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Abstract

Background: Feature selection or scoring methods for the detection of biomarkers are essential in bioinformatics.
Various feature selection methods have been developed for the detection of biomarkers, and several studies have
employed information-theoretic approaches. However, most of these methods generally require a long processing
time. In addition, information-theoretic methods discretize continuous features, which is a drawback that can lead
to the loss of information.

Results: In this paper, a novel supervised feature scoring method named ClearF is proposed. The proposed method
is suitable for continuous-valued data, which is similar to the principle of feature selection using mutual information,
with the added advantage of a reduced computation time. The proposed score calculation is motivated by the
association between the reconstruction error and the information-theoretic measurement. Our method is based on
class-wise low-dimensional embedding and the resulting reconstruction error. Given multi-class datasets such as a
case-control study dataset, low-dimensional embedding is first applied to each class to obtain a compressed
representation of the class, and also for the entire dataset. Reconstruction is then performed to calculate the error of
each feature and the final score for each feature is defined in terms of the reconstruction errors. The correlation
between the information theoretic measurement and the proposed method is demonstrated using a simulation. For
performance validation, we compared the classification performance of the proposed method with those of various
algorithms on benchmark datasets.

Conclusions: The proposed method showed higher accuracy and lower execution time than the other established
methods. Moreover, an experiment was conducted on the TCGA breast cancer dataset, and it was confirmed that the
genes with the highest scores were highly associated with subtypes of breast cancer.

Keywords: Feature selection, Feature scoring, Mutual information (MI), Breast cancer, Dimension reduction, Low-
dimensional embedding, Reconstruction error, Principal component analysis (PCA)
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Background
Feature selection or scoring techniques are essential for
the solution of various problems in bioinformatics.
Biomarkers are biological characteristics that can be used
to predict the risks of diseases [1], and feature selection is
a method used to detect them [2–4]. Various feature selec-
tion methods have been developed [5, 6] and successfully
used to identify biomarkers. The feature selection method
is also used to reduce large-scale data. The data used in
bioinformatics generally contains a relatively small
number of samples compared to the number of
features. Thus, the ‘curse of dimensionality’ [7] easily
occurs, in which the number of required samples expo-
nentially increases as the number of features increases.
To overcome this drawback, a feature selection method
is often applied to the selection of important features.
It is therefore important to develop feature selection
algorithms for the detection of biomarkers.
With respect to labels, feature selection can be divided

into two categories: 1) supervised feature selection
methods that utilize class label information and 2)
unsupervised methods that do not use class labels [8].
Supervised feature selection methods are used to find
useful biomarkers for the prediction of disease. There
are several categories of supervised feature selection
methods [8]. For example, statistical based methods use
statistical measures to score each feature, and similarity
based approaches select important features that can
preserve data similarity.
Information-theoretic methods perform a feature

selection using mutual information, which is a measure
of the entropy and conditional entropy dependence
between a variable of data and a label: I (X; Y), The

mutual information between two random variables X (a
random variable of data, feature) and Y (a random
variable of label) can be expressed as follows:

I X;Yð Þ ¼ H Xð Þ−H XjYð Þ;

where H(X) is the entropy of the random variable X
and H(X|Y) is the conditional entropy of the random
variable of X given Y. Information theoretic approaches
are typically used to detect biomarkers [9–15]. However,
in most cases, the processing time is long. In addition,
information theoretic methods discretize continuous
variables, which is a drawback that can lead to loss of
information [16].
While feature selection reduces the dimension by select-

ing a subset of the overall features, low-dimensional em-
bedding is a method that creates new low-dimensional
feature representations without preserving the original
features. Low-dimensional embedding is often used to
obtain a low-dimensional representation by its app-
lication to problems that are difficult to process at
higher dimensions. It is also used for noise removal
through reconstruction [17].
Principal component analysis (PCA) is a typical

low-dimensional embedding method that uses an ortho-
gonal linear transformation for a high-dimensional data to
a low-dimensional representation. It offers a high execu-
tion speed, and it is frequently used in many fields. How-
ever, it does not reflect nonlinearity. The kernel principal
component analysis (KernelPCA) [18] is an improvement
of the original PCA using the kernel method. Another
low-dimensional embedding method is the autoencoder,
which is a specific type of neural network. Recently, deep

