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Abstract

Background: Dupuytren’s disease (DD) is a fibroproliferative disorder characterized by thickening and contracting
palmar fascia. The exact pathogenesis of DD remains unknown.

Results: In this study, we identified co-expressed gene set (DD signature) consisting of 753 genes via weighted
gene co-expression network analysis. To confirm the robustness of DD signature, module enrichment analysis and
meta-analysis were performed. Moreover, this signature effectively classified DD disease samples. The DD signature
were significantly enriched in unfolded protein response (UPR) related to endoplasmic reticulum (ER) stress. Next,
we conducted multiple-phenotype regression analysis to identify trans-regulatory hotspots regulating expression
levels of DD signature using Genotype-Tissue Expression data. Finally, 10 trans-regulatory hotspots and 16 eGenes
genes that are significantly associated with at least one cis-eQTL were identified.

Conclusions: Among these eGenes, major histocompatibility complex class II genes and ZFP57 zinc finger protein
were closely related to ER stress and UPR, suggesting that these genetic markers might be potential therapeutic
targets for DD.

Keywords: Dupuytren’s disease, Unfolded protein response (UPR), Endoplasmic reticulum (ER) stress, Multiple-
phenotype analysis, trans-regulatory hotspots, ZFP57 zinc finger protein, Major histocompatibility complex class II

Background
Dupuytren’s disease (DD) is a fibroproliferative disorder
characterized by palmar fascia hypertrophy that often
results in thickening and contracting palmar fascia [1].
DD mostly occurs in ring finger, followed by little and
middle fingers, where affected fingers become perman-
ently and irreversibly bent in a flexed position [2]. The
prevalence of DD rises with increasing age and DD is
most commonly seen in Europe. It has higher prevalence
in northern Europe than that in southern Europe [3].
Even though Lee et al. have recently shown that DD is

not a disease limited to European descent anymore, it is
still classified as a rare and hard-to-care disease in Korea
[4]. Alcoholism, smoking, dyslipidemia, and diabetes are
regarded as risk factors of DD; however, the exact etio-
pathogenesis of DD remains unclear [5].
With rapid growth of high-throughput technology,

previous studies have reported that several genes are as-
sociated with the progression of DD based on differen-
tially expressed gene (DEG) analysis using microarray
[6–11]. Most DEG studies were focused on single genes
without considering interconnections between genes, es-
pecially those with high number of connections (edges)
in a network. Co-expression network analysis based on
similar expression patterns can be effectively used for
identifying a set of genes that are simultaneously active
in the same functional processes [12]. Together with
transcriptomic data, several risk genetic loci related to

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: jwjjoo@dongguk.edu; wany@dongguk.edu
†Jong Wha J. Joo and Wonhee Jang contributed equally to this work.
3Department of Computer Science and Engineering, Dongguk
University-Seoul, Seoul 04620, South Korea
1Department of Life science, Dongguk University-Seoul, Seoul 04620,
Republic of Korea
Full list of author information is available at the end of the article

Jung et al. BMC Medical Genomics 2019, 12(Suppl 5):98
https://doi.org/10.1186/s12920-019-0518-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-019-0518-3&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jwjjoo@dongguk.edu
mailto:wany@dongguk.edu


the pathogenesis of DD have been identified by genome-
wide association studies (GWAS) to inspect the association
of a single phenotype and each single nucleotide poly-
morphism (SNP) [13–15]. However, SNPs cannot solely
explain biological processes because most of such variants
reside in noncoding regions of the genome [16].
Recently, large quantities of genomic data alongside with

expression data per individual have been gathered from
GWAS cohorts. The Genotype-Tissue Expression (GTEx)
project was founded for expression quantitative trait locus
(eQTL) mapping, which investigates effects of genetic vari-
ation on gene expression in extensively diverse primary tis-
sues from human [17]. eQTL analysis indeed is an approach
to explain genetic variation underlying altered gene expres-
sion [18]. Recent studies have described tissue-specific
eQTLs because gene expression patterns are different across
tissues [19, 20]. cis-eQTLs or trans-eQTLs usually refers to
eQTLs that regulate nearby or distal genes, respectively [18],
and genes that are significantly associated with at least one
cis-eQTL are referred to as eGenes [21]. Notably, previous
eQTL studies showed that a small number of genomic re-
gions referred to as trans-regulatory hotspots can regulate
expression levels of hundreds of genes [22–24], suggesting
the existence of master regulators of transcription. Typically,
eQTL approaches analyzing independent phenotypes have
low statistical power [25]. On the other hand, multi-variate
methods analyzing many phenotypes simultaneously can in-
crease the power to identify underlying regulatory hotspots
in a complex biological system [26].
In this study, we used weighted gene co-expression net-

