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Abstract

Background: Although synonymous single nucleotide variants (sSNVs) do not alter the protein sequences, they
have been shown to play an important role in human disease. Distinguishing pathogenic sSNVs from neutral
ones is challenging because pathogenic sSNVs tend to have low prevalence. Although many methods have
been developed for predicting the functional impact of single nucleotide variants, only a few have been specifically
designed for identifying pathogenic sSNVs.

Results: In this work, we describe a computational model, IDSV (Identification of Deleterious Synonymous
Variants), which uses random forest (RF) to detect deleterious sSNVs in human genomes. We systematically
investigate a total of 74 multifaceted features across seven categories: splicing, conservation, codon usage,
sequence, pre-mRNA folding energy, translation efficiency, and function regions annotation features. Then,
to remove redundant and irrelevant features and improve the prediction performance, feature selection is
employed using the sequential backward selection method. Based on the optimized 10 features, a RF classifier is
developed to identify deleterious sSNVs. The results on benchmark datasets show that IDSV outperforms other
state-of-the-art methods in identifying sSNVs that are pathogenic.

Conclusions: We have developed an efficient feature-based prediction approach (IDSV) for deleterious sSNVs by
using a wide variety of features. Among all the features, a compact and useful feature subset that has an important
implication for identifying deleterious sSNVs is identified. Our results indicate that besides splicing and conservation
features, a new translation efficiency feature is also an informative feature for identifying deleterious sSNVs. While the
function regions annotation and sequence features are weakly informative, they may have the ability to discriminate
deleterious sSNVs from benign ones when combined with other features. The data and source code are available on
website http://bioinfo.ahu.edu.cn:8080/IDSV.
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Background
Synonymous single nucleotide variants (sSNVs), which
do not alter protein sequences, were once thought to
be functionally irrelevant. However, recent studies have
shown that sSNVs are linked to human diseases [1–5].
For example, over 400 human diseases have been associ-
ated with sSNVs [6]. Studies analyzing the consequences
of sSNVs have revealed that they play important roles in
multiple biological processes, including transcription fac-
tor regulation [1], splicing regulation [7], microRNA bind-
ing, mRNA folding [8], and protein synthesis [9].
Although many bioinformatics methods have been de-

veloped for prioritizing single nucleotide variants, there are
only a few methods available for sSNVs prediction. SilVA
[10], the first bioinformatics method designed to discrimin-
ate between functional and non-functional sSNVs, is based
on a random forest (RF) model trained with a diverse set
of 26 features including conservation, codon usage, se-
quence features (CpG and relative mRNA position), exon
splice enhancer/suppressor motifs, splicing site motifs,
and mRNA folding. But only 33 deleterious SNVs were
used for training the model in SilVA, which may limit its
performance. Livingstone et al. built a support vector ma-
chine (SVM) model called DDIG-SN [11], which used six
features to train and evaluate on nearly 900 disease-caus-
ing variants to discriminate disease-causing synonymous
mutations. Their results suggest that the splicing feature is
the dominant factor for disease-causing sSNVs. Zhang et
al. developed another tool (termed regSNPs-splicing [12])
to prioritize sSNVs based on their impact on mRNA spli-
cing and protein function. Recently, Gelfman et al. pre-
sented Transcript-inferred Pathogenicity (TraP) score
[13], which can be used to evaluate a sSNV’s ability to
cause disease by damaging a gene’s transcripts and protein
products. Besides these tools specifically designed to pre-
dict functional sSNVs, several general-purpose variant ef-
fect predictors also implicated cover effects of sSNVs.
For example, FATHMM-MKL [14] is an integrative ap-
proach to predict the functional consequences of both
non-coding and coding sequence variants using various
genomic annotations. CADD [15] is another general
framework for predicting all possible types of human
genetic variants based on SVM with a variety of features
including scores calculated with other bioinformatics
methods. Because both FATHMM-MKL and CADD are
designed for predicting all types of pathogenic variants, it
is not easy to assess the relative importance of various fea-
tures devoted exclusively to sSNVs. In addition, several
splicing-specific predictors can also be used to evaluate
the harmfulness of sSNVs, including SPANR [16], a tool
for evaluating how SNVs cause splicing mis-regulation,
and MutPred Splice [17], a machine-learning approach
for the identification of coding region substitutions that
disrupt pre-mRNA splicing.