Fig. 1 An overview of a supervised feature scoring method using class-wise embedding and reconstruction
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neural networks have been established, and the deep
autoencoder has been widely used.
Low-dimensional embedding is effective in reducing

data to low dimensions; however, it constructs a set of
new features, and it is difficult to extract substantial inter-
pretations of these features in the transformed space. It is
therefore difficult to use it directly for biomarker detection
in conjunction with low-dimensional embedding. Further-
more, given that most of the methods are unsupervised, it
is difficult to utilize class label information.
In this paper, we propose a method for assigning

supervised feature scores by applying unsupervised
class-wise low-dimensional embedding. The perfor-
mance of the proposed method is in accordance with
the principle of feature selection based on mutual infor-
mation. Moreover, the method addresses the problems
we described above.

Methods
Overview
The proposed method is termed ClearF. It determines
the feature score by calculating the reconstruction
error after class-wise low-dimensional embedding, and
it uses the property of the reconstruction error that

differs by class. Figure 1 presents the overall structure
of ClearF. First, class-wise division is performed on
the entire dataset. In other words, if the number of
class labels is C, the entire dataset and data for each
class are separated into C + 1 datasets. Thereafter, the
low-dimensional embedding and reconstruction are
separately performed for each divided dataset. Any
low-dimensional embedding method such as PCA,
KernelPCA, and autoencoder can be applied to
ClearF. The reconstruction error for each dataset is
obtained by calculating the difference between recon-
structed data and original data. The feature-specific
reconstruction errors in each dataset are calculated by
the feature-wise sum of reconstruction errors for each
feature (Fig. 2). Finally, the feature-wise reconstruc-
tion error of all the data and the error of data for
each class are used to derive the final feature score.

Conversion of mutual information to reconstruction error-
based concept
Low-dimensional embedding reduces the size of high-di-
mensional data, and simplifies the data in the reduction
process. Suppose we reduce a dataset to a very small di-
mension. If the characteristics of the data are complex,
it is difficult to represent the characteristics of the

Fig. 2 An illustration of feature-wise reconstruction error computation

Fig. 3 Conversion of a mutual information concept to a formula
using the reconstruction error

Fig. 4 Simulation results of the relationship between the entropy
and reconstruction error
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original data. Thus, information may be lost in the
low-dimensional embedding process. On the other hand,
if the characteristics of the data are comparatively
simple, they can be sufficiently reflected in the low
dimension. Intuitively, this leads to the hypothesis that
the data is complex if the reconstruction error is high;
otherwise the data is simple.

In information theory, entropy refers to the uncer-
tainty of the data, which increases in accordance with an
increase in the complexity of the data. This is similar to
the characteristics of the reconstruction error described
above. We use this to express entropy as a reconstruc-
tion error in a low-dimensional embedding process.
Figure 3 presents the relationship between terms in the

Fig. 5 Simulation results confirming the applicability of the scoring method for feature selection. The red arrows indicate the direction and size
of the components. a shows the result on the dataset with two features that differ widely between classes, and b shows the result when there is
little difference between classes

Table 1 Detailed information of benchmark datasets

Data set Data type Number of classes Number of features Number of samples Data information

Leukemia Discrete 2 7070 72 SNP

ProstateGE Continuous 2 5966 102 Gene expression

TOX171 Continuous 4 5748 171 Gene expression

Lung Continuous 5 3312 203 Gene expression

LungDiscrete Discrete 7 325 73 SNP
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score (X) and the entropy terms in the mutual in-
formation function. In particular, the entropy H(X) can
be interpreted as the reconstruction error after the
low-dimensional embedding of X. The conditional
entropy H(X| Y) corresponds to the reconstruction error
when each existing label information is expressed. In
Fig. 3, ReconClass 1. . C(X) is a term of the reconstruction
error after the low-dimensional embedding of data X;

and
PC

i¼0ReconClass iðXÞ is the sum of the terms applied
to each class separately. That is, the first part is cal-
culated without label information and corresponds to
H(X). The latter part is a reconstruction error in the
state given the label information, and it corresponds to
the conditional entropy under the label information.