work analysis (WGCNA) to find co-expression gene set
(module) of highly correlated genes for DD. Using
independent datasets as validation sets, we confirmed the
reliability of selected gene set via module enrichment ana-
lysis based on gene set enrichment analysis (GSEA) and
disease classification. Finally, a multiple-phenotype regres-
sion analysis was performed using GTEx muscle data to
identify regulatory hotspots related to gene set of DD.

Methods
Microarray preprocessing and meta-analysis
Affymetrix microarray datasets were preprocessed and nor-
malized following Jung et al. [27]. Other platform datasets
including CodeLink, Stanford, and Illumina platform were
preprocessed using limma R package [28]. Two-color
microarray dataset (GSE2688) comparing relative expres-
sion levels between a sample RNA and a universal RNA in
a single microarray was adjusted for batch effects after in-
dependent normalization because the dataset was from
two types of array platforms. Meta-analysis was con-
ducted using the one-color microarray datasets meas-
uring expression levels from each sample separately
(Table 1). These datasets were combined using unique
Entrez IDs. Meta-analysis was carried out according
to SVA R package [29] after adjusting for batch ef-
fects using Combat [30].

Weighted gene correlation network analysis
GSE75152 dataset contained mRNA expression profiles
of 12 DD patients and 12 control subjects with total
RNA extracted from the connective tissue from the hand
[11]. Top 5000-most expressed probes were selected for
computational cost and simplicity after normalization.
Multiple probes representing one gene were collapsed
using collapseRows function [31]. A signed WGCNA
was used to identify co-expression modules comprised
of positively correlated genes based on Pearson correl-
ation coefficient [32]. In detail, a similarity matrix based
on Pearson correlation of all pairs of genes was con-
verted into an adjacency matrix via a power function. A
suitable soft-thresholding power (β) of the power func-
tion was selected via analysis of scale-free topology.
Next, the adjacency matrix was transformed into a topo-
logical overlap matrix (TOM) to reflect topological in-
formation of a network. Modules were defined by a
hybrid tree cut method when cutting a hierarchical clus-
ter trees [32]. Expression patterns in modules were

Table 1 Characteristics of NCBI GEO datasets used for WGCNA analysis

GEO series ID Array type Array platform No. of arrays
(DD: Control)

Source of tissue PMID

1 GSE2688 (GSE4457) Two-color Stanford Microarray 11 (4: 7) DD tissues 18694919 [6],
16473681 [7]

2 GSE21221 One-color GE Healthcare CodeLink Human
Whole Genome Bioarray

12 (6: 6) Fibroblasts derived from DD tissues 18433489 [40]

3 GSE31356 One-color Affymetrix Human Genome
U133A Array

6 (3: 3) DD tissues 22965824 [8]

4 GSE41524 One-color Affymetrix Human Exon
1.0 ST Array

10 (4: 6) Fibroblasts derived from DD tissues 23554969 [9]

5 GSE59746 One-color Affymetrix Human Genome
U133 Plus 2.0 Array

4 (2: 2) DD tissues 25379672 [10]

6 GSE75152 One-color Illumina HumanWG-6 v3.0
expression beadchip

24 (12: 12) DD tissues 27467239 [11]
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summarized by module eigengene. The threshold of mini-
mum size of modules was 50 genes and pairs of modules
with high ME correlations (r > 0.85) were merged.

Module enrichment analysis and functional annotation
The fast preranked gene set enrichment analysis (fgsea) R
package was used for GSEA [33]. Microarrays of log fold
change (log FC) values were regarded as a pre-ranked list.
Modules derived from WGCNA were used as gene sets
for module enrichment analysis. Database for Annotation,
Visualization and Integrated Discovery (DAVID) [34] was
used to conduct functional enrichment analysis.

