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Abstract

Background: Lots of researches have been conducted in the selection of gene signatures that could distinguish
the cancer patients from the normal. However, it is still an open question on how to extract the robust gene features.

Methods: In this work, a gene signature selection strategy for TCGA data was proposed by integrating the gene
expression data, the methylation data and the prior knowledge about cancer biomarkers. Different from the traditional
integration method, the expanded 450 K methylation data were applied instead of the original 450 K array data, and
the reported biomarkers were weighted in the feature selection. Fuzzy rule based classification method and cross
validation strategy were applied in the model construction for performance evaluation.

Results: Our selected gene features showed prediction accuracy close to 100% in the cross validation with fuzzy rule
based classification model on 6 cancers from TCGA. The cross validation performance of our proposed model is similar
to other integrative models or RNA-seq only model, while the prediction performance on independent data is
obviously better than other 5 models. The gene signatures extracted with our fuzzy rule based integrative feature
selection strategy were more robust, and had the potential to get better prediction results.

Conclusion: The results indicated that the integration of expanded methylation data would cover more genes, and
had greater capacity to retrieve the signature genes compared with the original 450 K methylation data. Also, the
integration of the reported biomarkers was a promising way to improve the performance. PTCHD3 gene was selected
as a discriminating gene in 3 out of the 6 cancers, which suggested that it might play important role in the cancer risk
and would be worthy for the intensive investigation.

Keywords: Integrative strategy, Expanded methylation data, Biomarker based feature selection, Robustness,
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Background
Biomarker based cancer diagnosis is a quite attractive
and promising direction to improve the early cancer de-
tection [1–3]. As its primary step, the investigation of
the most discriminating genes between tumor and nor-
mal samples has been intensively carried out for more

than two decades [4–8]. Generally the dataset has
dozens or at most several hundred samples and millions
or even more features for each sample, and it would
cause the over-fitting problem that the selected opti-
mized subsets are unstable [9, 10], or there would be
many equivalent subsets with similar discriminating abil-
ity [11]. Till now, how to get the most robust combin-
ation is still an open question.
The integrative analysis based on gene expression and

DNA methylation data had the potential to derive more
reliable and robust gene signatures [12–17], and the
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fuzzy logic method has been suggested as an efficient
way to incorporate biological knowledge with multi-
omics data to built classification model [18]. However,
integrative analysis is complicated by having a partial
overlap because not all molecular levels are measured
for all patients [14]. For the Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov//) which provided
multiple-omics data, the integration of gene expression
and DNA methylation profiles could improve the mo-
lecular subtype classification [15]. As the 450 K methyla-
tion data only cover less than 2% of human genome, the
integration with DNA methylation profile in a larger
scale would expect more promising results.
In this work, a more robust gene signature selection

strategy was developed by integrating gene expression
data, expanded DNA methylation data and prior
knowledge. The strategy mainly include two steps:
firstly, the integrative analysis was implemented on
the RNA-seq data and expanded DNA methylation
profile, the methylation profile was retrieved from a
newly developed expanding algorithm [19], and in-
cluded ~ 18 times more CpG sites than 450 K methy-
lation array data; then, the candidate gene features
were further selected based on its combination per-
formance with the reported biomarkers.
Fuzzy rule based classification method was applied in

the model construction for its easy understanding of the
results [20]. On 6 cancer data from TCGA (BRCA,
PRAD, LIHC, HNSC, KIRP and THCA), the prediction
performances of these selected genes in the 10-fold cross
validation were close to 100%, indicating that our se-
lected gene features could classify the tumor and normal

samples quite well. Applying other 4 gene feature
selection models on the TCGA data, the cross valid-
ation results of three models were quite similar to
our results. However, our proposed strategy demon-
strated obvious better prediction performance on
independent test data, indicating that gene signatures
selected with our strategy were more discriminative
to distinguish tumor samples from the the normal,
and therefore, was more robust.
The fuzzy rules derived from the selected genes

could provide the gene expression patterns of differ-
ent cancers, which would be meaningful to under-
stand the discriminant function explicitly. The
discriminating genes that most commonly shared
among the 6 cancers were CDKN2A and PTCHD3,
which were both selected in three cancers. CDKN2A
has been widely reported to act as a potential bio-
marker [21, 22], while there were few reports about
the cancer risk of abnormal expression of PTCHD3,
which definitely shed light on the intensive investiga-
tion of PTCHD3 for its role in cancers.