Reconstruction error-based feature scoring
The reconstruction error of each feature in the
feature-wise reconstruction error described in Fig. 2 is
denoted as ReconClass i(Fj). If it is associated with the
score equation in Fig. 3, the following is obtained:

Score Xð Þ ¼ ReconClass 1::C Xð Þ−
XC

1

Reconi Xð Þ

¼
XF

1

Recon1::C F j
� �

−
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1
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Fig. 6 Cross-validation accuracy for the Lung dataset with respect to the number of selected features. a presents the results of the PCA
(ClearF-normal), KernelPCA with RBF kernel (ClearF-rbf) and KernelPCA with polynomial kernel (ClearF-poly) used in the proposed method;
and b compares the results of the other algorithms with our method using the best result kernel

Fig. 7 Cross-validation accuracy for the LungDiscrete dataset with respect to the number of selected features. a presents the results of the PCA
(ClearF-normal), KernelPCA with RBF kernel (ClearF-rbf) and KernelPCA with polynomial kernel (ClearF-poly) used in the proposed method;
and b compares the results of the other algorithms with our method using the best result kernel

Wang et al. BMC Medical Genomics 2019, 12(Suppl 5):95 Page 5 of 12



The total score of X is the sum of the scores calculated
for each feature. The score calculated for each feature is
the contribution of the feature to the total score; thus it
can be called the score of the feature that can distinguish
the label.
Our method can use any low-dimensional embedding

method that is capable of reconstruction such as PCA,
KernelPCA, and autoencoder. In the proposed method,
the decreasing number of dimensions is a significant
parameter. Since the purpose is to determine the recon-
struction error difference of class-specific data with re-
spect to that of the entire dataset, the same number of
components or dimensions is used for the entire dataset
and class-wise data.

Results
Correlations between the entropy and reconstruction
error
To confirm the correspondence between the entropy
and reconstruction error, a simulation was conducted.
The entropy of the multivariate Gaussian distribution

can be calculated as follows, using the determinant of
the covariance matrix [19]:

H Xð Þ ¼ n
2
þ n

2
ln2π þ ln j Σ j

where n is the number of features in X and Σ is the
determinant of the covariance matrix. We used this to
generate simulation data with a multivariate Gaussian
distribution N(0, 1). Thereafter, the entropy was cal-
culated to determine if there was a correlation with the
reconstruction error.
The simulation data was generated to contain 100

features and 500 samples, and the entropy and recon-
struction error of the generated data were calculated.
Moreover, PCA was used for the low-dimensional
embedding method, and the number of components in
the PCA was set as one. We repeated this procedure
1000 times, and the results are presented in Fig. 4. The
experimental results reveal that the entropy and the
reconstruction error were highly correlated (R2 = 0.94).

Simulation to verify the applicability of the proposed
method
We performed an experiment to confirm that our
method works properly with a simulated dataset. The
experiment was conducted to evaluate each score in the

Fig. 8 Cross-validation accuracy for the ProstateGE dataset with respect to the number of features. a presents the results of the PCA (ClearF-
normal), KernelPCA with RBF kernel (ClearF-rbf) and KernelPCA with polynomial kernel (ClearF-poly) used in the proposed method; and b
compares the results of the other algorithms with our method using the best result kernel

Table 2 Average accuracy of using 5 to 50 features per method and dataset

Fisher score Trace ratio Multi SURF ClearF normal ClearF rbf ClearF poly CMIM mRMR t-score

