000122 Negative regulation of transcription from
RNA polymerase II promoter

18 GO:0045944 Positive regulation of transcription from RNA
polymerase II promoter

19 GO: 0006974 Cellular response to DNA damage stimulus

20 GO: 0001525 Angiogenesis

shows the top 20 GO biological processes assigned to the
HOTAIRM1. The GO terms in the top 20 include pos-
itive regulation and negative regulation, which is in line
with the above results. In addition, the term of cell cycle is
correctly annotated, which was demonstrated in [41].

Discussion and conclusion
In spite of the fact that a large number of lncRNAs
have been discovered over the past decades, only few of
them have been functionally described in detail. Since
there is lack of conservation and understanding for lncR-
NAs, it is hard to predict their functions. In this paper,
a global network-based strategy, BiRWLGO, is proposed
to massively annotate the potential functions of lncRNAs.
First, we built a global heterogeneous network based on
the data about gene expressions, lncRNA-protein asso-
ciations, and protein-protein interactions. After that, to
obtain the neighboring proteins for each lncRNA, we
apply the bi-random walk algorithm on the global het-
erogeneous network. Finally, a specific lncRNA can be
annotated with the GO terms according to its neigh-
boring proteins. In terms of predictive performance,
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BiRWLGO performs well on the independent dataset
lncRNA2GO-55. BiRWLGO acquires the best Fmax score
of 0.345. The values of recall and precision are 0.552
and 0.251, respectively. As for coverage, there are 47
correctly-predicted lncRNAs with at least one GO term in
the manually-curated 55 lncRNAs. Moreover, the exper-
imental results show that integrating the protein-protein
interaction data can improve the performance of function
prediction for lncRNAs.

In the future, we can improve BiRWLGO in the follow-
ing aspects. First, the gene expression data is incomplete,
and the reliability is needed to be improved. Embrac-
ing more reliable expression data would contribute to
the functional annotation for lncRNAs. Secondly, besides
the interactions between lncRNAs and proteins, inte-
grating more reliable interactions between lncRNAs and
other molecules (e.g. microRNAs) may improve the per-
formance of BiRWLGO. Thirdly, it is well-known that GO
functions are organized as a directed acyclic graph hier-
archy. Therefore, utilizing the relations among GO terms
would increase the power of prediction.

Additional file

Additional file 1: The lncRNA2GO-55 dataset. Additional file 1 includes
the Gene Ontology (GO) annotations and the associated PubMed IDs for
55 lncRNAs. (DOCX 26 kb)
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