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Abstract

Background: Cardiovascular disease, diabetes, and kidney disease are among the leading causes of death and
disability worldwide. However, knowledge of genetic determinants of those diseases in African Americans remains
limited.

Results: In our study, associations between 4956 GWAS catalog reported SNPs and 67 traits were examined among
7726 African Americans from the REasons for Geographic and Racial Differences in Stroke (REGARDS) study, which is
focused on identifying factors that increase stroke risk. The prevalent and incident phenotypes studied included
inflammation, kidney traits, cardiovascular traits and cognition. Our results validated 29 known associations, of
which eight associations were reported for the first time in African Americans.

Conclusion: Our cross-racial validation of GWAS findings provide additional evidence for the important roles of
these loci in the disease process and may help identify genes especially important for future functional validation.

Keywords: PheWAS, African Americans, Genetics, Cardiovascular disease

Background
Genome Wide Association Studies (GWASs) have pro-
vided a powerful approach for identifying association be-
tween genetic variants and a single phenotype. An
alternative and complementary approach to query
genotype-phenotype associations is the Phenome-Wide
Association Study (PheWAS) [1]. With PheWAS, associ-
ations between a specific genetic variant and a wide
range of phenotypes can be explored. They are well
suited to facilitate the identification of new associations

between SNPs and phenotypes as well as SNPs with plei-
otropy [2–4]. The PheWAS approach was mainly pio-
neered by investigators at Vanderbilt University [1] and
flourished in various hospital-based cohorts by scanning
phenomic data in electronic medical records for genetic
associations [1, 4–6] as well as by meta-analyzing data
collected in observational cohort studies like the Popula-
tion Architecture using Genomics and Epidemiology
(PAGE) study [2].
As of January 2017, GWASs have identified ~ 44,000

SNPs important for various human phenotypes as sum-
marized in the GWAS catalog [7], which makes it
possible to reveal pleiotropic effects and genetic mecha-
nisms shared by different traits. Conducting PheWASs
using SNPs which were reported to be associated with
one or more traits is an efficient method for replication
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of previous results and identification of pleiotropic
effects.
In this study, we used the REasons for Geographic And

Racial Differences in Stroke (REGARDS) Study to exam-
ine 4956 GWAS catalog SNPs (Additional file 1) that are
included on the Infinium HumanExome-12v1-2_A (ex-
ome chip) array from Illumina with a rich collection of
phenotypes. The REGARDS study is a population-based,
longitudinal study including 30,000 participants (~ 40%
African Americans), sampled from the continental US [8].
Among 12,000 African American participants, 7726 were
genotyped with the exome chip. Since most PheWAS

studies have considered individuals of European ancestry
and cross-sectional phenotypes, REGARDS is an excellent
resource for both cross-racial validation and identifying
pleiotropic effects.

Results
We tested for association between 4956 GWAS catalog
SNPs and 67 phenotypes. Genomic inflation factors (λ)
generated from including all SNPs for a given phenotype
showed good fitting of all models with λ range from 0.95
to 1.12. Table 1 summarizes 29 significant associations
passing the significance threshold with P value less than

Table 1 Summary of identified significant associations in REGARDS study

SNP ID Phenotype Minor allele (effect allele) Major Allele Beta or OR P-value MAF First reported in AAs