Although current computational methods achieve
relative success for identifying deleterious sSNVs, they
are still in the initial stage. Up to now, the biological
properties that are responsible for deleterious sSNVs
have not been fully understood. Consequently, the fea-
tures previously identified as being correlated with
deleterious sSNVs are still insufficient. In this paper, we
developed a feature-based method, IDSV (Identification
of Deleterious Synonymous Variants), for predicting
harmful sSNVs in human genome by comparing dele-
terious sSNVs from the Database of Deleterious Syn-
onymous Mutations (dbDSM) [6] with the putatively
neutral sSNVs from VariSNP [18]. We computed an
optimal set of 10 features selected from a wide variety
of splicing, conservation, codon usage, sequence, RNA
folding, translation efficiency, and function regions an-
notation features with the sequential backward selec-
tion method. The results on the benchmark datasets
show that IDSV achieves a significantly improved over-
all performance based on the 10-fold cross-validation
and independent dataset, and is capable of more accur-
ately predicting deleterious sSNVs compared with other
state-of-the-art methods.

Methods
Datasets
The positive (disease-causing) sSNVs were retrieved
from the dbDSM (version 1.2), utilizing only the vari-
ants from ClinVar, PubMed database, or Web of Know-
ledge as disease-causing. This process results in a total
of 300 deleterious sSNVs in the dbDSM database. To
show the reliability of the prediction model, it is essen-
tial to employ a negative (neutral) data set. Here the
negative data set was randomly extracted from VariSNP
(version 2016-06-09) [18], which is a benchmark data
set for benign variants. The final training dataset con-
sists of 600 sSNVs (Additional file 1), where half are
from the positive data set and the other half from the
negative data set.
In order to further assess the performance of IDSV, we

extracted an independent test set from the ClinVar
database [19] (downloaded on December 14, 2017). In
ClinVar, the values of clinical significance are based on
the recommended rules by the American College of
Medical Genetics and Genomics (ACMG) guidelines. In
our study, the sSNVs labeled as ‘pathogenic’ or ‘likely
pathogenic’ in ClinVar were considered as true positive
sSNVs, and negative sSNVs were regarded as the ones
with ‘benign’ or ‘likely benign’. Because bias may be in-
troduced if negative sSNVs are found within genomic
regions that differ substantially from regions containing
positive sSNVs, such as those from different genes [11],
we selected those putative negative sSNVs that are lo-
cated in a gene with at least one positive sSNV. To
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ensure unique variants were used in the test set, we
discarded variants presented in the training set. Ac-
cording to the above definitions, we obtained 153
deleterious sSNVs and 5178 benign sSNVs in 98
genes (Additional file 2).

Feature representation
To construct a model that could best distinguish dele-
terious sSNVs from benign sSNVs, a total of 74 features
are used to characterize potential deleterious synonym-
ous variants, including conventional ones [10, 16, 20–
22] and new ones [23, 24] exploited in this kind of study.
To avoid having the discussion be too dense, these fea-
tures are roughly divided into seven groups: splicing,
conservation, codon usage, sequence, translation effi-
ciency, RNA folding, and function regions annotation
features.
Splicing features were described by 46 values, where

