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Abstract

Background: In genome-wide association study (GWAS), conventional interaction detection methods such as
BOOST are mostly based on SNP-SNP interactions. Although single nucleotides are the building blocks of human
genome, single nucleotide polymorphisms (SNPs) are not necessarily the smallest functional unit for complex
phenotypes. Region-based strategies have been proved to be successful in studies aiming at marginal effects.
Methods: We propose a novel region-region interaction detection method named RRIntCC (region-region
interaction detection for case-control studies). RRIntCC uses the correlations between individual SNP-SNP interactions
based on linkage disequilibrium (LD) contrast test.
Results: Simulation experiments showed that our method can achieve a higher power than conventional SNP-based
methods with similar type-I-error rates. When applied to two real datasets, RRIntCC was able to find several significant
regions, while BOOST failed to identify any significant results. The source code and the sample data of RRIntCC are
available at http://bioinformatics.ust.hk/RRIntCC.html.
Conclusion: In this paper, a new region-based interaction detection method with better performance than
SNP-based interaction detection methods has been proposed.
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Background
Genome-wide association study (GWAS) has served as
an important tool to investigate the relationship between
genomic variants and human traits [1]. The genetic vari-
ants investigated in GWAS are mainly single nucleotide
polymorphisms (SNPs). SNPs are single nucleotide vari-
ants whose genotypes are not fixed in the population
and exhibit diversities among different individuals. Most
GWAS analysis protocols follow the single-locus test pro-
cedures aimed at detecting the marginal effects of SNPs
[2, 3]. However, it’s well recognized that genetic variants
work synergistically through certain pathogenic pathways
[4]. The interactions among SNPs are not guaranteed to
be discovered by marginal effect detection, especially for
SNPs with weak marginal effects but strong interaction
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effects [5]. Many methods have been developed to address
this problem [4, 6], including PLINK [7], BOOST [5],
MDR [8], ReliefF [9], BEAM [10], and LD contrast
test [11].

An important problem in SNP-SNP interaction detec-
tion is the stringent threshold when considering multiple
testing correction. For marginal effect detection, a SNP
can only be considered as significant when its correspond-
ing p-value is at the order of 10−8 (assuming we use
Bonferroni correction). In SNP-SNP interaction detec-
tion, the threshold has to go down further to the order
of 10−14. As a result, interactions with weak or moderate
effect sizes might remain undiscovered.

In this paper, we proposed a region-based interaction
detection method to address this problem. Region-based
methods have been successful in marginal effect detec-
tion [12, 13]. The basic idea is to group the effects of
nearby SNPs together and test their aggregation rather
than investigating the elements separately. The benefit
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is two-folds: Firstly, the size and the number of regions
are controllable. We can achieve the balance between the
resolution of the results and the statistical significance
threshold after Bonferroni correction. Secondly, the effect
size might be enhanced by taking the whole region into
account. SNPs are the basic genomic units. Neverthless,
they are not necessarily the functional units of diseases.
Different SNP mutations in a gene can all lead to changes
of protein functions. Therefore, grouping different SNPs
together provides a possible alternative.

To group different SNP-SNP pairs together, the key is
to quantitatively measure and account for the relation-
ships between different SNP-SNP pairs. To the best of our
knowledge, no existing method is available to test region-
region interactions for case-control studies, where we only
have two groups of people: healthy people (controls) and
people with the investigated disease (cases). Although Ma
et al. [14] proposed a region-based interaction detection
method to analyze continuous traits based on the linear
regression model, it is not easy to extend their method
to the case-control setting due to the difficulty of deriv-
ing the covariances of test statistics under the logistic
regression model that is commonly used in case-control
studies. In this paper, we use the LD contrast test method
instead of the logistic regression in interaction detection.
We derive the correlation coeffcients of the correpsond-
ing SNP-SNP interaction test statistics. Then we further
extend region-based methods to the case-control setting
by accounting for the covariances between SNP-based test
statistics. We name this method RRIntCC (region-region
interaction detection for case-control studies). Experi-
ment results illustrate that RRIntCC achieves a higher
power than conventional SNP-SNP interaction detection
methods at the same type-I-error rate.