Matched phenotype

rs10096633 Triglycerides T C − 0.020 4.88E-10 0.4226

rs1173727 Height T C 0.297 9.89E-08 0.2032 yes

rs12110693 Heart rate G A −1.302 4.28E-11 0.4984

rs12740374 LDL Cholesterol T G −4.314 1.64E-10 0.2615

rs173539 HDL Cholesterol T C 2.337 1.21E-19 0.3647 yes

rs1800775 HDL Cholesterol C A −2.843 1.53E-29 0.4272 yes

rs247616 HDL Cholesterol T C 4.309 4.88E-52 0.2528 yes

rs2794520 C reactive protein T C −0.125 3.92E-34 0.2146

rs326 Triglycerides A G 0.019 8.20E-09 0.4436

rs3764261 HDL Cholesterol A C 3.050 1.84E-30 0.3165

rs6511720 LDL Cholesterol T G −5.624 1.19E-10 0.1337

rs6511720 Total Cholesterol T G −6.143 3.14E-10 0.1337

rs7412 LDL Cholesterol T C −15.870 2.17E-65 0.1114

rs7499892 HDL Cholesterol T C −2.351 1.38E-19 0.3677 yes

rs7553007 C reactive protein A G −0.122 6.61E-34 0.2258

rs876537 C reactive protein T C −0.124 7.99E-33 0.2083

rs9398652 Heart rate C A −1.339 1.19E-11 0.4956

Related phenotype

rs12740374 Dyslipidemia T G 0.783 1.08E-10 0.2615

rs12740374 Total Cholesterol T G −4.152 3.24E-08 0.2615

rs247616 Fram_CHD T C −0.041 3.78E-09 0.2528 yes

rs629301 Dyslipidemia G T 0.827 4.32E-08 0.3633

rs646776 Dyslipidemia C T 0.827 4.41E-08 0.3622 yes

rs6511720 Dyslipidemia T G 0.737 4.45E-10 0.1337

rs7412 Fram_CHD T C −0.066 3.03E-12 0.1114

rs7412 Ideal7 T C 0.210 3.35E-14 0.1114

rs7412 Dyslipidemia T C 0.525 6.16E-33 0.1114

rs7412 Total Cholesterol T C −13.330 2.90E-37 0.1114

rs7903146 Diabetes T C 1.306 2.30E-12 0.2919

rs911119 Cystatin C C T −0.012 6.17E-08 0.356 yes

Beta coefficients were showed for continuous variables and odd ratios (OR) were showed for binary variables. MAF: minor allele frequency. Matched phenotype
means the same phenotype and SNP associations have been showed in previous published studies; if similar or related associations have been published before,
they are defined as “related phenotype”. If this is the first time that an association was shown in Africa American population, “Yes” was given in the column” First
reported in AAs “
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1.5E-7. S2 compares results extracted from the GWAS
catalog on significant PheWAS SNPs to the REGARDS re-
sults. The significant associations are in several major
phenotype groups: C reactive protein, lipid profile, dia-
betes, cystatin C, heart event risk, heart rate, and height.
We classified the significant SNPs in two ways: 1. the SNP
was associated to a phenotype matching previous publica-
tions 2. the SNP was associated to a phenotype related to
the previously reported phenotype (Additional file 2).

Validation of known genetic associations of phenotypes
Among the 29 significant genotype and phenotype asso-
ciations, 17 have been previously reported for the same
phenotype (Table 1 and Additional file 2). The effect di-
rections of the 17 associations were the same as those in
the previous reports. For eight of these phenotype –
genotype associations, our study represents the first val-
idation in an African American population (see section
below). These replications validated the reliability of our
PheWAS analysis approaches. We confirmed that C react-
ive protein level was related to rs2794520 (P = 3.9E-34),
rs7553007 (P = 6.6E-34) and rs876537 (P = 8.0E-33), which
are located near the CRP gene (Table 1). Five SNPs located
near the CETP gene were associated with HDL cholesterol
including rs173539 (P = 1.2E-19), rs1800775 (P = 1.5E-29),
rs247616 (P = 4.9E-19), rs3764261 (P = 1.8E-30), and
rs7499892 (P = 1.4E-19). Two SNPs were significantly as-
sociated with heart rate: rs12110693 near LOC644502
gene (P = 4.3E-11) and rs9398652 near GJA1 gene (P =
1.2E-11). We also reproduced the association between
rs1173727 near the NPR3 gene and height with P = 9.9E-8.
Three SNPs were significantly associated with LDL chol-
esterol including rs12740374 in the SORT1/ PSRC1/
CELSR2 cluster (P = 1.6E-10), rs6511720 in LDLR (P =
1.2E-10), and rs7412 in APOE (P = 2.2E-65). Rs10096633
in the LPL gene (P = 4.9E-10) and rs326 in the C8orf35/
SLC18A1/LPL cluster (P = 8.2E-9) were associated with
total cholesterol. Apart from 17 reported associations, the
other 12 SNPs were associated with phenotypes that are
closely related to previously published associations indexed
in the GWAS catalog (Table 1 and Additional file 2).

Cross-racial validation
Eight of our findings were reported in other races previ-
ously but not in African Americans. Observed associa-
tions of rs173539, rs1800775, rs247616, and rs7499892
with HDL had not been previously reported in African
Americans. The other new cross-ethnic validations from
our study included rs1173727 with height, rs911119 with
cystatin C, rs247616 with the Framingham risk score,
and rs646776 with dyslipidemia (Table 1 and Additional
file 2). Interestingly, we saw even more significant results
for the association between rs247616 and HDL with P =
4.88E-52 and beta value = 4.3 (mg/dL) in REGARDS,

compared to P = 9.7E-24 and beta value = 3.0 (mg/dL) in
the GWAS catalog report [9] (Additional file 2).