Leukemia 0.945 0.945 0.945 0.973 0.959 0.945 0.973 0.959 0.959

ProstateGE 0.912 0.857 0.857 0.868 0.912 0.922 – – 0.902

TOX171 0.672 0.713 0.819 0.807 0.666 0.683 – – –

Lung 0.865 0.841 0.901 0.916 0.935 0.902 – – –

LungDiscrete 0.716 0.689 0.811 0.880 0.879 0.811 0.841 0.743 –

The bold italic numbers indicate the best results for each dataset, and the bold non-italic numbers indicate the second-best result
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following two cases: 1) when there is a large difference
between the data for each class, and 2) when there is no
difference between the data for each class. As shown in
Fig. 5, we created two different datasets with two fea-
tures and 500 samples. In particular, A was a dataset that
contained two features that represented different trends
by class, and B was a dataset that contained two features
with fewer differences between classes. As in the previ-
ous experiments, PCA was used for the low-dimensional
embedding, and the number of components in the PCA
was set as one.
As shown in Fig. 5a, if combination of two features

(X1 and X2 in the figure) can easily differentiate data into
the two classes, the reconstruction error for each class is
very low. However, the reconstruction error of the entire
dataset was very large; thus, the scores were 447.94 and
460.60, respectively, for each feature. On the other hand,

in the case of Fig. 5b, the reconstruction error of the entire
dataset was small; which resulted in low scores of 2.71
and 2.69, respectively. These results reveal that our scor-
ing method produces high scores for the features that dif-
fer by class, and low when there is no difference by class.

Performance validation for benchmark datasets
To compare the performances of the proposed method
and other established methods, five biological datasets
were used from the benchmark datasets in [8]. Table 1
shows the details of the datasets. Several feature selec-
tion algorithms were used to conduct the benchmark
tests. For performance comparison, we chose commonly
used feature selection algorithms from each category
described above. The selected algorithms were t-score
[20] (binary class only), CMIM [21], mRMR [22]
(discrete data only), Fisher score [23], Trace ratio [24],

Fig. 9 Comparison of execution times for the LungDiscrete (a) and ProstatGE (b) dataset

Fig. 10 Cross-validation accuracy for the TCGA dataset with respect to the number of features. a presents the results of the PCA (ClearF-normal),
KernelPCA with RBF kernel (ClearF-rbf) and KernelPCA with polynomial kernel (ClearF-poly) used in the proposed method; and b compares the
results of the other algorithms with our method using the best result kernel
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and multi-SURF [25]. For MultiSURF, we used the code
provided by ReBATE [25], and the remaining algorithms
were compared using code from scikit-features [8].
In order to confirm that the proposed method extracts

more effective features for class label classification, the
selected features from each method were used for classi-
fication, and the resulting accuracies were compared.
We conducted a 10-fold cross validation in which the
entire dataset was divided into 10 folds, one for test data
and the other for training data. The feature selection
algorithm was applied only to the training data to
extract important features. The classification algorithm
of support vector machine (SVM) with radial basis

function (RBF) kernel was applied using only the se-
lected features, and the average accuracy of the 10-fold
cross validation was measured. The number of features
to be selected in the above procedure was increased by
five, and the process was the same as that used in the
algorithm comparison in the previous study [8].
In our experimental setting, the low-dimensional

embedding methods of PCA and KernelPCA were used.
The kernels used for KernelPCA were the RBF kernel
and the polynomial kernel with degree of three. Given
that the component size is an important hyperparameter
in the proposed method, we used a greedy search
algorithm to find the optimal component size. The

Table 3 The top 30 genes with the highest scores obtained from the TCGA dataset

Rank Gene symbol Entrez Gene Id Gene Description Score

1 ERBB2 2064 v-erb-b2 erythroblastic leukemia viral oncogene
homolog 2, neuro/glioblastoma derived oncogene
homolog (avian)