Disease classification
Random forest [35] classification was conducted using clas-
sification and regression training (caret) r package [36].
Combined one-color microarray dataset and two-color
microarray dataset were transformed to mean 0 and vari-
ance 1 for each gene. Model training for DD sample classi-
fication was performed with the one-color microarray
dataset using LOOCV. Model validation was carried out
with the two-color microarray dataset.

Regulatory hotspot analysis
To identify trans-regulatory hotspots, we performed
GAMMA, one of multiple-phenotype analysis approaches
to examine an association between a number of pheno-
types or gene expression levels and each SNP [25].
GAMMA is preferred over other multiple-phenotype ap-
proaches as it is scalable to high dimensional data, contain-
ing hundreds to thousands number of genes which is often
the case with eQTL data. In addition, utilizing linear mixed
model, it considers widely known genetic relatedness re-
ferred to as population structure in the data. The popula-
tion structure complicates association analysis by inducing
spurious signals. Especially, in multiple-phenotype analysis,
these problems may compound as bias because population
structure accumulates from each phenotype [25]. Skeletal
muscle data from 361 samples in GTEx project (version
6) data in dbGaP database (accession phs000424.v6.p1)
were used for this analysis. The top three principal
components of covariates were regressed out in expres-
sion data. GAMMA was performed by an adaptive per-
mutation which increased the number of permutations
from 102 to 106, increasing by 10 folds each time. A
summary data of SNP-gene associations was obtained
from the GTEx Portal (http://gtexportal.org). SNPs
within ±1Mb of the transcriptional start site of each
gene were used to identify cis-eQTL.

Cross-species mapping using ER stress gene expression data
In this study, gene expression microarray dataset GSE35209
obtained from MEFs treated with an ER stress-inducing
agent (tunicamycin) was used. The pre-processed data were

obtained using GEOquery r package [37]. Cross-species
mapping between human and mouse genes was per-
formed using National Center for Biotechnology Infor-
mation HomoloGene database (Build68) [38].

Results
Identification of co-expression module for DD
We constructed co-expression networks using the WGCNA
r package describing correlation patterns among genes
across DD patients and normal subjects to identify a repre-
sentative set of genes for DD. Among the top 5000-most
expressed microarray probes in GSE75152, we identified
unique 4141 representative genes based on collapseRows
function in WGCNA r package [31]. Selected genes with
similar expression patterns were clustered into gene set
modules via average linkage hierarchical cluster analysis.
The power of β= 12 (scale-free R2 = 0.82) was selected as
the soft-thresholding power for co-expression network
construction (Additional file 1). We identified 16
co-expression modules representing genes that shared
highly similar expression patterns (Fig. 1a). Among
these modules, the red and blue modules were enriched
in up- and down-regulated genes, respectively (Fig. 1b).
Next, we carried out meta-analysis using one-color
microarray datasets to identify representative module
for DD. A total of 67 microarray data in five independ-
ent studies were used, consisting of 31 DD samples and
36 normal samples (Table 1). The results showed that
DEGs derived from meta-analysis were significantly
enriched in red (Two-sided Fisher’s exact test: odds ra-
tio = 2.98 and P value = 2.64e-23) and blue (Two-sided
Fisher’s exact test: odds ratio = 3.96 and P value =
1.23e-14) modules (Fig. 1c and Additional file 2A).
Additionally, DEGs of two-color microarray datasets
were also significantly enriched in red (Two-sided
Fisher’s exact test: odds ratio = 2.50 and P value =
6.35e-19) and blue modules (Two-sided Fisher’s exact
test: 0.35, odds ratio = 0.35 and P value = 6.49e-4)
(Fig. 1d and Additional file 2B).