SNPs associated with multiple traits
The 29 significant genotype and phenotype associations
involved 20 SNPs, and 11 of these were associated with
multiple traits (P-value < 1.0E-7 for the first trait and P
< 3.7E-5 for the second trait) (Additional file 3). We also
listed the genome-wide significant SNPs for one trait
which were suggestively associated with another trait
with nominal P < 0.05 in Additional file 3. Figure 1 listed
those 11 SNPs and another 8 SNPs which were signifi-
cantly associated with the first trait (P-value < 1.0E-7)
and nominally associated with another trait (P < 0.05).
Generally, the pleotropic effects were caused by one
SNP associated with multiple correlated phenotypes. In
the conditional analysis, the associations were not sig-
nificant between the second top traits and the corre-
sponding SNPs after including the top traits as the
covariate. For example, rs7412 was associated with LDL
(P = 7.64E-62) and Cystatin C (P = 1.80E-04) due to a
significant association between these two phenotypes (P
= 6.48E-06).

Discussion
Our PheWAS presented association of 4956 SNPs with
67 phenotypes using a subset of African Americans from
the REGARDS study. Our study validated 29 previous
GWAS associations, of which eight associations were re-
ported for the first time in African Americans (AAs).
Among many of our findings, 11 SNPs were associated
with multiple traits.
We identified 29 significant genotype and phenotype

associations. 17 of these have been reported previously.
The phenotypes of the other 12 associations were related
with those previously reported but not exactly the same.
For instance, rs911119 located in the CST3/CST4/CST9
gene cluster was reported previously associated with
chronic kidney disease in a European population [10].
Our current study found that in African Americans al-
lele C of rs911119 was negatively associated with the
level of cystatin C, which is a biomarker for kidney func-
tion (P = 6.2E-8). Rs7903146 in TCF7L2 gene was re-
ported associated with type 2 diabetes in several
different populations [11], which agrees with our current
results (P = 2.3E-12). Rs247616 in the CETP gene was sig-
nificantly associated with the Framingham CHD Hard
Event Risk Score (Fram_CHD: Risk of Coronary Death or
MI over 10 Years) with P = 3.8E-9. While this SNP has not
been previously associated with the Framingham risk score,
it has been associated with its components as well as re-
lated phenotypes including blood metabolite levels, cardio-
vascular disease risk factors, and lipoprotein-associated
phospholipase A2 mass and activity only in Europeans
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Fig. 1 Heatmap shows the -log10P for association between SNPs with different traits. Shown in colors are the association P values of SNPs which
are associated with first trait with P < 1.00E-7 and second trait with P < 0.05. The stars indicate the primary trait associated with the SNPs
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[9, 12, 13]. Rs7412 in the APOE gene was associated with
Fram_CHD (P = 3.0E-12), total cholesterol (P = 2.9E-37),
lipidemia (P = 6.2E-33) and Ideal7 (the American Heart
Association’s “Life’s Simple Seven” score, i.e., total number
of ideal risk behaviors or metrics for each of the seven) (P
= 3.3E-14). Our findings were consistent with previous
studies, which showed that rs7412 was associated with sev-
eral lipid related phenotypes including LDL cholesterol,
lipid metabolism phenotypes, lipid traits, and response to
statin therapy [14–17]. Here, we also found that rs629301
(in CELSR2, PSRC1 and SORT1), rs646776 (in CELSR2,
PSRC1 and SORT1) and rs6511720 (in LDLR) are associ-
ated with dyslipidemia. This is in alignment with previously
findings: associations of rs629301 with total cholesterol
and LDL cholesterol [18]; associations of rs646776 with
total cholesterol, LDL cholesterol, lipid metabolism pheno-
types, coronary artery disease, myocardial infarction (early
onset), and response to statin therapy in Europeans [19, 20];
associations of rs6511720 with total cholesterol, LDL choles-
terol, lipid metabolism phenotypes, lipoprotein-associated
phospholipase A2 activity and mass, and cardiovascular dis-
ease risk factors [18]. Rs12740374 in CELSR2/PSRC1/
SORT1 cluster was associated with two lipid traits: total
cholesterol and dyslipidemia in our study, which is closely
related with previously reported associations with LDL chol-
esterol and lipoprotein-associated phospholipase A2 activity
and mass [21, 22].
We validated eight associations in AAs for the first

