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Abstract

Background: Normal tissue samples are often employed as a control for understanding disease mechanisms, however,
collecting matched normal tissues from patients is difficult in many instances. In cancer research, for example, the open
cancer resources such as TCGA and TARGET do not provide matched tissue samples for every cancer or cancer subtype.
The recent GTEx project has profiled samples from healthy individuals, providing an excellent resource for this field, yet
the feasibility of using GTEx samples as the reference remains unanswered.

Methods: We analyze RNA-Seq data processed from the same computational pipeline and systematically evaluate GTEx
as a potential reference resource. We use those cancers that have adjacent normal tissues in TCGA as a benchmark for
the evaluation. To correlate tumor samples and normal samples, we explore top varying genes, reduced features from
principal component analysis, and encoded features from an autoencoder neural network. We first evaluate whether
these methods can identify the correct tissue of origin from GTEx for a given cancer and then seek to answer whether
disease expression signatures are consistent between those derived from TCGA and from GTEx.

Results: Among 32 TCGA cancers, 18 cancers have less than 10 matched adjacent normal tissue samples. Among three
methods, autoencoder performed the best in predicting tissue of origin, with 12 of 14 cancers correctly predicted. The
reason for misclassification of two cancers is that none of normal samples from GTEx correlate well with any tumor
samples in these cancers. This suggests that GTEx has matched tissues for the majority cancers, but not all. While using
autoencoder to select proper normal samples for disease signature creation, we found that disease signatures derived
from normal samples selected via an autoencoder from GTEx are consistent with those derived from adjacent samples
from TCGA in many cases. Interestingly, choosing top 50 mostly correlated samples regardless of tissue type performed
reasonably well or even better in some cancers.

Conclusions: Our findings demonstrate that samples from GTEx can serve as reference normal samples for cancers,
especially those do not have available adjacent tissue samples. A deep-learning based approach holds promise to select
proper normal samples.
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Background
Comparing molecular profiles of disease tissue samples
and normal tissue samples is often employed to identify
a signature of the disease. The signature defined as dif-
ferentially expressed genes between two groups is critical
to understanding abnormal disease features and guiding
therapeutic discovery [1–6]. For example, a gene expres-
sion signature created from the comparison of liver can-
cer tumor samples and adjacent tissue samples was used
to discover anti-parasite drugs as therapeutics for liver
cancer [7]. Analysis of matched tumor and normal pro-
files identified common transcriptional and epigenetic
signals shared across cancer types [8]. Large-scale inte-
grative analysis of cancer profiles, cellular response sig-
natures and pharmacogenomics data suggested that such
disease signatures can be widely employed for screening
anti-cancer drugs [9].
However, there are many lingering issues that hinder

these types of analyses. For instance, in many cancers,
adjacent normal tissues are not available in these gen-
omic databases such as The Cancer Genome Atlas
(TCGA) and Therapeutically Applicable Research To

Generate Effective Treatments (TARGET) (Fig. 1). As
such, there is an open question on what tissue samples
should be selected for these scenarios or whether cre-
ation of a proper disease signature is even possible. The
recent Genotype-Tissue Expression (GTEx) project [10]
has profiled samples from healthy individuals, providing
an excellent resource. However, their profiles are gener-
ated from different studies and processed under different
computational approaches, the feasibility of using GTEx
samples as the reference remains unanswered. Moreover,
given the fact there is heterogeneity within a disease, an-
other goal is to determine a set of normal samples that
are optimal for use as the reference for a group of pa-
tient samples. One approach is to choose normal sam-
ples that are similar to disease samples based on their
gene expression profiles. As a substantial number of
genes that are lowly expressed or not expressed at all
add noises in similarity measurement, one typical alter-
native strategy is to utilize the top varying genes across
disease samples as the features for similarity measure-
ment. However, selecting top varying genes may ignore
information of many critical genes.