DD signature has the power to classify DD samples
To test whether these identified modules were replicated
in other 5 independent datasets (Table 1), GSEA were
performed for module enrichment analysis. The results
showed that only the red module (753 genes) was signifi-
cantly and positively enriched in all 5 independent datasets
(FDR < 0.05) (Fig. 2a and b). Consistently, the expression
levels of red module genes were distinct and discriminative
according to the DD patient or the normal subject data in
GSE75152 (Fig. 1e and f). We then asked whether red
module genes could sufficiently classify disease state
of individual samples related to DD. In order to apply
a sample classification approach of DD samples, all
datasets including CodeLink, Affymetrix, and Illumina
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were merged (Table 1). Among the 753 red module genes,
only 255 genes remained after merging the datasets be-
cause genes contained by each microarray platforms are
different. Model training using random forest method was
carried out with one-color microarray datasets using
Leave-one-out cross-validation (LOOCV) while model
validation was performed using two-color microarray
dataset. The Classification performance showed that area
under the curve (AUC) value in receiver operating charac-
teristic (ROC) analysis curve was higher for red module
genes than that of two randomly selected genes having the
same number of red module gene (Fig. 2c). Collectively,
these results strongly suggested that the red module genes
(so-called DD signature in this paper) (Additional file 3)
were a robust set of genes representing DD.

Functional enrichment analysis of DD signature revealed
dysregulated functions in DD
To obtain insights into the biological process of DD, we
performed functional enrichment analysis to define
dysregulated Gene Ontology (GO) categories and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
of the DD signature. We found terms for extracellular
matrix (ECM) or collagen were significantly enriched in
extracellular matrix organization (GO:0030198 and
FDR = 5.97e-10), ECM-receptor interaction (hsa04512
and FDR = 7.60e-04), and collagen catabolic process
(GO:0030574 and FDR = 4.62e-06), while the enriched
terms for adhesion were cell-cell adhesion (GO:0098609

and FDR = 1.41e-03) and focal adhesion (hsa04510 and
FDR = 2.01e-02) (Fig. 2d and Additional file 4). Previous
results from microarray studies indicated that several pro-
teins for extracellular matrix (ECM) are correlated with
mRNA dysregulation [6, 39–41] and that pathological col-
lagen deposition is related to DD [42]. Notably, unfolded
protein response (UPR) related to endoplasmic reticulum
(ER) stress terms were significantly enriched in protein
processing in endoplasmic reticulum (hsa04141 and
FDR = 1.34e-04) and IRE1-mediated unfolded protein re-
sponse (GO:0036498 and FDR = 2.06e-05) (Fig. 2d and
Additional file 4). UPR and ER stress have been detected
in many disease including neurodegenerative disease, can-
cer, diabetes, liver disorders, and obesity [43]. Our results
suggest that unfolded protein-induced ER stress can also
be involved in the pathogenesis of DD.

Identification of regulatory hotspot related to DD
signature
To identify trans-regulatory hotspots regulating expres-
sion levels of DD signature, multiple-phenotype regression
analysis was carried out using GAMMA (Generalized ana-
lysis of molecular variance for mixed-model analysis) [25]
in eQTL datasets of GTEx version 6 dataset. The presence
of abnormal myofibroblasts in DD palmar fascia plays a
causative role in digital contracture of DD [44]. Therefore,
muscle tissues were used in this analysis. First, we found
512 loci using GAMMA (P value <5e-05) (Fig. 3a). We
then examined cis-acting SNPs within ±1Mb region of

Fig. 1 Identification of modules associated with gene expression of DD. a Dendrogram showing modules based on the dissimilarity of TOM
(1-TOM). Color bars below show assignment of modules. b Heatmap showing the gene expression pattern of modules. Red and blue color lines
indicate up- and down-regulation, respectively. c A Heatmap showing the results of the meta-analysis derived from one-color microarray dataset.
Black indicates DEGs (FDR < 0.01). d A Heatmap showing results of DEGs analysis of two-color microarray dataset. Black color lines indicate DEGs
(FDR < 0.01). e A Heatmap showing expression patterns of genes for red module. Black color lines indicate DEGs (FDR < 0.01). f A scatter plot of
principal component analysis (PCA) showing a distinct separation of the expression level of red module genes between patients with DD and
normal subjects
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the transcription start site (TSS) of each gene among
GAMMA loci because recent studies indicated that ex-
pression change of a trans-acting factor by a cis-eQTL
was another possible causal mechanism [45, 46]. Finally,
we identified 10 GAMMA loci and 16 eGenes (q value <
0.05) that were significantly associated with at least one
cis-acting SNP [21] (Table 2), including 5 protein-encoding