0.416

2 STARD3 10,948 StAR-related lipid transfer (START) domain containing 3 0.339

3 PGAP3 93,210 post-GPI attachment to proteins 3 0.295

4 FOXC1 2296 forkhead box C1 0.276

5 CDKN2A 1029 cyclin-dependent kinase inhibitor 2A (melanoma,
p16, inhibits CDK4)

0.270

6 ORMDL3 94,103 ORM1-like 3 (S. cerevisiae) 0.259

7 GSDMB 55,876 gasdermin B 0.245

8 B3GNT5 84,002 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5 0.236

9 PSMD3 5709 proteasome (prosome, macropain) 26S subunit, non-ATPase, 3 0.235

10 HAPLN3 145,864 hyaluronan and proteoglycan link protein 3 0.231

11 CDCA7 83,879 cell division cycle associated 7 0.222

12 PSAT1 29,968 phosphoserine aminotransferase 1 0.216

13 C17orf37 84,299 migration and invasion enhancer 1 0.215

14 GABRP 2568 gamma-aminobutyric acid (GABA) A receptor, pi 0.215

15 TMSB15B 286,527 thymosin beta 15B 0.214

16 MED1 5469 mediator complex subunit 1 0.208

17 CDCA2 157,313 cell division cycle associated 2 0.207

18 FAM171A1 221,061 family with sequence similarity 171, member A1 0.203

19 CCNE1 898 cyclin E1 0.197

20 CDK12 51,755 cyclin-dependent kinase 12 0.194

21 DSC2 1824 desmocollin 2 0.192

22 STAC 6769 SH3 and cysteine rich domain 0.189

23 PADI2 11,240 peptidyl arginine deiminase, type II 0.189

24 RCOR2 283,248 REST corepressor 2 0.179

25 IGF2BP2 10,644 insulin-like growth factor 2 mRNA binding protein 2 0.176

26 CDH3 1001 cadherin 3, type 1, P-cadherin (placental) 0.175

27 ZNF695 57,116 zinc finger protein 695 0.175

28 CLCN4 1183 chloride channel 4 0.172

29 MEX3A 92,312 mex-3 homolog A (C. elegans) 0.171

30 CBS 875 cystathionine-beta-synthase 0.171
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component size was selected using only training data in
each of 10 measurements of 10-fold cross validation.
First, the training data is further divided into three
equal-sized subsets, two of which are used for model
training and one of which is set as validation data. Let
Cmin be the number of samples of the smallest class in
the dataset. We applied our method to training data for
five different component sizes (1, Cmin/4, Cmin/2, 3 ∙
Cmin/4 and Cmin). We selected the component size with
the highest accuracy by applying SVM classifier. The
mean squared error was calculated to measure the
reconstruction error.
Figure 6 shows the result for the Lung dataset. We

have performed the benchmarking using the previously
mentioned algorithms, with the exception of T-score
(only applicable to the binary class), mRMR, and CMIM
(only applicable to discrete data), because the Lung
dataset is a continuous and multi-class dataset. The
proposed method demonstrated a relatively superior per-
formance to those of the other algorithms. Especially,
the RBF kernel showed a better performance than other
methods regardless of the number of selected features.
The results for the LungDiscrete dataset are shown in

Fig. 7. We excluded T-score because this dataset is a

multi-class dataset. When the number of features was
very small (> 20), mRMR and CMIM demonstrated
comparable performances. However, when the number
of features was larger than 30, ClearF-RBF archived a
higher accuracy than other methods.
Figure 8 presents the results for the ProstateGE data-

set. In the cases of using 10–30 features, the proposed
method showed better performance than the other algo-
rithms. The results of using more than 30 features were
almost identical with the accuracy close to 0.9.
The results for the Leukemia dataset are presented in

Additional file 1: Figure S1. Most of all the methods
demonstrated accuracies higher than 0.95, and no
significant difference between the performances of the
methods were observed. In Additional file 1: Figure S2
presents the result of the Tox171 dataset. Although the
results of the MultiSURF were relatively more accurate
than those of the other methods, the results of our
method using PCA were comparable.
For the purposes of feature selection, it is important

that even a small number of selected features yield good
results. The average accuracies for each method, from 5
to 50 features, are presented in Table 2. The bold italic
numbers indicate the best results for each dataset, and

Table 4 Significant gene sets of overlap between MSigDB and Selected Genes

Gene Set Name (# Genes) Description # Genes in
Overlap

p-value FDR
q-value

SMID_BREAST_CANCER_BASAL_UP (648) Genes up-regulated in basal subtype
of breast cancer samples.