15 of them were obtained from SilVA [10], and the
remaining 31 values were annotated by Skippy [20]
and SPIDEX [16]. The conservation features were ex-
tracted by retrieving three tools, including SilVA
(GERP++ score), SnpEff (100-way vertebrates conser-
vation, Version 4.3) [21], and MyVariant.info high-per-
formance web services [22]. Codon usage features
(relative synonymous codon usage (RSCU) and variant-in-
duced change of RSCU) were also obtained from SilVA.
Sequence features were implemented with three tools, in-
cluding SettleSeq Annotation 138 (http://snp.gs.washing-
ton.edu/SeattleSeqAnnotation138), MyVariant.info, and
SilVA. The RNA folding features, which were obtained
from SilVA, include the changes in the secondary struc-
ture folding energy and the diversity of the structural
ensemble of pre-mRNA and mature mRNA, respect-
ively. The translation efficiency feature was computed
as the logarithm value of the adaptation index of the
tRNA usage [23]. Functional regions annotation fea-
tures were calculated based on the BED files of func-
tional components from ENCODE consortium [24] and
UCSC [25], including histone modifications, transcrip-
tion factor binding site (TFBS), RNA binding proteins,
open chromatin, all footprints, DNase I Hypersensitiv-
ity Clusters in 125 cell types and transcription factor
binding site cluster track. In this study, we set all miss-
ing features to zero and normalized features with the
z-score method. A detailed list of features and how they
are derived can be found in Additional file 3.

Feature selection
Feature selection is the process of selecting the effective
features from the original set according to a suitable
criterion. As an important step in designing classifiers,
it could readily remove redundant features to improve
the model performance. In this work, 74 multifaceted

features were generated as described before. It is appar-
ent that the models built based on these large sets of
features would overfit the training data. Therefore, we
used a wrapper-based feature selection algorithm based
on sequential backward selection [26], in which features
are sequentially removed from the original feature set
until the removal of further features does not increase
an objective function called criterion. Here, the criter-
ion is AUC (the area under the receiver operating char-
acteristic (ROC) curve) of 10-fold cross-validation on
the training set.

Model construction
The classification model for predicting deleterious sSNVs
was based on RF, which is an effective supervised
method that demonstrates high prediction accuracy
whilst efficiently avoiding the overfitting problem. In
this study, the randomForest R package (version 4.6–12)
was employed and executed with 10-fold cross-validation
and the independent test set. In order to achieve good ex-
perimental results, two main parameters, the number of
trees to grow for each forest (ntree), and the number of in-
put variables randomly chosen at each split (mtry) of the
RF were optimized using a grid search method in the
range of ntree ϵ {50, 1000, by = 50} and mtry ϵ {1, 10, by =
1} based on the results of 10-fold cross-validation on the
training set.

Performance evaluation
Predicting an sSNV as deleterious or benign is a binary
classification problem, and many measures have been
introduced for validation issues. Besides the AUC men-
tioned above, the prediction performances were also
evaluated by the Recall, Precision, and F-measure [27].
These evaluation measures are defined as:

Recall ¼ TP
TP þ FN

Precision ¼ TP
TP þ FP

F−measure ¼ β2 þ 1
� �� Precision� Recall

β2 � Precisionþ Recall

where TP, FP, TN, and FN, and β correspond to the
number of true positive samples (correctly predicted
deleterious sSNVs), the number of false positive sam-
ples (benign sSNVs incorrectly predicted as deleterious
sSNVs), the number of true negative samples (correctly
predicted benign sSNVs), the number of false negative
samples (deleterious sSNVs incorrectly predicted as be-
nign sSNVs), and the relative preference of Recall against
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Precision (set as the ratio of the majority class size to the
minority class size to emphasize the Recall), respectively.

Results
Selection of optimal features
The main goal of this study is to build effective and ac-
curate model to predict deleterious sSNVs. To this end,
identification of a set of informative features is critical
for performance boosting and subsequently can enhance
our understanding in the molecular basis of deleterious
sSNVs. Based on the method of wrapper-based feature
selection algorithm using sequential backward selection
mentioned in Feature selection section, a set of 10 opti-
mal features were obtained from 74 features, which in-
cluded splicing (6 features), conservation (1 feature),
translation efficiency (1 feature), sequence (1 feature),
and function regions annotation (1 feature) and listed in
Table 1. We found that splicing features dominate the
top-10 list, suggesting that splicing features are more
predictive than other properties in determining deleteri-
ous sSNVs.
To quantitatively assess the performance of feature se-