time. Due to the difference of genetic variants between
African Americans and the other races [23], it is inter-
esting to check whether the associated variants reported
in other races are associated with the same traits in AAs
or not. When SNPs replicate across diverse populations,
the gene’s importance in the disease process is empha-
sized, and consistency of findings may indicate genes
that are especially important for future functional valid-
ation. Importantly, the effects of eight variants in AAs
were of the same directions as in the other reported
races.

Conclusions
In this study, we leveraged the rich phenotype collection
and the exome chip data in 7726 REGARDS AA partici-
pants, and examined the associations between 4956
GWAS catalog SNPs and 67 phenotypes. We validated
29 previous GWAS associations, of which eight associa-
tions were reported for the first time in AAs.

Methods
Study population and design
The REGARDS Study is a prospective, longitudinal
population-based cohort study [8] of European Ameri-
can and African American adults aged 45 and older. De-
tailed description of the objectives and design of this

study has been published [8]. The baseline telephone
interview and separate in-home visit were conducted be-
tween 2003 to 2007 [24]. Baseline data collection re-
sulted in a broad range of demographic, diet, and
clinical information as well as banked biospecimens
which were used to extract DNA and assess multiple
clinical measurements [8]. Participants continue to be
contacted every 6 months by telephone to identify stroke
events and other incident outcomes [8]. The REGARDS
study protocol was approved by the institutional review
boards of each participating institution, and written in-
formed consents were obtained from all participants.
This current study examined phenotypes available in
REGARDS participants to explore their association with
exome-chip SNP genotypes. A total of 7726 self-reported
African Americans with exome chip data were included in
our study. The average age of participants was 64.6 years
old (standard deviation = 9.0), and 4770 (61.7%) were
female.

SNP selection and genotyping
Genotyping was conducted using the Infinium
HumanExome-12v1-2_A from Illumina (San Diego, CA,
USA). The Illumina exome chip provides genotype data
on > 240,000 putative functional variants selected based
on over 12,000 individual exome and whole-genome se-
quences derived from individuals of European, African,
Chinese, and Hispanic ancestry (http://genome.sph.umi-
ch.edu/wiki/Exome_Chip_Design). Raw genotyping data
were called by GenomeStudio (version 2.0). The variant
quality control included removing SNPs with call rate <
95%, monoallelic SNPs, multiallelic SNPs, and SNPs that
had mapping errors. After further removing first and
second degree relatives, samples with technical issues,
and samples with mismatched sex, 7726 samples were
available for analysis. In total, 4956 autosomal SNPs with
minor allele frequency > 0.05 aligned to the GRCh37 ref-
erence sequence were matched to GWAS published
SNPs catalog V1.0.1, which were reported to be associ-
ated with at least one trait with P < 1.0E-5 (Additional
file 1) [7, 25].

Phenotypes
Lists of phenotypes included in this study are shown in
Table 2 and Table 3. The phenotypes included both
baseline and incident events among the 7726 African
Americans. Baseline information included medical his-
tory, personal history, demographic data, socioeconomic
status, cognitive screening, laboratory assays, urine,
height, weight, waist circumference, blood pressure,
pulse, electrocardiography, and medications in the past
2 weeks [8]. Follow-up events included stroke, coronary
heart disease (CHD), myocardial infarction, infection,
sepsis, end-stage renal disease, and death. All the

Zhao et al. BMC Medical Genomics 2019, 12(Suppl 1):26 Page 171 of 189

http://genome.sph.umich.edu/wiki/Exome_Chip_Design
http://genome.sph.umich.edu/wiki/Exome_Chip_Design


phenotypes were binary or continuous variables (See Ta-
bles 2-3). Totally, 26 binary and 41 continuous pheno-
types were included for current study [26–68]. The
binary variables follow a binomial distribution and their
frequencies for each category were calculated. Most of the
continuous variables followed normal distribution. For
variables with large skewness or kurtosis, a logarithm or
square root transformation was performed. Obvious out-
liers with values at more than 10 standard deviations away
from the mean were redefined as missing.