13 7.43 e-17 7.85 e-13

NIKOLSKY_BREAST_CANCER_17Q11_Q21_AMPLIPLICON (133) Genes within amplicon 17q11-q21
identified in a copy number alterations
study of 191 breast tumor samples.

9 1.47 e-16 7.85 e-13

FARMER_BREAST_CANCER_CLUSTER_8 (7) Cluster 8: selected ERBB2 (GeneID = 2064)
amplicon genes clustered together
across breast cancer samples.

5 1.75 e-15 6.23 e-12

VANTVEER_BREAST_CANCER_ESR1_DN (240) Down-regulated genes from the optimal
set of 550 markers discriminating breast
cancer samples by ESR1 (GeneID = 2099)
expression: ER(+) vs ER(−) tumors.

9 3.23 e-14 8.16 e-11

SMID_BREAST_CANCER_LUMINAL_B_DN (564) Genes down-regulated in the luminal B
subtype of breast cancer.

11 3.82 e-14 8.16 e-11

SMID_BREAST_CANCER_ERBB2_UP (147) Genes up-regulated in the erbb2 subype
of breast cancer samples, characterized
by higher expression of ERBB2 (GeneID = 2064).

7 5.68 e-12 1.01 e-8

FARMER_BREAST_CANCER_BASAL_VS_LULMINAL (330) Genes which best discriminated between
two groups of breast cancer according to
the status of ESR1 and AR (GeneID = 2099;367):
basal (ESR1- AR-) and luminal (ESR1+ AR+).

8 3.31 e-11 5.05 e-8

SMID_BREAST_CANCER_RELAPSE_IN_BONE_DN (315) Genes down-regulated in bone relapse of
breast cancer.

7 1.18 e-9 1.58 e-6

DOANE_BREAST_CANCER_ESR1_DN (48) Genes down-regulated in breast cancer
samples positive for ESR1 (GeneID = 2099)
compared to the ESR1 negative tumors.

4 2.81 e-8 3.34 e-5

FONTAINE_PAPILLARY_THYROID_CARCINOMA_UA_UP (66) Genes up-regulated in papillary thyroid
carcinoma (PTC) compared to other thyroid
tumors.

4 1.03 e-7 1.1 e-4
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the bold non-italic numbers indicate the second-best re-
sult. The results show that the proposed method mostly
showed a good performance. All the 10-fold cross valid-
ation accuracies and their standard deviations are shown
in Additional file 1: Tables S1, S2, S3, S4, S5 and S6.

Computational cost validation for benchmark datasets
A comparison of the computational costs was performed
to show that the proposed method has advantages of a
reduced execution time. Among the benchmark datasets,
LungDiscrete and ProstateGE were used, and the CPU
time was measured by running each method 10 times
for each data. In the case of MultiSURF, since it provides
multi core implementation in ReBATE [25] code, separ-
ate experiments were conducted using a single core and
six cores.
Figure 9a presents the results for the LungDiscrete

dataset. It can be seen that the execution times of
CMIM and mRMR, which are information-theoretic
based methods, were much higher than those of the
other methods. The results for the ProstateGE dataset
are shown in Fig. 9b. The execution times of the other
methods were lower than that of MultiSURF. The
running time of our method is significantly shorter than
those of the other feature selection methods except for
the simple T-score or Fisher Score.

Performance validation for the TCGA breast cancer
dataset
We performed an experiment using the TCGA (The
Cancer Genome Atlas) gene expression data of patients
with breast cancer. The genes with missing data were
removed, and tested with 13,615 genes and 389 patients’
data. Among the samples, 15 patients had HER2 posi-
tive, 280 had Luminal A, 37 had Luminal B, and 57 had
basal-like subtypes.
Accuracy tests were performed on the TCGA breast

cancer dataset in the same manner as the experiment in
the benchmark dataset. The results are shown in Fig. 10,
and they reveal that the proposed method yielded the
best results for most of the sections.
Our method based on the KernelPCA (with polyno-

mial kernel), which showed a good performance in
the performance evaluation, was applied to all the
data. The 30 genes with the highest score are
presented in Table 3.