eGenes: major histocompatibility complex class (MHC)
II DQ alpha 1 (HLA-DQA1), DQ beta 1 (HLA-DQB1),
DQ beta 2 (HLA-DQB2), DR beta 1 (HLA-DRB1), and
DR beta 5 (HLA-DRB5). Their expression levels were
significantly associated with one rs2269423 on chromo-
some 6 (Fig. 3b and Table 2). Previous results showed that
human leukocyte alleles (HLA) encoding MHC proteins

Fig. 2 Robustness of DD signature and its functional annotations. a Bar plots showing the results of module enrichment analysis using GSEA.
Black dotted lines indicate significant threshold (FDR < 0.05). b Bar plots showing normalized enrichment score (NES) for results of module
concentration analysis using GSEA. c ROC analysis with AUC showing the performance of classification using red module in (a). Randomly
selected genes consist of the same number of the red module gene. d Bar plots showing the results of functional enrichment analysis. Red and
orange color bars represent GO biological process and KEGG pathway, respectively. Black dotted lines indicate significant threshold (FDR < 0.05)
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in humans, especially HLA-DR alleles, are related to DD
[47, 48]. Among the identified 5 HLA genes related to
rs2269423, 4 genes were also identified to have significant
variant-gene associations in GTEx version 7 dataset, and 3
genes including HLA-DR beta 6 (HLA-DRB6), NOTCH4,
and activating transcription factor 6 beta (ATF6B) were
additionally identified (Additional file 5 and Fig. 4). ATF6
is a key transcription factor for unfolded protein response
(UPR) pathway during ER stress [49]. rs201344092 allele
was associated with an increase in gene expression of
ZFP57 (Fig. 3b, c and Table 2). Importantly, a mutation of
ZFP57 is associated with neonatal diabetes type 1 [50].
Previous studies indicated that Zfp57 expression was
up-regulated by ER stress condition in mice [51, 52], sug-
gesting that Zfp57 might be secondary UPR-regulated
transcriptional repressor [53].

Expression of eGenes under ER stress condition
To determine whether expression levels of the identified
genes are regulated by ER stress condition, we examined
the gene expression levels using microarray data derived
from mouse embryonic fibroblasts (MEFs) treated with
ER stress-inducing agent (GSE35209). 10 genes including

2 up-regulated and 4 down-regulated DEGs remained
after cross-species mapping procedure. Remarkably, Zfp57
(ZFP57 in human) was significantly up-regulated in ER
stress condition (Fig. 4) and ZFP57 is positively regulated
by the trans-regulatory hotspot (rs201344092) associ-
ated with DD signature in human (Fig. 3b). H2-Eb1
(HLA-DRB5 in human) and H2-Ab1 (HLA-DQB1 in
human) were significantly down-regulated in ER stress
condition (Fig. 4) and HLA-DRB5 and HLA-DQB1 are
negatively regulated by the trans-regulatory hotspot
(rs2269423) associated with DD signature in human
(Fig. 3b). Together, our data suggest that the regula-
tory hotspot nearby ZFP57 and MHC class II genes
may develop ER stress condition by regulating ER
stress-s and UPR-related genes.

Discussion
The number of patients with DD has continued to in-
crease from 1118 in 2007 to 3280 in 2014 in the United
States [54]. A surgical treatment including fasciotomy
with or without dermofasciectomy is the current treat-
ment option for DD [47]. However, surgical treatment
has a high recurrence rate [54]. It has been reported that

Fig. 3 Identification of trans-regulatory hotspots associated with DD signature. a The GAMMA results applied to GTEx dataset using DD signature.
b Box plots of gene expression levels of eGenes by each trans-regulatory hotspot between the different genotype groups
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collagenase clostridium histolyticum (CCH) injection ap-
proved by Food and Drug Administration in 2010 is
more effective and safer treatment option than surgical
strategy, although the long-term recurrence rate of this
CCH injection approach has not been fully determined
yet [47]. Understanding the pathogenesis of DD is im-
portant to find out novel nonsurgical approach for DD
treatment.