lection algorithm in our method, we compared it with

the candidate full feature set. Figure 1 shows the ROC
plots of RF model performance with the selected fea-
tures based on feature selection algorithm and the 10 se-
lected features of 10-fold cross-validation. As can be
seen from Fig. 1, the AUC of the selected features model
with ntree = 500 and mtry = 3 are about 3% higher than
the full feature set model, which demonstrate that the
feature selection algorithm is able to achieve better per-
formance with less computational cost and reduce the
risk of overfitting.
To further understand the contributions of the se-

lected features, we also compared our method’s 10-fold
cross-validation performance removing each feature
from the analysis. As can be seen from Table 2, com-
pared with the models constructed by leaving out any
features, the model with all selected features has the
highest Recall (0.700) and the AUC (0.851). Removing
features related to sequence and function regions an-
notation does not substantially affect performance.
However, removing either conservation or new transla-
tion feature causes model’s performance to drop sub-
stantially. Although splicing features is the dominant
factor for diseasing-causing sSNVs, not all the splicing
features have the same potential for performance im-
provement, such as SR- and dPSIZ. While some fea-
tures are weakly informative, they may have a good
complementarity and thus collectively contribute to
the harmfulness prediction.

Comparison of different machine learning classifiers
In order to identify the best suitable machine learning
technique for predicting deleterious sSNVs, we com-
prehensively evaluated the performances of SVM,
Neural network (NNet), Naive Bayes, and RF based on
the selected 10 features. All these algorithms were im-
plemented using the R package with the parameters

Table 1 sSNVs were annotated with a set of 10 optimized
features spanning five distinct classes of infomration relevant
to assessing the harmfulness of sSNVs

Feature
name

Description Type

Sequence feature

DSP Mutation site distance to the nearest splice site Integer

Function regions annotation

TFBS Whether the variant is in transcription factor
binding site?

Bool

Splicing

MDE Minimum distance as a proportion of half
the exon

Numeric

DVE Distance of the variant across the exon as a
proportion

Numeric

ese-dens Density of neighborhood inference-exonic
splicing enhancers hexamers in the exon
sequence

Numeric

MES Max splice site score Numeric

SR- SR-protein motifs lost Numeric

dPSIZ The z-score of dPSI (the predicted change in
percent-inclusion due to the variant, reported
as the maximum across tissues) relative to the
distribution of dPSI that are due to common
variant

Numeric

Conservation

verPhyloP Vertebrate PhyloP at the mutation position
at mutation position

Numeric

Translation efficiency

TE The tRNA adaptation index of the tRNA usage Numeric
Fig. 1 The ROC curves of prediction methods with and without
feature selection using the 10-fold cross-validation on the training set
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optimized. The performance comparison of different
machine learning classifiers with 10-fold cross-valid-
ation and the independent test set is listed in Fig. 2
and Additional file 4. It can be seen that RF outper-
formed SVM, NNet, and Naive Bayes with the AUC
increased by more than 0.048, 0.077, and 0.049 re-
spectively based on the training set. When evaluated
on the independent test set, the AUC of RF was also
higher than those of SVM, NNet, and Naive Bayes,
with ΔAUC of 0.021, 0.072, and 0.023, respectively. All
the above findings indicated that RF gives the best
predictive performance compared with SVM, NNet,
and Naive Bayes.

Comparison with other methods
In this section, we compared the performance of IDSV
with other methods. Table 3 summarizes the performance

comparison of different methods on the same inde-
pendent test set. Among these approaches, SilVA,
DDIG-SN, and TraP are synonymous-specific methods,
while FATHMM-MKL and CADD are general approaches
for all types of single nucleotide variants. We have not
compared IDSV with regSNPs-splicing, as too many
sSNVs’ prediction scores are not available from its web
server. We also found that CADD yielded no prediction
for one variants. Another method, DDIG-SN, have 48
missing predictions. We decided to retain these variants
in our test set after checking that the evaluation results
of the compared methods were not affected.
Overall, we can see that IDSV showed high success