Statistical methods
Single SNP linear or logistic regressions were performed
by PLINK for continuous or binary phenotypes respect-
ively using an additive genetic model. The top 10 princi-
pal components determined by EIGENSTRAT [69], age,
and gender were used as covariates for all phenotypes.
Additional covariates were used for cholesterol,
high-density lipoprotein (HDL), low-density lipoprotein
(LDL), triglyceride, glucose, and insulin. Those covari-
ates included whether the participants were fasted under

Table 2 List of binary phenotypes

Short name Category Full description Number of
“yes”

Number of
samples

Frequency of
“yes” (%)

Prevalent Phenotypes

CogStatus [26, 27] Aging Cognitive Status: Normal: defined as cogscore> 4,
Impaired: defined as cogscore <=4

744 6195 12.01

Falls [28] Aging Self-reported fall in the past year 1166 7704 15.13

Afib [29, 30] CVD related Atrial Fibrillation (self-report or ECG evidence) 573 7526 7.61

CAD [31] CVD related History of Heart Disease (self-reported MI, CABG,
bypass, angioplasty, or stenting OR evidence of
MI via ECG

1186 7582 15.64

DVT [32] CVD related Self-reported deep vein thrombosis 371 7699 4.82

Hypertension [33, 34] CVD related Hypertensive if SBP > =140 or DBP > =90 or self-
reported current medication use to control blood
pressure

5622 7714 72.88

Dyslipidemia [35] CVD related Dyslipidemia: if TC > =240 or LDL > =160 or HDL
< =40 or on medication

4171 7604 54.85

MI_SR [31] CVD related History of Myocardial Infarction (MI) (self-reported
MI OR evidence of MI via ECG

891 7588 11.74

PAD_amputation [36] CVD related History of leg amputation 40 7725 0.52

PAD_surgery [36] CVD related Self-reported procedure to fix the arteries in legs 162 7709 2.1

Stroke_SR [37, 38] CVD related Participant reported stroke at baseline 597 7701 7.75

Stroke_Sympt [39, 40] CVD related Presence of stroke symptoms at baseline 1632 7134 22.88

TIA [29, 37] CVD related Participant reported Transient ischemic attack at
baseline

257 7102 3.62

Diabetes [41] Diabetes related Diabetic if fasting glucose> = 126/non-fasting
glucose> = 200 or pills or insulin

2335 7639 30.57

Cancer [42] Other Have you ever been diagnosed with cancer 526 4895 10.75

Orthopnea [29] Other Require more than one pillow to sleep at night 1076 7702 13.97

Dialysis [43] Renal Self-reported dialysis 45 7670 0.59

KidneyFailure [43] Renal Self-reported kidney failure 164 7670 2.14

Incident Phenotypes

CHD [44] CVD related Incidence of coronary heart disease until 2012 436 7726 5.64

MI [44] CVD related Incidence of myocardial infarction until 2012 284 7726 3.68

Stroke [45] CVD related Incidence of Stroke until 20,150,401 287 7726 3.71

Death [46] Other Incidence of Death until 20,150,401 1494 7726 19.34

Infection [47, 48] Other Incidence of infection 548 7726 7.09

Sepsis [47, 48] Other Incidence of sepsis 307 7726 3.97

Severe_sepsis [47, 48] Other Incidence of severe sepsis 243 7726 3.15

ESRD [49] Renal Incidence of end stage renal disease until 2012 238 7726 3.08
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Table 3 The list of continuous phenotypes of this study

Short name Category Full description Data
transformation

Number of
samples

Mean Standard
deviation

CogScore [26, 27] Aging Computed cognitive score 6195 5.45 0.85

Falls_number [28] Aging Number of times fallen in the past year log10(x + 1) 1182 0.42 0.2

MCS [50] Aging The mental component of the short-form
12 health survey: Mental

7352 53.46 9.02

BMI [51] Body size Body Mass Index - kg/m2 7657 30.84 6.73

Height [51] Body size Height 7702 66.4 3.88

Waist_cm [51] Body size Waist circumference (cm) 7673 98.43 15.42

Weight_kg [51] Body size Weight (kg) 7694 87.99 20.54

ARICStroke CVD related ARIC Stroke Risk Score: 10 Year Probability
of Ischemic Scroke (%)

log10 6791 0.83 0.47

Cholest [52] CVD related Total Cholesterol (mg/dL) 7676 193.1 40.9

Crp [53] CVD related C reactive protein (mg/L) log10 7597 0.46 0.52

DBP [54, 55] CVD related Diastolic blood pressure - average of two
measures (mmHg)

