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Abstract

Background: Gene expression data is widely used for identifying subtypes of diseases such as cancer. Differentially
expressed gene analysis and gene set enrichment analysis are widely used for identifying biological mechanisms at
the gene level and gene set level, respectively. However, the results of differentially expressed gene analysis are
difficult to interpret and gene set enrichment analysis does not consider the interactions among genes in a gene set.

Results: We present CONFIGURE, a pipeline that identifies context specific regulatory modules from gene expression
data. First, CONFIGURE takes gene expression data and context label information as inputs and constructs regulatory
modules. Then, CONFIGURE makes a regulatory module enrichment score (RMES) matrix of enrichment scores of the
regulatory modules on samples using the single-sample GSEA method. CONFIGURE calculates the importance scores
of the regulatory modules on each context to rank the regulatory modules.
We evaluated CONFIGURE on the Cancer Genome Atlas (TCGA) breast cancer RNA-seq dataset to determine whether
it can produce biologically meaningful regulatory modules for breast cancer subtypes. We first evaluated whether
RMESs are useful for differentiating breast cancer subtypes using a multi-class classifier and one-vs-rest binary SVM
classifiers. The multi-class and one-vs-rest binary classifiers were trained using the RMESs as features and
outperformed baseline classifiers. Furthermore, we conducted literature surveys on the basal-like type specific
regulatory modules obtained by CONFIGURE and showed that highly ranked modules were associated with the
phenotypes of basal-like type breast cancers.

Conclusions: We showed that enrichment scores of regulatory modules are useful for differentiating breast cancer
subtypes and validated the basal-like type specific regulatory modules by literature surveys. In doing so, we found
regulatory module candidates that have not been reported in previous literature. This demonstrates that CONFIGURE
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can be used to predict novel regulatory markers which can be validated by downstream wet lab experiments. We
validated CONFIGURE on the breast cancer RNA-seq dataset in this work but CONFIGURE can be applied to any gene
expression dataset containing context information.

Keywords: Context specific regulatory module, Gene regulatory network inference, Single sample GSEA, Feature
importance score, Breast cancer subtype

Background
Many researches have identified biological phenotypes
(i.e., contexts) such as cancer subtypes or cell types from
gene expression data. Usually, clustering algorithms are
applied to gene expression data for identifying biolog-
ical contexts [1–3]. Though gene expression signatures
accurately represent biological contexts from clustering
results, it is difficult to identify the biological mechanisms
underlying each biological context.

When context information is available, differentially
expressed gene (DEG) analysis [4–6] is the most widely
used for identifying marker genes that help to differ-
entiate contexts. However, from DEGs, it is often dif-
ficult to identify the phenotypes or biological networks
that are differentiated between the contexts. To over-
come this problem, the gene set enrichment analysis
(GSEA) method is widely used. The GSEA method can
identify phenotypes or biological networks in which the
DEGs are over-represented [7]. However, since the GSEA
method is based on gene sets, the interaction informa-
tion of biological networks is ignored. Several methods
consider the interactions in biological networks when
identifying context specific subnetworks [8–10]. However,
these methods are unable to score subnetworks for single
samples.

A gene regulatory network (GRN) describes transcrip-
tional relationships between transcription factors (TFs)
and their target genes. Among various data types, gene
expression data is often used for inferring GRNs. The
core component of the GRN inference method involves
calculating regulatory interaction scores of genes; statisti-
cal and machine learning methods are applied for scoring
interactions. However, most GRN inference algorithms
are unsuitable to identify context specific GRNs [11–15].

Recently, the authors of [16] have developed a single
cell GRN inference and clustering method called SCENIC.
SCENIC was developed to infer GRNs of single cells and
identify new cell types by clustering single cells based
on the activity scores of the GRN modules. However,
SCENIC does not prioritize GRN modules for each iden-
tified context of a cell type.