Fig. 1 Distribution of TCGA cancer samples and pairs of case-control tissues in the dataset. Controls are adjacent tumor normal tissues
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In this work, we use the RNA-Seq data processed from
the UC Santa Cruz Computational Genomics Lab’s
Toil-based RNA-seq pipeline [11] and systematically
evaluate GTEx as a potential reference resource (Fig. 2).
We use those cancers that have adjacent normal tissues
in TCGA as the benchmark for the evaluation. We also
explore the potential use for state-of-the-art deep learn-
ing models, specifically layers of autoencoders, to create
reduced features for similarity measurement. We found
that disease signatures derived from normal samples in
GTEx are consistent with those derived from adjacent
samples in TCGA in many cases. Our findings demon-
strate that samples from GTEx can serve as reference
samples for the majority of cancers, but not all. Add-
itionally, we show promising results for utilizing deep
learning strategies to select reference tissues.

Methods
Datasets
TCGA (https://cancergenome.nih.gov/) is a public re-
pository of genomics data (e.g., gene expression) for can-
cer, and sometimes adjacent normal tissues. TARGET is
a similar resource focused on childhood cancers. The
GTEx project is a collection of gene expression data for
over 7700 healthy individuals for over 50 tissues. In the

current study, raw counts data and phenotype metadata
for the analysis were downloaded from UCSC Xena
Treehouse (https://xenabrowser.net/datapages/?cohort=
TCGA%20TARGET%20GTEx) and processed into an R
dataframe consisting of studies from TCGA, TARGET,
and GTEx, with a total of 58,581 rows of gene expres-
sion raw counts (identified as HUGO gene symbols).
Transcript abundance estimated from STAR and RSEM
was used. The Treehouse raw counts data consist of
19,249 samples and, of those, a total of 19,131 tissue
samples were annotated with phenotype metadata. We
only used tissue samples with annotated metadata for
this analysis. Of the 32 cancers, we chose cancers that
have at least 10 case-control (tumor-adjacent normal)
sample pairs (Fig. 1).

Workflow
In our study, we first evaluate whether our approach can
identify the correct tissue site from GTEx for a given
cancer (Fig. 2). We then ask whether disease signatures
are consistent between those derived from TCGA and
from GTEx. First we selected tissues for a particular can-
cer in the TCGA dataset and performed quality control
by filtering for tumor purity > 0.7 as determined by ES-
TIMATE [12]. Tissue outliers were determined by

Fig. 2 Workflow diagram
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computing the principal component analysis of tissues
and filtering out those with absolute z-score of the
first component of greater than 3. Reference normal
tissue for the tumor samples were computed using
four methods:

a. Random Method: Random selection of 50 GTEx
normal tissues.

b. Top Site Method: Compute correlation of GTEx
tissue expression to tumor expression using top
5000 varying genes across all tumors and select all
tissue samples from the top correlating tissue site.
Alternatively, compute correlation using the features
calculated from an autoencoder.

c. Top 50 tissues method: Compute correlation of
each GTEx tissue expression to tumor expression
and select the site with the tissues of the 50 highest
correlation to the tumor samples.

d. Manual method: For certain tumor tissues where
the computed top site did not correspond to the
site of tumor. For example, if esophagus mucosa
was chosen for lung adenocarcinoma, we manually
selected GTEx tissue site - lung.

After the reference GTEx tissues were selected, we
again removed tissues for outliers based on computed
first PCA > 3. Then the tumor tissues and reference tis-
sues were normalized using the RUVg R package library
[13]. Differential expression was computed on the nor-
malized samples. We analyzed each differential expres-
sion of the computations by comparing it with
differential expressions computed from case-control set.
The signature genes selected for analysis had an absolute
log fold change of greater than 1 and adjusted p-value of
less than 0.001.
First, we performed differential expression analysis by