Methods
Here we propose a novel region-based interaction detec-
tion method for genome-wide case-control studies that
utilizes SNP-based interaction test statistics and their
covariances. LD contrast test is adopted to measure SNP-
based interaction effects. We derive the covariance of LD
contrast test statistics, which enables a robust aggrega-
tion of SNP-SNP interactions within a region pair. The
determination of regions comes from gene definitions or
BOOST results.

Genomic data formats
There are two alleles for almost every base pair (bp)
position in the human genome, one from the maternal
chromosome and the other from the paternal chromo-
some. A combination of the two alleles is denoted as a
genotype of this bp position. SNPs are defined as the base
pairs that could exhibit different genotype values in dif-
ferent individuals. Normally a SNP only has two possible

allele values in the population, one major allele with a
higher probability (denoted as B), and one minor allele
(denoted as b). Correspondingly, there exist three genoyt-
pes for a typical SNP, i.e., BB, Bb and bb, where Bb is
called a heterogeneous genotype and the rest two are
called homogeneous genotypes. GWAS uses microarrays
to generate SNP genotype data. In SNP data analysis, we
use 0/1/2, 0/1/1, and 0/0/1 for BB/Bb/bb as the encod-
ing scheme for additive, dominant, and recessive genetic
models, respectively. A more flexible strategy is to esti-
mate the effects of three genotypes independently, at
the price of an increased degree of freedom. Allele data
could also be used for analysis, with 0/1 as the numerical
values of major/minor alleles. However, statistical infer-
ence needs to be performed in advance to retrieve allele
information from original genotype data, which is called
haplotype phasing in the GWAS community. In this paper,
we focus on the analysis of genotype data.

LD contrast test for SNP interaction detection
Current interaction detection methods are mainly based
on the deviation from additive effect by assuming a
linear or logistic regression model. Nevertheless, this
approach is not necessarily the most powerful method due
to the uncertainty of underpinning biochemical mecha-
nisms. Linkage disequilibrium (LD) contrast test provides
another valuable perspective to investigate this problem.
Empirical studies have shown that LD contrast test can
achieve higher power than logistic regression under cer-
tain disease models for case-control studies [6]. In this
paper, LD contrast test is adopted to generate SNP-based
interaction test statistics because of its clear statistical
meaning and mathematical simplicity.

LD represents the statistical association between two
genetic loci with allele values, defined as the deviation
from the independence of two SNPs (A and B)

LD = p(A, B) − p(A)p(B). (1)

To avoid the ambiguity caused by haplotype phasing,
composite LD (CLD) which only requires genotype data
is commonly used to approximate LD. CLD is defined
as [15]:

CLD = pAB + p′
AB − 2p(A)p(B)

with
{

pAB = PAB
AB + 1

2
(
PAB

Ab + PAB
aB + PAB

ab
)

p′
AB = PAB

AB + 1
2
(
PAB

Ab + PAB
aB + PaB

Ab
) , (2)

where the subscript and the superscript represent two
gametes that are passed to offsprings and P denotes
the probability of the specific gamete combination. CLD
could be regarded as a simplified version of phasing to
facilitate the analysis based on genotype data. The statisti-
cal properties of CLD have been well studied [16, 17]. One
important fact is that CLD corresponds to the sample cor-
relation coefficient r̂ of genotype values under the additive
model,
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r̂genotype = CLD√
p(1 − p) + DA

√
q(1 − q) + DB

≈ CLD√
p(1 − p)

√
q(1 − q)

,

(3)

where p = p(A), q = p(B), DA and DB represent Hardy-
Weinberg disequilibriums, i.e. DA = pAA − p2(A), DB =
pBB − p2(B). DA and DB are nearly 0 in GWAS datasets
after quality control.