In this work, we present CONFIGURE which is a
pipeline for identifying CONtext speciFIc reGUlatoRy
modulEs. CONFIGURE first constructs regulatory mod-
ules from gene expression data using a gene regulatory

network inference method and a transcription factor (TF)
motif enrichment analysis method[13, 16]. A regulatory
module consists of a TF and its target genes, and the
regulatory interaction scores of them. Using the single
sample gene set enrichment analysis (ssGSEA) method
[17], CONFIGURE calculates the enrichment scores of
all regulatory modules for all samples. An enrichment
score indicates the degree of up- or down- regulation of
a regulatory module for a given sample. To identify con-
text specific regulatory modules, the importance scores
of regulatory modules are computed on each context. To
obtain the importance scores, CONFIGURE computes the
feature importance scores of one-vs-rest binary random
forest classifiers. The random forest classifiers are trained
on each context using the enrichment scores of regula-
tory modules as features. Based on the feature importance
scores computed by the random forest classifiers, CON-
FIGURE ranks regulatory modules on each context.

Methods
Input and output of CONFIGURE
The overview of CONFIGURE is shown in Fig. 1. Gene
expression data and context information are used as
inputs of CONFIGURE. The gene expression data is a two
dimensional matrix where samples and genes are listed in
rows and columns, respectively. Entries of the matrix are
gene expression values. The context information contains
samples with their context labels. For each context, CON-
FIGURE outputs regulatory modules ranked based on
their importance scores. We regard the regulatory mod-
ules with high importance scores in each context as the
context specific regulatory modules.

To obtain the context specific regulatory modules,
CONFIGURE performs the following three tasks: Con-
structing regulatory modules from gene expression data,
constructing a regulatory module enrichment score
(RMES) matrix, and computing importance scores of reg-
ulatory modules on each context. The following sections
describe each task in detail.

Construction of regulatory modules
CONFIGURE constructs regulatory modules from gene
expression data used as input. First, CONFIGURE con-
structs a gene regulatory network using GRNBoost2
which is a gene regulatory network inference method
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Fig. 1 Overview of CONFIGURE

provided in SCENIC [16]. GRNBoost2 infers a gene regu-
latory network from gene expression data using a stochas-
tic gradient boosting method [18]. The output of GRN-
Boost2 is a directed weighted network where a node
indicates a TF or a target gene, and an edge indicates a reg-
ulatory interaction between a TF and a target gene. Then,
the gene regulatory network is divided into regulatory
modules using the modules_from_adjacencies function
provided in the pySCENIC package [16]. We define a reg-
ulatory module as a tree with a depth of 1 where a root
node is a TF and leaf nodes are target genes. The weight
of an edge is the regulatory interaction score (RIS) which
indicates the degree of regulation of a given target gene
by a TF. Figure 2 illustrates a regulatory module. Regula-
tory modules are represented as either activated regula-
tory modules or repressed regulatory modules. Activated
regulatory modules contain only interactions where the
expression values of a TF are positively correlated with
the expression values of target genes. If regulatory mod-
ules contain only negatively correlated interactions, they
are repressed regulatory modules. Regulatory modules are
further pruned using the RcisTarget method [16] which
filters low confident target genes by motif enrichment
analysis.

Construction of a regulatory module enrichment score
(RMES) matrix
After constructing regulatory modules, CONFIGURE
constructs a regulatory module enrichment score (RMES)
matrix. The RMES matrix contains the enrichment scores
of samples and regulatory modules where samples are
listed in the rows and regulatory modules are listed in the
columns of the matrix. The enrichment score indicates
the extent of up- or down-regulation of a given regu-
latory module in a given sample. The enrichment score
is obtained using the single sample gene set enrichment
analysis (ssGSEA) method [17].

The ssGSEA method computes the enrichment score of
a given gene set for a single sample. The ssGSEA method
and the original GSEA method are similar [7], but they
use different gene score values. In the original GSEA
method, gene score values are usually fold change of dif-
ferent contexts. However, in the ssGSEA method, gene
score values of a sample are rank normalized where a
gene with a high expression value is a high rank normal-
ized value. Also, the ssGSEA method computes enrich-
ment scores using the empirical cumulative distribution
function (ECDF) whereas the GSEA method computes
scores using the Kolmogorov-Smirnov statistic. We use

Fig. 2 An illustration of a regulatory module
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normalized enrichment scores (NESs) as the entries of the
RMES matrix.