comparing tumor samples and normal samples using
edgeR [14]. While we chose edgeR only to use, our pre-
liminary assessment showed the conclusions hold using
Limma + voom [15] or DESeq [16]. We filtered for can-
cers where there were at least 10 pairs of case-control
samples. These were Breast Invasive Carcinoma, Kidney
Clear Cell Carcinoma, Thyroid Carcinoma, Lung Adeno-
carcinoma, Prostate Adenocarcinoma, Liver Hepatocel-
lular Carcinoma, Lung Squamous Cell Carcinoma, Head
& Neck Squamous Cell Carcinoma, Stomach Adenocar-
cinoma, Kidney Papillary Cell Carcinoma, Colon Adeno-
carcinoma, Kidney Chromophobe, Bladder Urothelial
Carcinoma, Esophageal Carcinoma. The differential ex-
pression computed from these case-control cancer sam-
ples was used as benchmark comparison to the
differential expression ran against GTEx tissues as se-
lected from the workflow (Fig. 2). To evaluate the
performance we computed consistency based on the

significance of overlaping genes between signatures and
correlation of fold changes of common signature genes.
Further, disease expression using GTEx reference tissues
were computed as in the workflow diagram. All the ana-
lyses were performed in R (version 3.4.3).

Autoencoder
As an alternative approach to the top site methods, we
evaluated the utility of an autoencoder neural network
for computing correlation between cancer and reference
tissue expression. Gene counts in terms of Transcripts
Per Kilobase Million (TPM) from 19,260 samples were
fed into an autoencoder implemented using Pytorch (v.
0.1.12_2) (http://pytorch.org/). The following parameters
were used: 64 encoded features, 128 batch size, 100
epochs, 0.0002 learning rate (Fig. 3a). The training took
about 30 min using one GPU in an Amazon cloud
(g3.8xlarge). Rectifying activation function, dropout and
normalization were applied between layers. The loss
function is defined as a mean squared error (MSE) be-
tween 60,498 elements (identified as Ensembl IDs) in
the input x and output y. The functions and parameters
were detailed on the PyTorch website (https://pytorch.-
org/docs/master/). Data were split into a training set
(80%) and a test set (20%). Loss converged after 10,000
iterations (Fig. 3b). The t-SNE plot of the reduced data-
set shows that batch effect among three databases was
minimized (Fig. 3c). Similarly, we performed principal
component analysis (PCA) of this datasets and chose
top 64 components as the features. As the top 64 com-
ponents could explain 92% variation, choosing 64 fea-
tures for similarity measurement is reasonable in both
autoencoder and PCA.

Results
Among 32 TCGA cancers, 18 cancers have less than 10
matched adjacent normal tissue samples in the Tree-
house dataset. Ten cancers do not have any matched ad-
jacent tissue samples at all (Fig. 1). Whereas, GTEx has
profiles for 47 tissue sites with at least ten normal sam-
ples. This suggests the significance of exploring GTEx as
a source of reference.

Computing tissue of origin
We first asked if gene expression profiles could be used
to identify tissue of origin. We indicated a site of cancer
was correctly identified if the computed tissue was the
site of cancer origin or a very close proximal site (poten-
tially related site) e.g. kidney - cortex for kidney papillary
carcinoma. We indicate unrelated sites as those that are
further away from the cancer of origin (Fig. 4). We
found that using a minimal number of 100 varying
genes, the correlation method can correctly identify the
top tissue site for only 8 of 14 cancers. Increasing the
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number of varying genes to 5000 improved correct se-
lection for 11 of 14 cancers. No further improvement on
tissue selection was seen by increasing number of vary-
ing genes. The PCA, as a regular dimension reduction
method, was only able to correctly identify 8 of 14 can-
cers, so we did not examine this method in the following
analysis. The best automated method we found for refer-
ence tissue selection was via correlating autoencoder
features with 12 of 14 tissues being correctly chosen.
Further examination of the three misclassified cancers

by varying genes methods, Bladder Urothelial Carcin-
oma, Lung Squamous Cell Carcinoma and Stomach
Adenocarcinoma, revealed correlation values of 0.549,

0.300, and 0.858, respectively. The low correlation from
the bladder and lung carcinoma may be due to substan-
tial difference in tissue expression between the com-
puted site, esophagus, and their expected origin site,
bladder and lung. Correlation for stomach adenocarcin-
oma was quite high, which may be due to similarity be-
tween the computed site, ileum of the small intestine,
and the stomach (Additional file 1: Table S1).
Squamous cell carcinomas arise from squamous cells

that reside in the cavities and surfaces of blood vessels
and organs. As samples in GTEx were taken from bulk
tissues, this may cause the lower computed correlation
between the cancer tissue and site of origin leading to