Methods
Strategy of the robust gene feature selection
Aim to get the more robust gene signatures in tumors,
an integrative selection strategy was proposed in this
work. As shown in Fig. 1, the genes that were simultan-
eously differentially expressed and methylated were
firstly selected as the candidate feature genes. Then, to
make full use of the previous research results, the re-
ported biomarker genes for each cancer were weighted
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Fig. 1 The strategy of the integrative gene feature selection
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in elastic-net regularized generalized linear models
(glmnet package in R) to find the best combination
genes from these candidate feature genes.
When considering the methylation data, we applied

the expanding algorithm [19] to get the expanded
methylation profile as the methylation landscape from
450 K methylation array is quite limited. The expand-
ing algorithm predicted the methylation value of CpG
site based on its most neighboring 450 K probes and
its local methylation pattern, and illustrated high
prediction accuracy. The expanded methylation profile
was with 18 times more methylation loci than the
original 450 K array.
When calculating the Differentially Methylated

Genes (DMGs) between tumor and normal samples,
the Differentially Methylated Loci (DML) were firstly
calculated. A DML was a CpG locus which satisfied
two requirements, firstly, it showed significantly
higher/lower methylation value among tumor samples
compared with normal samples in t-test (the adjusted
p-value < 0.01); secondly, its absolute differential
methylation value between tumor and normal samples
was larger than 0.1. Only the genes whose promoter
regions (TSS-1500,TSS + 500) contained any DML
were considered. Then the Fisher’s combined test was
used to get the q-value to evaluate whether a gene is
differentially methylated.
For the RNA-seq expression data of the 6 cancers, we

firstly transformed them with log2 function, and then
compared the expression level of each gene between
tumor and normal samples with t-test. And only the sig-
nificantly Differentially Expressed Genes (DEGs) were
selected (the criteria were with absolute fold change > 1,
and adjusted p-value < 0.01).

Model construction
Rule based classification model was popularly applied in
the classification to understand how the gene features
could affect the prediction. Fuzzy rule based classifica-
tion is an extension of the classical set theory to model
sets whose elements have degrees of membership [20].
Our classification model was constructed with cross val-
idation strategy and the pipeline was shown in Fig. 2.
With the selected gene features, the input spaces of

the gene expression data were normalized to the range
of [0, 1], and divided into 3 linguistic terms with “small”,
“medium” and “large”. We chose the membership func-
tion to be Gaussian function, and the distribution pa-
rameters were N(0, 0.175), N(0.5, 0.175)and N(1, 0.175).
Then the fuzzy IF-THEN inferences based on the data-
base were generated using the Mamdani model, and this
process was repeated for all samples in the training data,
and the final IF-THEN rules were output.

Similarly, the gene features selected based on only
reported biomarkers, RNA-seq data, or gene features se-
lected based on the integrative features of RNA-seq data
and the original 450 K methylation data, or the integra-
tive gene features that could be best combined with bio-
markers, were also used to build the corresponding
fuzzy rule based models.
The performances of all the fuzzy rule based models

were evaluated with cross validation strategy. The sam-
ple data of each cancer were divided into 10 folds, 9
folds were used to train the classification model, and the
remaining fold was applied to test the performance of
the training model, and the operation was repeated for
10 times.

Datasets
Cancer data were retrieved from TCGA, and RNA-seq
data and 450 K methylation data of 6 cancers (BRCA,
PRAD, LIHC, HNSC, KIRP, THCA) were selected be-
cause of their reasonable sample size.
The potential biomarkers for each cancer were derived

from literature reports, the numbers of biomarkers used
in the work for BRCA, PRAD, LIHC, HNSC, KIRP and
THCA were 9, 6, 8, 7, 8 and 7, respectively, and were
listed in Table 1.
For the performance comparisons, the independent

gene expression data for the 6 cancers were retrieved
from Expression Project for Oncology (expO, ftp://
ftp.ncbi.nlm.nih.gov/pub/geo/DATA/SeriesMatrix/
GSE2109/). And the gene expression data were normal-
ized to the RNA-seq expression levels based upon quan-
tiles to reduce the batch effect.