Computing importance scores of regulatory modules
To identify context specific regulatory modules, CON-
FIGURE uses the RMES matrix and context information
of samples, and it computes the importance scores of
the regulatory modules on each context. The importance
scores are computed based on the feature importance
scores of one-vs-rest binary random forest classifiers
using RMESs as the features of the random forest clas-
sifiers [19]. Assuming we have a C number of contexts
in context information {c1,c2, .. cC}, then the C num-
ber of binary random forest classifiers are trained. When
training a binary random forest classifier on the context
c1, samples with the context label “c1” are considered as
positive samples, and samples without the context label
“c1” are considered as negative samples. After training
the random forest classifiers on each context, the fea-
ture importance scores of the classifiers are computed
on each context. Feature importance scores of a random
forest classifier are based on the average delta impurity
scores of the base decision tree classifiers. The importance
score of a regulatory module m using the feature impor-
tance scores (FIS) of a random forest classifier, which
are based on the Gini impurity score, is calculated as
follows [19–21]:

Importance(m) = FIS(m) = 1
T

T∑

t=1

∑

n:f (n)=m

Sn
S

�Gini(n)

(1)

�Gini(n) = Gini(n)− Snleft

Sn
Gini

(
nleft

)− Snright

Sn
Gini

(
nright

)

(2)

Gini (n) = 1 −
C∑

c=1
[ p(c|n)]2 (3)

where T indicates the number of base decision trees in a
random forest, n denotes a node in a base decision tree,
nleft and nright denote the left and right child nodes of
n, respectively. f (n) indicates the feature used for split-
ting the node n. S is the total number of samples, Sn is
the number of samples on node n, C is the total number
of contexts, and p(c|n) is the probability of the samples
having the context c on node n.

Since we are using RMESs as features, regulatory mod-
ules are given with feature importance scores. The impor-
tance score of a regulatory module indicates the degree
to which the RMESs of the regulatory module have con-
tributed in differentiating between positive and negative

samples. We consider the regulatory modules with high
feature importance scores for a given context as the con-
text specific regulatory modules for that context. If the
average RMESs of context specific regulatory modules
are higher in positive samples, the modules are con-
sidered as up-regulated context specific modules; oth-
erwise, they are considered as down-regulated context
specific modules. We use the random forest classifier
implemented in the scikit-learn Python machine learn-
ing package (RandomForestClassifier(n_estimators=500,
criterion=’gini’)) [22].

Results
TCGA breast invasive carcinoma dataset
We tested whether CONFIGURE can produce biologically
meaningful context specific regulatory modules using
RNA-seq data from the Cancer Genome Atlas (TCGA)
Breast Invasive Carcinoma (BRCA) dataset. Breast cancer
can be divided into the following four subtypes: Lumi-
nal A, Luminal B, Her2, and basal-like [23, 24]. Table 1
lists the breast cancer types according to the expres-
sion status of breast cancer biomarkers [25]. Compared
with other types, the basal-like type breast cancers have
a poorer prognosis. Furthermore, it is difficult to find
specific drug targets for the basal-like type breast can-
cers due to the absence of breast cancer biomarkers [26].
Identifying basal-like type regulatory modules can help to
understand the regulatory mechanisms underlying basal-
like type breast cancers and suggest new therapy options
for such cancers.

We downloaded the RNA-seq data of the TCGA BRCA
dataset (provisional) from cBioPortal [27–29]. We used
the “data_RNA_Seq_v2_expression_median.txt” file from
the TCGA BRCA dataset which contains RNA-seq data
for 1100 samples. The RNA-seq data was quantified using
the RSEM method [30]. Since the subtype information of
samples in the TCGA BRCA dataset was not provided, we
used the PAM50 method [31] to produce subtype labels
for all the samples in the TCGA dataset. We used the
genefu R package for running the PAM50 method [32].
Among 1100 samples, 1072 samples were classified as
Luminal A, Luminal B, Her2, or basal-like by using the
genefu R package and theses samples were used for the

Table 1 Classifying breast cancer subtypes according to the
expression status of three breast cancer biomarkers

ER PR HER2 Ki67

Luminal A + + - -

Luminal B
HER2 + + + +

HER2 - + + - +

HER2 - - +

Basal-like - - -
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analysis. Table 2 shows the number of samples in each
breast cancer subtype used for the analysis.