A B C

Fig. 3 Applying an autoencoder for representing gene expression profiles. a Schema and parameters. Both encoder and decoder have one layer
in addition to the input/output layer. The input of encoder and the output of decoder are the expression of 60,498 transcripts. The objective
function is to minimize the difference between the output and input. Sixty-four encoded features are used to represent expression profiles.
Between layers, the following functions Leaky ReLU activation, batch normalization, and drop out are applied. Both network architecture and
parameters can be changed. b MSE loss for the training and test set. Lower MSE loss means the output is more similar to the input. c t-SNE
distribution of all samples using encoded features from an autoencoder. Dots were colored by data resources
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erratic computational choices. Manual selection of the
tissue of origin for lung squamous cell carcinoma and
stomach adenocarcinoma improved the correlation
from 0.549 and 0.858 to 0.883 and 0.926 respectively
(Additional file 1: Table S1). For Bladder Urothelial
Carcinoma, using the varying genes method chose
esophagus - mucosa as the top site (correlation 0.549),
whereas autoencoder correctly chose the bladder site
(correlation 0.926). This shows that correct site choices
will improve correlation.
Interestingly, Kidney Clear Cell Carcinoma, Kidney

Papillary Cell Carcinoma and Kidney Chromophobe
share the same tissue origin--Kidney - Cortex. This con-
firms that cancer can arise from different parts of one
tissue and raise the question whether we should use all
normal samples from one site as the reference.

Examples of hepatocellular carcinoma and bladder
urothelial carcinoma
We use two cancers as examples for further in-depth
analyses, specifically Hepatocellular Carcinoma (HCC)
and Bladder Urothelial Carcinoma (BUC). In our prior
results, we found that using more genes to compute the
correlation generally helped to select the correct tissue
site for the tumor. We ran correlation for each site using
increasing number of varying genes as well as autoenco-
der features. We normalized the correlation of the can-
cer site liver (Fig. 5a). We found that as the number of
genes used increases all tissues will generally converge
to have higher correlation with the disease tissue, this

may be due to including genes of conserved regions or
low expressions. Using all features from the autoencoder
allows us to have much better separation of the site liver
from other non-related sites of the cancer, indicating
autoencoder captures the biology of disease sample more
specifically (Fig. 5b-c).
For BUC, however, the varying genes method was un-

able to determine bladder as the best site instead choos-
ing esophagus (Fig. 6a-b). Increasing varying genes from
100 to 40,000 brought down the correlation of esopha-
gus site relative to bladder, however, it brought up cor-
relation of other tissue sites relative to bladder (Fig. 6a)
similar to what we see in Fig. 5a. This suggests that
naively increasing varying genes does not help to distin-
guish tissue site selection. Meanwhile, the autoencoder
method correctly predicts bladder as the top site with
great separation between bladder and esophagus (Fig. 6a,
c). Notably, the correlation in BUC is lower than that in
HCC based on different similarity metrics. This suggests
that cell composition in bladder tissues may be more
diverse.

Disease signature comparison
As we have demonstrated that gene expression profiles
can be used to identify tissue of origin, we then asked if
these samples sharing the same tissue of origin from
GTEx can substitute adjacent tissues from TCGA to cre-
ate disease signatures. We employed three approaches to
select samples (Fig. 2). We evaluate consistency based
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Fig. 4 Computing tissue of origin. Top site chosen by using varying genes, PCA, and autoencoder method
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on the significance of overlap between signatures and
correlation of fold changes of common signature genes.
Figure 7 shows the rank-based correlation of differen-

tial expression between consensus transcripts for each
cancer from TCGA using GTEx reference tissue vs.
TCGA case-control samples. Using the average of three
random tissue site selection as our baseline we see that
our other strategies are superior. The autoencoder pro-
duced better correlations overall regardless of sample se-
lection method.
For the autoencoder, it seems that choosing all sam-