Results
Summary of the discriminating gene features
Based on the strategy of gene feature selection, the num-
ber of DEGs from RNA-seq data and DMGs from the
expanded methylation data for BRCA, PRAD, LIHC,
HNSC, KIRP and THCA were listed in Table 2.
Compared with DMGs from the original 450 K methy-

lation array data (see Table 2), one could see that the ex-
panded methylation landscape could provide more
DMGs. The increased numbers were 205, 283, 306, 145,
217 and 484.
Then after extracting the most informative gene fea-

tures combined with reported biomarkers using elastic
net regression model, the most discriminate feature
genes were finally obtained. The selected gene numbers
for BRCA, PRAD, LIHC, HNSC, KIRP and THCA were
47, 23, 50, 21, 30 and 12, respectively.

Performance description and comparisons
Based on these selected discriminating gene features, the
prediction results using fuzzy rule based classification
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model in 10-fold cross validation were shown in Fig. 3
(BIOmarker+EXPression+Expanded METHylation, BIO
+ EXP + EMETH). The prediction accuracies and AUCs
were all close to 100% in all of the 6 cancers.
Also we observed the cross validation perfor-

mances of other four models with elastic-net regular-
ized generalized linear model. They are: 1) Model
based on only reported biomarkers (BIO); 2) model

based on gene features selected from only RNA-seq
data (EXP); 3) model based on gene features selected
based on the integrative features of RNA-seq data
and the original 450 K methylation array data (EXP
+METH); and 4) the gene features from model EXP
+METH were further selected based on its combin-
ation performance with the reported biomarkers
(BIO + EXP +METH). Their cross validation results

Table 1 The list of selected biomarkers for each cancer

Cancer Type Applied biomarker Reference

BRCA ESR1, ERBB2, MKI67, CCND1, CCNE1, ESR2, BRCA1, BRCA2, PGR [27, 28]

PRAD PCA3, PTEN, AMACR, KLK3, MALAT1, GOLM1 [1, 29]

LIHC AFP, DKK1, VEGFA, IGF1, IL6, CXCR2, CCR2, EP400 [30]

HNSC CCR7, CD44, CEP55, CTTN, CXCR4, MMP2, NFKB1 [31]

KIRP VHL, STC2, VCAN, VEGFA, CA9, VCAM1, HIF1A, BIRC5 [32, 33]

THCA LGALS3, MET, BRAF, RET, HRAS, PAX8, PPARG [34]

Fig. 2 The pipeline of our fuzzy rule based classification model
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were also shown in Fig. 3. One could see that the
cross validation performance of BIO model (the Acc
and AUC were both around 0.8 in all of the 6 can-
cers) was relatively worse than other models. The
cross validation performances of the other three
models were similar to our BIO + EXP + EMETH
model, and were all close to 100%, but the numbers
of selected gene features and the gene lists in the
four models were different. This is consistent with
the previous results that there would be multiple
equivalent gene combinations that showed discrimin-
ating ability.

To evaluate the reliability of these gene feature selec-
tion strategies above, some independent gene expres-
sion data of these cancers were extracted and predicted
with the trained models. The prediction performances
of each model on the 6 cancers were shown in Fig. 4.
One could see that the performances of the 5 models
mentioned above varied. Our proposed BIO + EXP +
EMETH model always outperformed other models in
all of the 6 cancers, indicating that our strategy could
select the more robust gene signatures between tumor
and normal samples. The performances of BIO + EXP +
METH model were worse than the BIO + EXP +

Table 2 The numbers of DEGs, EDMGs and DMGs

Cancer Type #DEGs #DMGs from the expanded methylation data #DMGs from the original 450 K array

BRCA 1702 2480 2275

PRAD 901 2516 2233

LIHC 1665 3315 3009

HNSC 1417 2845 2700

KIRP 2192 1738 1521

THCA 1319 1053 569

Fig. 3 The cross validation results on 6 cancers from TCGA with different feature selection models

Fan et al. BMC Medical Genomics 2019, 12(Suppl 1):14 Page 29 of 189



EMETH model, indicating the superior performance
when integrating with the expanded 450 K methylation
data compared with the original 450 K methylation
data. The result that BIO + EXP +METH model was
better than EXP +METH model indicated that the res-
ervation of the reported biomarkers could improve the
prediction precision.
It is reasonable because what we emphasized in our

strategy had obvious advantages over other models,
firstly, the reservation of the reported biomarkers was a
way to make use of the previous knowledge in cancer
diagnosis; secondly, the expanded 450 K methylation
data could introduce some important DMGs which
missed in the original 450 K array data.