Construction of regulatory modules of breast cancer
Using the gene expression data from the TCGA BRCA
dataset, we first constructed regulatory modules of breast
cancers. The gene expression data was log2 normalized
after adding 1 to all the gene expression values. We used a
list of 800 transcription factors, which was obtained from
the TRRUST database [33, 34]. Using the gene expression
data and transcription factor list, a gene regulatory net-
work of breast cancer is constructed using the GRNBoost2
method. After filtering edges with low weight values and
further pruning by RCisTarget, regulatory modules of
breast cancers are then constructed. A total of 110 regu-
latory modules with 34.682 target genes on average and a
standard deviation of 23.476 were obtained.

Quantitative evaluation
We first tested whether RMESs are useful for differenti-
ating breast cancer subtypes. To do this, we performed
10-fold cross validation and evaluated the performance of
the multi-class support vector machine (SVM) classifier
which uses RMESs as features[35]. We used the scikit-
learn Python implementation of the SVM classifier (Lin-
earSVC(penalty=’l1’, multi_class=’ovr’,dual=False)) [22].

Table 3 shows the performance of the multi-class classi-
fiers. Accuracy , F1-macro, and F1-weighted were used as
the evaluation metrics. The accuracy score is defined by
the number of correctly predicted samples divided by the
total number of predicted samples. The F1-macro score is
the average of the F1-scores of all contexts where F1-score
is defined as follows.

F1 − score = 2 × Precision × Recall
Precision + Recall

where

Precision = # of True Positives
# of True Positives + # of False Positives

Recall = # of True Positives
#of True Positives + #of True Negatives

The F1-weighted score represents the weighted aver-
age F1-scores where the support values of each context
are weighted when averaging the F1-scores. We used the
following four baseline classifiers: the multi-class SVM
classifier using gene expression values as features (# of
genes = 20531), the multi-class SVM classifier using gene
expression values of cancer hallmark genes as features
(# of genes = 167) , the COSSY classifier, and the clas-
sifier that predicts the dominant class in the dataset

Table 2 The number of samples of each breast cancer subtype

Luminal A Luminal B Her2 Basal-like Total

# of Samples 391 370 109 202 1072

Table 3 Performance of multi-class classifiers

Accuracy F1-macro F1-weighted

SVM-RMES 0.8983 0.8924 0.8986

SVM-Gene expression 0.8899 0.8917 0.8898

SVM-Gene expression (Hallmarks) 0.8834 0.8923 0.8831

COSSY 0.8657 0.8225 0.8723

Dominant Class Prediction 0.3451 0.1283 0.5132

(here, dominant class is Luminal A). The cancer hallmark
genes were obtained from the COSMIC database [36].
The COSSY method identifies subnetworks that differ-
entiate two contexts based on the entropy scores of the
subnetworks[10]. Subnetworks with low entropy scores
are ranked highly, indicating that the subnetworks accu-
rately differentiate two contexts. The COSSY classifier
predicts context labels based on weighted voting using
highly ranked subnetworks. For the multi-class predic-
tion, COSSY was trained on each breast cancer subtype
in a one-vs-rest manner and the context with the highest
positive weight was chosen. Table 3 shows the perfor-
mance of the multi-class classifiers which were evaluated
using 10-fold cross validation. The multi-class SVM clas-
sifier using RMESs as features achieved similar or slightly
higher scores than the multi-class SVM classifier using
gene expression values as features, and much higher per-
formance than COSSY. COSSY is similar to CONFIGURE
in that COSSY identifies context specific subnetworks.
However, since classification is not the main purpose of
COSSY, the classification scores may be low. The SVM
classifiers trained using gene expression values as features
achieve higher classification performance than COSSY as
shown in Table 3 but they cannot identify context specific
subnetworks. However, CONFIGURE can identify con-
text specific subnetworks and achieve high classification
performance.