rates in contrast to the other methods. Our method
IDSV can correctly predict deleterious sSNVs from the
data set with recall = 0.765 and precision = 0.098, which
means that our method can correctly predict 76.5% of
the true deleterious sSNVs, and 9.8% of the predicted
deleterious sSNVs are identified as true deleterious
sSNVs. We can see that the precision of our method
was lower than for three synonymous-specific methods,
SilVA, DDIG-SN, and TraP. Although our method
achieves the high recall at the expense of some preci-
sion, the AUC score indicates that an adequate balance
is still achieved (The AUC score for IDSV is 0.869,
while the other methods have AUC scores in the range
of 0.700–0.854). The two general approaches, FATHMM-
MKL and CADD, have low recognition accuracy in pre-
dicting deleterious sSNVs. A possible reason is that
these approaches a designed to discriminate whether a
single nucleotide variants is harmful or not, not opti-
mized for predicting deleterious sSNVs.
Beside AUC score, another important alternative metric,

F-measure, was also used for performance assessment of
model, as the independent test set was highly imbalanced
with more benign than disease-causing variants per gene
(the overall ratio of 34:1, so the coefficient β of the
F-measure was set to 34). The F-measure of IDSV is
0.761, which represents a relative improvement of 5.7%
over the second best method, FATHMM-MKL, which
yielded the F-measure of 0.704.

Table 2 Prediction results by subtracting each feature using the
10-fold cross-validation on the training set

Feature Recall Precision F-measure (β = 1) AUC

All features 0.700 0.820 0.755 0.851

No SR- 0.697 0.823 0.755 0.851

No MES 0.667 0.810 0.731 0.829

No MDE 0.677 0.820 0.742 0.834

No DVE 0.697 0.816 0.752 0.846

No ese-dens 0.693 0.835 0.757 0.845

No dPSIZ 0.700 0.813 0.752 0.850

No verPhyloP 0.697 0.768 0.731 0.829

No TFBS 0.690 0.818 0.749 0.851

No DSP 0.683 0.837 0.752 0.845

No TE 0.673 0.798 0.731 0.829

The highest values are highlighted in bold

Fig. 2 The ROC curves of different machine learning methods using
the 10-fold cross-validation on the training set

Table 3 Performance comparison of different methods on the
independent test set

Method Recall Precision F-measure (β = 34) AUC

IDSV 0.765 0.098 0.761 0.869

CADD 0.320 0.081 0.319 0.700

FATHMM-MKL 0.712 0.053 0.704 0.751

SilVA 0.490 0.581 0.490 0.844

DDIG-SN 0.298 0.789 0.298 0.854

TraP 0.575 0.518 0.575 0.827

The highest values are highlighted in bold
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Due to the independent test set was highly imbal-
anced, we were interested in whether IDSV could retain
its performance when tested on a fully balanced data set.
In this test, we randomly extracted 153 benign sSNVs
from the full negative independent test set. The final
balanced data set consists of 306 sSNVs (153 deleteri-
ous and 153 benign sSNVs). We aggregated the results
across five runs, each time with a new random subset
of benign sSNVs. As shown in Table 4, IDSV is able to
retain most of its prediction performance with the AUC
of 0.868 and F-measure of 0.722. We also calculated
P-values with the two-tailed, paired t-test [28] to com-
pare the performances of IDSV and other methods. It
can be seen that the P-values for the difference between
IDSV and other approaches are much smaller than
0.05, which suggest that IDSV has a significant advan-
tage over the pioneer approaches in predicting deleteri-
ous sSNVs.

Additional tests on the training set of our method
For a machine learning problem like the one we are
tackling, different settings in training set may cause
overestimate or underestimate of the actual perform-
ance. Here we carry our two additional tests under dif-
ferent training settings to demonstrate the robustness
of IDSV.
Currently, the set of benign sSNVs are chosen from

VariSNP. To investigate whether different sources of
benign sSNVs in the training set affect the prediction
performance, we randomly chose 300 benign sSNVs
from ClinVar as well. Using the new set of benign
sSNVs, we retrained the model and obtained the pre-
dicted AUC scores for the 10-fold cross-validation on
the training set and the independent test set. The re-
sults for the 10-fold cross-validation on the training set
and the independent test set changes from 0.851 to
0.862, and 0.869 to 0.874, respectively, which indicate
that the AUC scores are similar either using VariSNP
or ClinVar to form the set of benign sSNVs in the con-
struction of prediction model.