ples from the same tissue of origin performs slightly
better than choosing 25 percentile and above mostly
correlated samples from the same tissue of origin.
Interestingly, choosing top 50 mostly correlated sam-
ples from any tissue performs reasonably well or even
better in some cancers, where the tissue of origin was
misclassified such as the varying genes method for
stomach adenocarcinoma (Additional file 1: Table S1).
This is very significant because in many cases, where
we may have no or an insufficient number of matched

normal tissues, we may use normal samples from other
sites. For example, in the three kidney cancers: Kidney
Clear Cell Carcinoma, Kidney Papillary Cell Carcinoma
and Kidney Chromophobe, our analysis suggests three
cancers can share the same reference tissue sites des-
pite the differences of origin within the kidney.
One additional question we assessed is how many

normal samples are sufficient for proper disease
signature-related analyses? We found that even a rela-
tively low number of normal samples may be sufficient
for calculating differential expression. For bladder
urothelial cancer, for example, the autoencoder se-
lected the bladder GTEx site which consists of only
nine tissue samples (Fig. 1) for a correlation of 0.924;
filtering for tissues above the 25th percentile left only
seven tissue samples for a correlation of 0.926. When
we used a strategy that selected more tissues, i.e. using
autoencoder top 50 method, 50 sample tissues were
used (9 from bladder and 41 from other top correlated
sites), which produced a slight drop of correlation to
0.847. This indicates that even a relatively low number

A

B C

Fig. 5 Tissue correlation between GTEx sites and HCC. a Median correlation between tissue sites and cancer normalized by median liver site
correlation values. b Correlations between GTEx tissue sites and HCC tumor samples using top 40,000 varying genes. c Correlations between GTEx
tissue sites and HCC tumor samples using autoencoder features
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of reference tissue samples may provide a robust
match.
Finally, we assessed whether it is a better strategy

overall to select all samples from the same tissue site as
the cancer of interest or only those that are correlated to
the tumor sample. We found that the samples producing
the best performance are sites where the tumor devel-
oped or closely related sites. However, when it is not
possible to use such sites (e.g., when there are no avail-
able data), it is feasible to use top correlated tissues as
seen from the top 50 methods. However, we found that
for some cancers, even choosing top correlated sites can
still produce erratic results, such as in the case of lung
squamous cell cancer. In this case, the correlations for
all non-random methods were between 0.1–0.3 which
was not even able to beat the random tissue selection
(Additional file 1: Table S1). Along these lines, we
evaluated differential expression similarity using samples

from a different origin than the cancer of interest.
For example, in two kidney cancers, Kidney Papillary
Carcinoma and Kidney Chromophobe the kidney cor-
tex were computed as the top site, for Head and
Neck carcinoma the esophagus-mucosa was the top
site. Their high correlation with case-control > 0.8
indicates that choosing sites at different origin but
proximal to the cancer will provide good disease signa-
tures (Additional file 1: Table S1).

Assign normal tissues for cancers with low case-control
pairs
Since there were 18 cancers with insufficient number of
adjacent normal tissues, we use our computational ap-
proach to assign a primary site for each. Of the 18 can-
cers, the autoencoder method was able to determine 10
correct sites, whereas using the top 5000 varying genes
only produced 4 correct sites (Fig. 8). This suggests an

A

B C

Fig. 6 Tissue correlation between GTEx sites and BUC. a Median correlation between tissue sites and cancer normalized by median bladder site
correlation values. b Correlations between GTEx tissue sites and BUC tumor samples using top 40,000 varying genes. c Correlations between GTEx
tissue sites and BUC tumor samples using autoencoder features
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autoencoder can select proper samples to create disease
signatures for those cancers.