We also evaluated the performance of one-vs-rest
binary classifiers. One-vs-rest binary classifiers were
trained on each subtype where samples of a given sub-
type were considered as positive samples and samples
of other subtypes were considered as negative samples.
Table 4 shows the accuracy score of each breast cancer
subtype. The dominant class prediction classifier achieved
an F1-score of 0 for all four subtypes because the neg-
ative class was the dominant class for all the subtypes,
which resulted in 0 true positives. Our model which is the
one-vs-rest binary SVM classifier trained using RMESs
also obtained similar or slightly better performance than
the SVM classifier trained using gene expression values.
Also, our model obtained much better performance than
COSSY. The classification results from the multi-class and
one-rest-binary class experiments show that RMESs are
useful features for differentiating contexts.
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Table 4 Performance of one-vs-rest binary classifiers

Luminal A Luminal B HER2 Basal-like Average

Accuracy

SVM-RMES 0.9366 0.8722 0.9627 0.9907 0.9405

SVM-Gene expression 0.9104 0.8741 0.9664 0.9841 0.9338

SVM-Gene expression (Hallmarks) 0.9291 0.8657 0.958 0.9888 0.9354

COSSY 0.8871 0.7836 0.9067 0.9813 0.8897

Dominant Class Prediction 0.6353 0.6549 0.8983 0.8116 0.75

F1-Score

SVM-RMES 0.913 0.8105 0.7959 0.9747 0.8736

SVM-Gene expression 0.8772 0.8143 0.8378 0.958 0.8719

SVM-Gene expression (Hallmarks) 0.9033 0.8 0.7887 0.9698 0.8655

COSSY 0.8428 0.8542 0.3101 0.9506 0.7394

Dominant Class Prediction 0 0 0 0 0

Validating basal-like type specific regulatory modules
Determining whether CONFIGURE can identify regu-
latory modules that can represent each context (here,
breast cancer subtype) is crucial. Basal-like type breast
cancer is a type of triple negative breast cancer where
the expression status of Estrogen Receptor (ER), Proges-
terone Receptor (PR), and HER2 is negative. Basal-like
type breast cancers usually have higher grade tumors
and poorer prognosis than other subtype breast cancers.
Due to their triple negative characteristic, there is a lack
of targeted therapies for basal-like type breast cancers.
Even with chemotherapies, it is difficult to dramatically
improve the prognosis of patients with these cancers
[23, 26, 28, 28]. Thus, it is essential to identify the tran-
scriptional mechanisms underlying basal-like type breast
cancers and eventually identify the molecular targets of
basal-like type breast cancers.

After confirming the accuracy of the basal-like type
binary classifier in Table 4, we extracted basal-like type
specific regulatory modules using CONFIGURE. Table 5
shows the results of the basal-like type specific regula-
tory modules. The “+” sign in the regulatory module name
indicates that the regulatory module is activated, and the
“-” sign indicates that the module is repressed. We ranked
the regulatory modules based on their importance scores.
The top 10 regulatory modules and their scores are shown
in Table 5. Target genes in a regulatory module are ranked
based on their regulatory interaction scores (the top 5
target genes are shown in Table 5). The Status column
indicates whether a basal-like type regulatory module is
up-regulated or down-regulated. A regulatory module is
up-regulated if its average RMES value is higher in the
positive samples than in the negative samples.

We validated the basal-like type specific regulatory
modules obtained by CONFIGURE through literature
surveys. We checked whether the TFs of regulatory

modules were reported to have associations with the phe-
notypes of basal-like type breast cancers. The Evidence
column in Table 5 indicates whether the TF of a regulatory
module has been reported.