Although a recent study showed that DD is not a disease
limited to European descent anymore [4], DD is still not
commonly found in African Americans and Asians than in
Europeans [55]. A total of 6 datasets were found in the
public database (Table 1), due to the rareness of the
disease. We carried out WGCNA to find co-expression
modules based on Pearson correlation for gene expres-
sion similarities of DD. To construct the co-expression

Table 2 List of significant associations with DD signature. The lowest GAMMA P for SNP was listed among multiple SNP related to
one eGene (See also Additional file 4)

Chr Position rs ID GAMMA
P value

eGenes (q value < 0.05)

Gene Symbol Gene Name Effect size (beta) Gene Type

3 49,769,419 rs62262722 1.4E-05 AMT aminomethyltransferase −0.16 protein coding

FAM212A family with sequence similarity 212 member A 0.26 protein coding

49,858,661 rs55997059 1.7E-05 WDR6 WD repeat domain 6 0.20 protein coding

49,898,318 rs62260755 2.4E-05 RBM6 RNA binding motif protein 6 −0.28 protein coding

6 30,500,730 rs148983519 3.8E-05 HCG9 HLA complex group 9 (non-protein coding) 1.11 lincRNA

30,642,417 rs201344092 1.1E-05 ZFP57 ZFP57 zinc finger protein 1.44 protein coding

30,664,568 rs58368675 2.2E-05 HLA-G major histocompatibility complex, class I, G 1.34 protein coding

32,145,707 rs2269423 1.2E-05 HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1 −0.44 protein coding

HLA-DRB5 major histocompatibility complex, class II, DR beta 5 −0.41 protein coding

HLA-DQB2 major histocompatibility complex, class II, DQ beta 2 0.46 protein coding

HLA-DQB1 major histocompatibility complex, class II, DQ beta 1 −0.51 protein coding

HLA-DRB1 major histocompatibility complex, class II, DR beta 1 −0.42 protein coding

HLA-DQB1-AS1 HLA-DQB1 antisense RNA 1 −0.54 antisense

12 9,799,363 rs58481733 4.4E-05 DDX12P DEAD/H-box helicase 12, pseudogene −0.57 pseudogene

15 40,374,582 rs73390668 2.9E-05 SRP14-AS1 SRP14 antisense RNA1 (head to head) −0.31 lincRNA

77,312,826 rs16968627 4.4E-05 RP11-797A18.4 RP11-797A18.4 −0.55 lincRNA

Fig. 4 A Heatmap showing gene expression levels of eGene using microarray data derived from ER stress-inducing agent (tunicamycin) treated
MEFs. Color bars give information on tunicamycin treatment condition, DEGs, and direction of effect of SNP. Mouse gene symbol (human gene
symbol) was represented by row names of the heatmap
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network, we used GSE75152 which is the largest data-
set used in this study (Table 1). Because WGCNA was
performed based on Pearson correlation, more samples
could lead to more robust the results [56]. We used
signed WGCNA that created biologically meaningful
modules than unsigned WGCNA [12]. After identifying
co-expressed modules, module enrichment analysis was
carried out. The red module genes were enriched in all
5 datasets (Fig. 2a and b) although the datasets were
heterogeneous, consisting of two types of tissue sources
and different microarray platforms with small sample
size. The results suggested that red module genes were
representative and robust genes for DD. Moreover, the
WGCNA may tend to classify DEGs into certain mod-
ules due to the higher between-group variance which
can translate to stronger correlations. That is why only
red module was significant in the five independent
datasets. The pre-filtering based on top 5000-most
expressed microarray probes and limitation of 50 gene
size of the modules were used for WGNCA. The prefilter-
ing for reducing noise and the minimizing module size for
module functional annotation both seemed to be appro-
priate because the red module genes were enriched in the
biological process of unfolded protein-induced ER stress,
which was not emphasized in previous studies.
GAMMA is a multiple-phenotype analysis method that