Discussion
Given the purpose of feature selection to identify im-
portant biomarkers, it is essential for a feature selection
method to show good performance in selecting a small
number of meaningful features. For the TCGA dataset
as well as the benchmark datasets, the proposed method
performed better than the other algorithms, especially in

the results of selecting a small number of features (10 ~
50), which demonstrates the utility of our method for
biomarker identification.
Among the highest-scoring genes detected using the

proposed method, it is suspected that STARD3, PGAP3,
ORMDL3, PSMD3 and HAPLN3 are the biomarkers of
the HER2 + subtype [26–31], thus indicating that
FOXC1 can identify basal-like subtypes in hereditary
breast cancer cohorts [32]. In addition, the methylation
status of CDKN2A exon2 has markedly higher methy-
lation levels in luminal A and luminal B subtypes [33].
Moreover, gene expression may be a potential biomarker,
as it is associated with methylation levels. B3GNT5
expression can also be a measure that distinguishes the

Fig. 11 Cluster information based on overlap of MsigDB and
Selected Genes
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subtypes luminal A, B from basal-like as it is previously
reported that the expression in basal-like samples is
high, while the expression in luminal A and B is signifi-
cantly lower [34].
Furthermore, GABRP, STAC, RCOR2, and IGFBP2 are

the genes scored high by our method, but not by the
other algorithms used in the performance comparison.
The expression of GABA (A) receptor pi (GABRP) plays
a role in initiation and progression of basal-like tumors,
and has therapeutic potential in basal-like breast cancer
[35]. In addition, the overexpression of IGFBP2 may be a
feature of basal-like breast cancer that correlates with a
low survival rate [36]. Moreover, RCOR2 replaces the
need for Sox2 expression in somatic cell reprogramming
[37], whereas Sox2 has a positive expression in the
basal-like subtype [38], although it has not been directly
related to the breast cancer subtype. The similarity
between somatic cell reprogramming and tumorigenesis
[39] may suggest that Rcor2 is a potential biomarker.
We have also checked which of the top 30 genes

belong to the C2 collection (curated gene sets) of
MSigDB [40, 41]. The results are described in Table 4
and Fig. 11. Using the information in Table 4, genes can
be classified into three clusters as shown in Fig. 11. As
we have seen individually above, we find that Cluster 1
belongs to the up-regulated gene set in the basal-like
subtype, and Cluster 2 is included in the Her2 + (triple
negative) gene set.
Although the genes in Cluster 3 are not part of a

significant gene set, CDCA2 and CDCA7 are genes
involved in the cell division cycle-associated protein.
Expression of several genes involved in cell division
cycle-associated protein has been reported to cause
shorter relapse free survival in patients with breast
cancer [42]. Therefore, CDCA2 and CDCA7 may also be
potential biomarkers. In addition, as previously described,
Rcor2 is likely to be a potential biomarker, so other genes
in Cluster 3 may also be potential biomarkers.

Conclusion
In this study, we developed a supervised feature selec-
tion algorithm that extracts useful features for the pre-
diction of diseases or subtypes in biological data. By
conducting simulation, we showed the applicability of
the proposed method for feature selection. The experi-
mental results revealed that our method has advantages
both in terms of classification accuracy and execution
speed, and is therefore useful in detecting biomarkers.
This was also demonstrated by the extraction of
meaningful genes and gene sets when applied to the
TCGA dataset.
Additionally, we tried to use an auto-encoder for

low-dimensional embedding, but the results were not
stable. It is possible that the size of the dataset was not

sufficiently big to show reasonable performance. In
future work, the performance of an auto-encoder or
other embedding methods should be evaluated using an
appropriately sized datasets. In addition, we plan to
conduct further studies on the selection of component
numbers and their effects on the performance.
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