Interestingly, a recent study by [37] has showed that the
expression of serum response factor (SRF) promotes the
stemness of basal-like type breast cancers by activating
Interleukin 6 (IL6) through binding to the Yes-associated
protein (YAP). In our result, the SRF(-) regulatory module
was ranked 9th (Table 5). The SRF(-) regulatory module is
down-regulated which indicates that the regulatory mod-
ule contains only target genes repressed by SRF and the
target genes are down-regulated in the basal-like type. The
target genes of the SRF(-) regulatory module that are over
repressed by SRF may be novel candidates for promoting
the stemness of basal-like type breast cancers.

Conclusion
In this article, we presented CONFIGURE, a pipeline
that identifies context specific regulatory modules from
gene expression data. CONFIGURE infers and prunes a
gene regulatory network to construct regulatory mod-
ules. CONFIGURE uses normalized enrichment scores
obtained using the single sample GSEA (ssGSEA) method
to score the regulatory modules for given samples and
make a regulatory module enrichment score (RMES)
matrix. The enrichment score indicates the extent to
which a regulatory module is up- or down-regulated in a
given sample. Then using the feature importance scores
of a one-vs-rest binary random forest classifier, CONFIG-
URE identifies context specific regulatory modules.

We quantitatively evaluated CONFIGURE in the multi-
class experiment and one-vs-rest binary class experiment
using 10-fold cross validation. In the multi-class experi-
ment, the multi-class SVM classifier trained using RMESs
as features achieved an accuracy of 0.8983, an F1-macro
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Table 5 The results of basal-like type specific regulatory modules
obtained by CONFIGURE

Regulatory Module Target Gene FIS Status Evidence

POU5F1(-) TOX3 0.1328 down-regulated [38, 39]
RALGPS2
FUT8
HMGCR
FOXA1

ZIC1(-) XBP1 0.1072 down-regulated
OVOL1
SLC1A4
SMAD7
CNTN1

RARA(+) RARA 0.0827 down-regulated
STARD3
PLEKHH3
MAG
PCGF2

E2F3(+) E2F3 0.0667 up-regulated
ANP32E
GEN1
SYNCRIP
BEND3

GATA6(-) MAST4 0.058 down-regulated [40]
PDE6B
ROBO2
KIF5A
ABI2

PHOX2B(+) PHOX2B 0.0454 up-regulated
DDC
MSGN1
AKR1D1
FABP7

GLI3(-) PPIF 0.0447 up-regulated [41]
ELF5
ORAI1

POR

HMGA1

ETV6(+) PHB2 0.0346 up-regulated

NCAPD2

VANGL2

PLEKHA5

ETV6

SRF(-) PAIP2 0.0344 down-regulated [37, 42]

ERLEC1

NECAP1

SCRN3

ZFP62

PLAGL1(-) SLC25A17 0.0327 down-regulated

NPBWR2

PTK6

SYCE2

HN1L

score of 0.894, and an F1-weighted score of 0.8986. In
the one-vs-rest binary experiment, the one-vs-rest binary
SVM classifier trained using RMESs as features achieved
accuracy scores of 0.9356, 0.8806, 0.9328, and 0.9907 on
Luminal A, Luminal B, HER2, and basal-like, respectively.
The multi-class and one-vs-rest binary SVM classifiers
performed the best in the multi-class and one-vs-rest
binary experiments, respectively. We validated the basal-
like type specific regulatory modules through literature
surveys. Compared with other breast cancer subtypes,
basal-like type breast cancers have a poor prognosis and
lack targeted therapies. Thus, it is important to identify
the transcriptional mechanisms underlying basal-like type
breast cancers. The literature survey result showed that
basal-like type specific regulatory modules are associated
with the phenotypes of basal-like type breast cancers.

Although CONFIGURE has many advantages, there is
still room for improvement. CONFIGURE can be applied
to other types of cancer or any gene expression dataset as
long as it contains contextual information (e.g., single cell
RNA-seq data that contains cell type information). How-
ever, we validated CONFIGURE only on the breast cancer
dataset. In future work, CONFIGURE can be validated
on other datasets, and more importantly, regulatory mod-
ules identified by CONFIGURE can be verified through
wet-lab experiments.

We believe that CONFIGURE will prove to be a useful
pipeline for generating hypotheses about novel transcriptional
mechanisms that accurately characterize phenotypes.
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