Discussion
As the cost of sequencing is rapidly decreasing, it be-
comes very common to profile disease samples of
interest, however, collecting matched normal tissues
from patients is difficult in many instances. Our ana-
lysis confirms that GTEx, the largest cohort of normal
samples, can serve as a source of reference normal tis-
sues in cancer research. In the current study, we chose

to focus on cancer because we have plenty of adjacent
tissues that can be used as a benchmark. We expect
that the methods and findings from our study can be
extended for cancer subtypes or other non-cancer re-
search as well.
However, a few caveats have to be considered. First, all

RNA Seq data have to be processed in the same pipeline
in order to mitigate batch effects. Second, some disease
samples may have no relevant normal tissue samples in
GTEx because of diverse cellular composition. This limita-
tion may be addressed by using cellular decomposition

Fig. 7 Comparing signatures from multiple methods. Auto.TopSite: choose all samples from the same tissue of origin based on autoencoder
choice, Auto.25 and VarGenes.25: choose 25th percentile and above mostly correlated samples from the same tissue of origin as computed by
autoencoder and varying genes, and Auto.Top50 and VarGenes.Top50: choose top 50 mostly correlated samples from all tissues as computed by
autoencoder and varying genes. RandomAve: Randomly select 50 samples from all tissues. Site NA means no specified site
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techniques or single cell data. Finally, although we
show the potential of using autoencoder for feature se-
lection, we have not fully optimized the model for tis-
sue selection. In our exploratory studies, we found
that encoded features are very sensitive to network
architecture and parameters, although it does not
affect the results in the computation of tissue of ori-
gin. For example, when we changed learning rate from
0.0002 to 0.005, batch size from 128 to 64, dropout
rate from 0.2 to 0.1, LeakyReLU negative slope from
0.2 to 0.1, respectively, the average correlation be-
tween the new features and the default features chan-
ged to 0.219, 0.069, 0.354, and 0.219 (Additional file 2:
Table S1). Interestingly, while a new layer was added
into the network, the average correlation even de-
creased to − 0.01. However, while using new features
to compute tissue of origin, we observed that all new
features could clearly separate the first top site and
the second top site. For example, in liver and bladder
cancers, liver and bladder are predicted as the top site
respectively, and the correlation with the top site is
much higher than that with the second site (Add-
itional file 2: Table S1). Surprisingly, when the feature
size was reduced from 64 and 32 or two new layers
were added, the top site of bladder cancer was incor-
rectly predicted.
In addition, we identified several steps to further ex-

plore. For instance we may include additional genomic
features such as of mutations and copy number vari-
ation. The autoencoder strategy would be able to man-
age such diverse feature types. We also plan to
determine whether changing the order of workflow, such
as removing outliers first, might improve this analysis. In

addition, as adjacent cancer normal tissues are sampled
near the cancer site, some of these tissues may contain
cancer cells and thus have some expression of cancer
[17], which may require further investigation. We will
further explore our approach to study cancer subtypes
(estrogen-receptor positive breast cancer) and pediatric
cancers (available in TARGET), where adjacent normal
tissues are even more scarce.

Conclusion
In the current study, we evaluated the nuances of proper
reference tissue selection for disease signature-related
analyses. We showed that we can compute differentially
expressed genes in cancer by comparing cancer tissues
to reference tissues from the same site even if they are
from a different database. Furthermore, we assessed the
benefit of using state-of-the-art methodologies, namely
deep learning via an autoencoder strategy. We showed
that it enhances performance of identifying ideal refer-
ence tissues for cancers of interest. The findings from
our study will significantly enhance probing disease biol-
ogy through gene signatures.

Additional files

Additional file 1: Table S1. Consensus sequence and gene rank
correlation with case-control pairs using different methods. Differentially
expressed genes were selected using adjusted p < 0.001 and absolute
log fold change > 1. Consensus sequences are defined as overlapping
differential expression sequences with same directionality in log fold
change. Rank correlation is the Spearman’s rank correlation of differential
expression (fold change) between the consensus sequences computed
from multiple methods (see workflow) and case-control pairs. Unless
otherwise stated all rank correlation have p values < 0.01. (XLSX 11 kb)

Fig. 8 Putative site computed for cancers with low case-control pairs using 5000 varying genes and autoencoder features
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Additional file 2: Table S1. Autoencoder architecture and parameter
evaluation. New encoded features were used to compute tissue of origin.
A better separation between the first top site and the second top site
indicates a better model. (XLSX 8 kb)
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