7703 78.58 10.11

Fram_CHD_score [56] CVD related Framingham CHD Hard Event Risk Score:
Risk of Coronary Death or MI over 10 Years
(among those free of CHD at baseline)

log10 6381 0.86 0.4

Fram_stroke_score [57] CVD related Framingham Stroke Risk Score: 10 Year
Probability of Stroke (%) (among those
who self-reported never having a stroke
at baseline)

log10 6694 0.88 0.39

Hdl [52] CVD related HDL Cholesterol (mg/dL) 7622 53.46 15.9

Heartrate [58] CVD related Heart rate (beats per minute) 7627 68.48 11.95

Ideal7 [59] CVD related American Heart Association Life simple seven,
total number of ideal for each of the seven

7726 2.12 1.08

Ldl [52] CVD related LDL Cholesterol (mg/dL) 7566 116.81 36.42

SBP [54, 55] CVD related Systolic blood pressure - average of two
measures (mmHg)

7703 131.41 17.29

SLFS [60] CVD related Family risk score for stroke 4293 −0.48 0.33

Stroke_Sym_Number [39, 40] CVD related Number of stroke symptoms 7134 0.39 0.87

Trigly [52] CVD related Triglycerides (mg/dL) log10 7673 2.01 0.2

Glucose [41] Diatetes related Glucose (mg/dL from labs formerly from
fromVermont)

sqrt 7676 10.38 1.78

Insulin [41] Diatetes related Endogenous Insulin uU/mL log10 5619 1.09 0.35

CESD [61] Other Center for Epidemiologic Studies Depression
Scale

7670 1.39 2.21

DASH_Score [62] Other DASH style diet score 4592 23.11 4.25

Diet7 [59] Other Life simple seven, diet score 4592 1.17 0.37

Education [63] Other 1 = ‘Less than high school’; 2 = ‘High school
graduate’; 3 = ‘Some college’; 4 = ‘College
graduate and above’; missing = − 9.

7718 2.57 1.08

Income [63] Other Income 6763 5.7 2.13

MedDietScore [64] Other Mediterranean diet score 4483 4.43 1.64

PA7 [59] Other Life simple seven, physical activity 7618 1.89 0.79

PCS [50] Other PCS-12: SF-12 Physical square root 7325 4.55 1.1

Smoke7 Other Life simple seven, smoking 7726 2.63 0.76

TV [65] Other watching TV time. 0 = ‘None’; 1 = ‘1–6 h/wk’;
2 = ‘1 h/day’; 3 = ‘2 h/day’; 4 = ‘3 h/day’; 5 =
‘4+ hrs/day’; missing = − 9.

5408 3.81 1.39
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examination, whether they had self-reported diabetes
and took insulin/glucose lowering pills, and whether
they had self-reported dyslipidemia and took lipid lower-
ing medication.
The threshold of significance level for PheWASs is not

straightforward and multiple approaches have been used
in other PheWAS studies [2–4]. The PAGE study used
five population-based studies representing major racial/
ethnic groups, and their threshold is “ P<0.01 observed
in two or more PAGE studies for the same SNP, pheno-
type class, and race/ethnicity, and consistent direction of
effect” [2]. The Environmental Architecture for Genes
Linked to Environment (EAGLE) study used similar
threshold with an additional condition for allele fre-
quency > 0.01 and sample size > 200 [4]. The Norfolk Is-
land study performed a principal component analysis of
phenotypes and used principal components as the final
phenotypes. A P value of 1.84E-7 was considered the
threshold for a significant association between a compo-
nent and SNP [3]. In our study, the criteria for a signifi-
cant association between a single SNP and a single
phenotype with Bonferroni correction was defined as P
value = 0:05

4956�67=1.5E-7. In our study, significant genotype
and phenotype associations involved 20 SNPs. Therefore,
the significance threshold for a second trait of the pleio-
tropic effect is P = 0.05/(67*20) = 3.7E-5.

Additional files

Additional file 1: List of 4956 SNPs included in the association tests.
(XLS 3240 kb)

Additional file 2: Title: Matching of Regard significant associations with
Published GWAS catalog (XLSX 85 kb)

Additional file 3: SNPs associated with multiple traits (XLSX 45 kb)
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