Because there are much more benign sSNVs than
deleterious sSNVs, it is an interesting question to test
whether different sizes of benign sSNVs in the training
set affect the prediction performance. In the Method
section described earlier, we choose the size of the be-
nign sSNVs to be the same as the deleterious sSNVs in
the training set. Here we investigate whether increasing
the size of the benign set to 10, 20, 30, 40, and 50 times
of the deleterious set has any effect on the predictive
performance. The predicted AUC scores are shown in
Additional file 5. We can see that, overall, increasing
the size of the benign sSNVs in the training data set has
little effect on the prediction performance using 10-fold
cross-validation and independent test set, which suggests
that the performance of IDSV does not change much
with different level of deleterious/benign imbalance.

Discussion
In this work, we described a feature-based computa-
tional IDSV for identifying deleterious synonymous var-
iants. Both the new feature based on the translation
efficiency and function regions annotation traditional
features based on splicing and conservation are used as
the input to RF classifier. Our analysis implies that be-
sides splicing and conservation features, the new trans-
lation efficiency feature is also an informative feature
for identifying deleterious sSNVs. While the function
regions annotation and sequence features are weakly
informative, they may have the ability to discriminate
deleterious sSNVs from benign ones when combined
with other features. The performance of our IDSV was
firstly evaluated using the 10-fold cross-validation and
further validated using an independent test set. The ex-
perimental results show that IDSV can provide favourable
or at least comparable performance compared with all
the previous methods.

Conclusions
In conclusion, IDSV is an efficient feature-based predic-
tion approach for deleterious sSNVs by using a wide

Table 4 Performance comparison of different methods based on the balanced subset of the independent test set in which benign
variants were randomly selected from the full negative independent test set. We repeated this process 5 times with different random
subsets of benign variants and averaged the results

Method Recall Precision F-measure (β = 1) AUC P-value

IDSV 0.765 ± 0.000 0.781 ± 0.022 0.772 ± 0.011 0.868 ± 0.008 *

CADD 0.320 ± 0.000 0.760 ± 0.041 0.450 ± 0.007 0.698 ± 0.018 9.452e-07

FATHMM-MKL 0.712 ± 0.000 0.660 ± 0.026 0.685 ± 0.014 0.753 ± 0.019 0.0007962

SilVA 0.490 ± 0.000 0.977 ± 0.017 0.653 ± 0.004 0.844 ± 0.017 3.211e-05

DDIG-SN 0.298 ± 0.000 0.996 ± 0.010 0.459 ± 0.001 0.853 ± 0.006 5.957e-07

TraP 0.575 ± 0.000 0.971 ± 0.012 0.723 ± 0.003 0.848 ± 0.043 0.001015

The highest values are highlighted in bold. *Denotes the reference when calculating the P-value
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variety of features. We believe that IDSV can be a use-
ful model to facilitate exploration of deleterious sSNVs
with the increasing availability of sSNVs data from the
next-generation sequencing technologies. The data and
source code are available on website http://bioinfo.a-
hu.edu.cn:8080/IDSV.
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Additional file 1: Deleterious and benign sSNVs used in the training set.
(XLS 180 kb)

Additional file 2: Deleterious and benign sSNVs used in the independent
test set. (XLS 1411 kb)

Additional file 3: List of all 74 features used for feature selection and
model construction. (XLS 47 kb)

Additional file 4: The ROC curves of different machine learning methods
on the independent test set. (TIF 416 kb)

Additional file 5: Summary of AUC scores based on 10-fold cross-validation
and the independent test set when benign variants are 10, 20, 30, 40,
and 50 times of deleterious variants in the training set, respectively.
(XLS 19 kb)
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