Fuzzy rules and gene analysis
Another feature of our strategy was the application of
fuzzy rule based classification model, which was more
robust than hard rule based classification model, and
could output classification rules easily understood by bi-
ologists. Taking THCA as an example, 12 genes were fi-
nally selected in the model, and one of the
corresponding fuzzy rule for thyroid carcinoma classifi-
cation was: IF (APOD is small) ^ (CDKL2 is large) ^

(CLEC4F is medium) ^ (CSF2 is small) ^ (HAPLN1 is
medium) ^ (ITIH2 is medium) ^ (KLHDC8A is large) ^
(KLK13 is medium) ^ (MMP23A is small) ^ (MYOC is
small) ^ (R3HDML is small) ^ (RBP4 is medium), THEN
the sample is a tumor sample.
Furthermore, we were interested in the selected gene

features in each cancer (shown in Table 3), especially
the genes simultaneously selected in several cancers.
The top overlapped genes were CDKN2A (in BRCA,
KIRP and LIHC) and PTCHD3 (in PRAD, HNSC and
KIRP). CDKN2A is a gene acting as a tumor suppressor
by regulating the cell cycle, therefore, it is reasonable
that its abnormal expression pattern would be a com-
mon signature in different cancers, and it has been re-
ported as a potential biomarker in previous reports [21,
22]. For PTCHD3, it is a gene generally expressed in
germ cells of the testis [23], and what the most interest-
ing observation is that there are only two reports about
its possible correlation with colorectal cancer [24, 25].
As PTCHD3 indicated its discriminating ability in three
cancers in our research, we speculate that it may be a
potential biomarker for PRAD, HNSC and KIRP, and it
is meaningful to carry out biological validation in the
next step.

Fig. 4 The prediction results on independent datasets with different feature selection models
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Discussion
Due to the complex nature of cancer, the investigation
of potential biomarkers for cancer diagnosis is still far
from the end. And the current feature selection methods
suffer from the lack of robustness.
Aim to improve the robustness of feature selection, a

gene feature selection strategy was proposed in this
work. The DEGs were firstly filtered with the require-
ment that they should be simultaneously differentially
methylated. Because of the low coverage of 450 K
methylation array, an expanding algorithm was applied
to get 18 times more CpG loci, and produced more
DMGs. Then these candidate gene features were further
screened based on their combination performance with
some reported biomarkers.
Besides the high cross validation performance on

TCGA data, our proposed gene feature selection strategy
could get better prediction performances on six inde-
pendent cancer gene expression data, which verified our
conclusion that the proposed feature selection strategy
would be more robust. And the PTCHD3 gene, which
indicated discriminating ability in cancer prediction in
three cancers, was worth for further exploring.
From the prediction results on the independent data

(Fig. 4), the performances based on the EXP +METH
were better than the EXP model in 4 of the 6 cancers,
while the performances in BRCA and THCA were
worse, which was consistent with some concerns that
the simple integration of gene expression data and 450 K
methylation data might not achieve better prediction re-
sults [26]. Therefore, the integrative analysis with ex-
panded 450 K array data would be a promising direction
for better performance. For the prediction results on
KIRP, one could see that none of the models could get
satisfying classification results. We speculate that the
KIRP samples of TCGA and expO might be from quite

different subtypes, and the discriminating patterns based
on TCGA samples do not reflect the abnormal patterns
in tumor samples from expO.
In our strategy, the expanded 450 K methylation

data were retrieved based on an expanding algorithm,
whose prediction accuracy is around 90%. It is the
truth that the methylation values of some expanded
CpG loci may not reflect their true methylation sta-
tus, but our method could reduce its affection. Firstly,
the definition of DMG was based on all the promoter
CpG loci included in the expanded profile, the in-
accuracy of one locus or small proportion of pro-
moter CpG loci would not obviously affect the
methylation status of the whole promoter; secondly,
the candidate gene features should be not only differ-
entially methylated, but also differentially expressed,
therefore, the filtering requirements also helped filter
the false differentially methylated genes caused by the
inaccurate prediction of the expanding algorithm.