examines an association between each SNP and multiple
phenotypes or gene expression levels, while simultan-
eously correcting for population stratification utilizing lin-
ear mixed model [25]. We identified a total of 10
regulatory hotspots in muscle eQTL dataset of GTEx pro-
ject using gene expression levels of DD signature. The
identified regulatory hotspots included HLA-DQA1,
HLA-DQB1, HLA-DQB2, HLA-DRB1, HLA-DRB5, and
ZFP57. HLA is known to be associated with various hu-
man diseases, including rheumatoid arthritis, multiple
sclerosis, Crohn’s disease, type 1 diabetes (T1D), and HIV
[57]. Intriguingly, HLA regions are known as the strongest
genetic determinants in T1D, contributing up to 50% of
the genetic risk to T1D susceptibility [58]. Diabetes is one
of the known risk factors in DD and has been reported
that approximately 20% of diabetic patients have DD [59].
DD is also involved in a constellation of musculoskeletal
diseases affecting hand associated with diabetes [60]. T1D
and DD seem to be inherited together rather than diabetes
being an etiological risk factor for DD. Along with a previ-
ous report on association of HLA-DRB1 and HLA-DQB1
with T1D patients [61], it can be considered that having
altered SNPs in HLA region might lead to genetic suscep-
tibility in both DD and T1D, thus explaining the associ-
ation of these two conditions.
Recently, ZFP57 has been identified as a candidate

gene contributing to HLA associated diseases including
cancers, autoimmune diseases, and HIV [62]. ZFP57 is

located in HLA region of chromosome 6 and acts as a
transcriptional factor that trans-regulates genomic im-
printing, especially during development [63, 64]. Not-
ably, transient neonatal diabetes (TND), an early onset
T1D, are primarily caused by aberrant expression of
imprinted genes due to mutations in ZFP57 [65].
To date, alterations in extracellular matrix proteogly-

can organization and collagen overproduction are the
two main mechanisms proposed for the development of
DD [9, 66]. Apart from these known pathological factors,
we newly found the involvement of ER stress in DD. Ac-
cumulation of unfolded or misfolded proteins in ER
under various pathophysiological conditions is defined
as ER stress. ER stress and ER stress-responsive genes
have been implicated in numerous diseases including
neurological diseases, cancers, and diabetes [43]. It has
been reported that expression of HLA molecules is de-
creased under ER stress conditions such as palmitate or
glucose starvation and tunicamycin treatment [67]. Pre-
vious microarray results from MEFs identified that ex-
pression of ZFP57 is altered after treatment with ER
stress inducer [51]. Based on previous studies and our
results, it can be concluded that ER stress-induced tran-
scriptional changes in ZFP57 and HLA molecules are
implicated in the disease phenotype of DD. Thus, an
in-depth investigation on the connection of ER stress
with DD, possibly in relation to ZFP57 and HLA, is re-
quired in order to understand pathophysiology of DD.
Because DD was classified as a rare disease amongst

Eastern Asians, there were substantial difficulties in study-
ing DD until recently. In such cases, an integrative analysis
using genomic and transcriptomic data can serve as a
powerful tool to study the pathogenesis, individual suscep-
tibility, and progression of the disease. This study has some
limitations. First, a further experimental step is needed to
validate the identified targets. Second, we only focused on
skeletal muscle data when identifying regulatory hotspots
although subcutaneous fat and fibroblast are also known to
be related to DD [47]. Despite these limitations, we suc-
cessfully identified robust genetic markers of DD, suggest-
ing that they may be potential therapeutic targets.

Conclusions
DD is a fibroproliferative disorder in thickening and con-
tracting palmar fascia with unknown etiopathogenesis. In
this study, we identified DD signature and potential cause
of regulatory hotspots for DD based on integrative gen-
omic and transcriptomic analysis using multiple phenotype
regression analysis and WGCNA. Module enrichment ana-
lysis and classification analysis was used to determine the
robustness of the identified markers. Finally, we identified
MHC class II genes and ZFP57 were closely related to ER
stress and UPR, suggesting that these genetic markers
might be potential therapeutic targets for DD.
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Additional files

Additional file 1: Identification of soft-thresholding power for co-
expression network construction. (A) An analysis of scale free topology
for picking an appropriate soft-thresholding power. (B) An analysis of the
mean connectivity for picking an appropriate soft-thresholding power.
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