Conclusions
In this paper, we proposed a novel multi-omics data in-
tegration strategy to retrieve the robust gene signatures
in the classification of tumor and normal samples, and
the proposed strategy could achieve the best prediction
performances comparing with other models. The strat-
egy could be applied in the integrative analysis of other
omics data, especially the idea of the application of
expanding the limited 450 K methylation array data.

Abbreviations
BIO + EXP + EMETH: BIOmarker+EXPression+Expanded METHylation; BIO +
EXP + METH: BIOmarker+EXPression+METHylation; BIO: BIOmarkers;
BRCA: Breast invasive carcinoma; DEG: Differentially Expressed Genes;
DMGs: Differentially Methylated Genes; DML: Differentially Methylated Loci;
EXP + METH: EXPression+METHylation; EXP: EXPression; HNSC: Head and neck
squamous cell carcinoma; KIRP: Kidney renal papillary cell carcinoma;

Table 3 The selected gene signatures in each of the cancer

Cancer Type Selected gene signatures

BRCA ABCB5, ADAMTS5, ALX4, ANPEP, APCDD1, ARHGAP20, BCHE, BRCA2, CCL11, CCL28, CDKN2A, CEBPA, CHRNA6, CNN1, COL6A6, CX3CL1,
DNAH14, EMILIN2, ERBB2, FGF10, GRID1, GSN, HTR2A, KCNJ2, KCNMB1, KLB, KRT4, LEP, LOXL1, LRIT2, MYOC, NRN1, OLFM3, OR10A3,
OXTR, P4HA3, PENK, PRSS55, PSG3, RAX2, RPE65, SH3TC2, TBX15, TPO, VGLL2, WISP1, WT1

PRAD AMDHD1, AMY2B, AQP5, C17orf102, C19orf45, CHST4, GABRR1, GCKR, HSD17B3, IL17A, LTK, OVCH2, PTCHD3, PTGS2, RPL10L, SEPT12,
SOX8, TRH, TYR, UGT2B10, UGT3A1, VSIG10L, ZNHIT2

LIHC ADCYAP1R1, AMPD1, ANKRD34A, ANKRD34C, B3GALT5, B4GALNT1, C1orf177, CASQ2, CCL19, CD207, CDH13, CDKN2A, CSPG4, DMC1,
EBF2, ECM1, ELAVL2, EPO, FHL5, GJA1, GJC1, GLYATL2, GOLGA8A, GYPA, HBB, HBD, HSF4, HSPG2, IFITM4P, IL20RA, IL20RB, IRX3, LCE2D,
MARCH4, MKRN3, NPAS4, NRXN1, OR51E2, PCSK2, PDZD2, PKMYT1, PMP2, RBM11, SEMA5B, SFTA1P, SLC17A8, SLCO1C1, STC2, TAC1,
TM4SF18

HNSC ALG1L, BOC, CA13, CLDN10, CMA1, CNTFR, DIXDC1, FGFR2, FOXS1, GBX2, GPT, HCN1, HOXC6, HOXC9, HOXD10, HOXD9, HPR, KALRN,
KIR2DS4, LAIR2, LPPR5, MARCH4, MMP13, PAEP, PCDHGA9, PCDHGB7, PCK1, PHGDH, PIK3R1, PTCHD3, RIMS4, SCIN, SDPR, SLC46A2,
SLC5A8, SORBS2, SOX11, SPP1, SRD5A2, SVIP, TAC1, TGFBR3, TMEM132C, TMEM217, TRPC4, ZIC5, ZNF132, ZNF43, ZNF486, ZNF608,
ZNF626, ZNF677, ZNF813, ZNF844

KIRP ABCA4, AFAP1L2, ALDOB, ASPG, B3GALT2, BIRC5, C17orf78, CA9, CCNI2, CDKN2A, CHP2, CLDN19, ENOX1, FOXD2, GINS2, GREM2, INSRR,
KIFC2, KNG1, MET, MUC15, MYOM1, NOTUM, PLIN2, PTCHD3, SFRP1, SIAH3, SPRR2A, ST6GALNAC3, VEGFA

THCA APOD, CDKL2, CLEC4F, CSF2, HAPLN1, ITIH2, KLHDC8A, KLK13, MMP23A, MYOC, R3HDML, RBP4
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LIHC: Liver hepotocellular carcinoma; PRAD: Prostate adenocarcinoma;
TCGA: the Cancer Genome Atlas; THCA: Thyroid carcinoma
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