A similar result holds for the original LD and allele
values,

r̂allele = LD√
p(1 − p)

√
q(1 − q)

. (4)

Therefore, CLD could also be viewed as an approximation
of LD by using the correlation coefficient of 0/1/2 geno-
type data under the addtive model to replace that of 0/1
allele values, at the price of implicitly conducting phasing
with equal probabilities for two-allele combinations.

Suppose two SNPs work synergistically to contribute to
the same pathways, they are less likely to be separated
during recombination and will be inherited together to
offsprings in the case group. As a result, the SNP-SNP
pattern should be different between patients and healthy
people. Therefore, checking the difference of LD patterns
between cases and controls provides an alternative way to
detect interaction. LD contrast test was proposed to sta-
tistically test this difference [11]. The test statistic based
on CLD has the following form:

χ2 =
( ˆCLDcase

AB − ˆCLDcontrol
AB

)2

Var
( ˆCLDcase

AB

)
+ Var

( ˆCLDcontrol
AB

) , (5)

which follows a 1-df χ2 distribution under the null
hypothesis that there is no LD difference between cases
and controls.

Covariance between SNP interactions
The key issue in the aggregation of individual SNP-SNP
interaction effects is the correction of inflated effect sizes
caused by the correlations among individual test statistics.
The fact that LD is actually the sample covariance of two
SNPs is leveraged to derive the correlation coefficients of
LD contrast test statistics.

Suppose two SNP pairs (X, Y ) and (U , V ) have interac-
tions with contrast LDs{

�LDXY = ˆcov(X, Y |case) − ˆcov(X, Y |control)
�LDUV = ˆcov(U , V |case) − ˆcov(U , V |control) .

(6)

The corresponding LD contrast test statistics read:

TXY = � ˆLDXY√
Var(� ˆLDXY )

and TUV = � ˆLDUV√
Var(� ˆLDUV )

.

(7)

The covariance of the two test statistics reads:

cov(TXY , TUV ) ≈ cov(� ˆLDXY , � ˆLDUV )√
cov(� ˆLDXY , � ˆLDXY )cov(� ˆLDUV , � ˆLDUV )

.

(8)

In GWAS, it’s commonly assumed that population sam-
ples are independent. Under this assumption, we can
derive the following theorems.
Theorem 1. The covariance of contrast LDs can be
decomposed into components from cases and controls sep-
arately,

cov(�LDXY , �LDUV ) =cov[ ˆcov(X, Y |case), ˆcov(U , V |case)]

+ cov[ ˆcov(X, Y |control), ˆcov(U , V |control)] .

(9)

Proof 1. �LD is the difference of the two sample covari-
ances in cases and controls. By the linear property of
covariance, cov(�LDXY , �LDUV ) can be decomposed into
four covariances of two sample covariances. Because indi-
viduals are assumed to be independent, the two terms
with one sample covariance from cases and the other from
controls are 0. Therefore, Theorem 1 holds.
Theorem 2. The covariance of sample covariances reads

cov
[ ˆcov(X, Y ), ˆcov(U , V )

] = 1
n

(
δ4 − δ2 + σ2 + τ2

n − 1

)
,

(10)

where

δ4 = E [(X − EX)(Y − EY )(U − EU)(V − EV )] ,
δ2 = cov(X, Y )cov(U , V ),
σ2 = cov(X, U)cov(Y , V ),
τ2 = cov(X, V )cov(Y , U).

Proof 2. The covariance of sample covariances can be
rewritten as

cov
[ ˆcov(X, Y ), ˆcov(U , V )

]

= cov

⎡
⎣ 1

2n(n−1)

n∑
i=1

n∑
j=1

(Xi − Xj)(Yi − Yj), 1
2n(n−1)

n∑
i=1

n∑
j=1

(Ui − Uj)(Vi − Vj)

⎤
⎦

= 1
4n2(n−1)2

n∑
j=1

n∑
j=1

n∑
k=1

n∑
l=1

cov
[
(Xi − Xj)(Yi − Yj), (Uk − Ul)(Vk − Vl)

]
.

(11)

We consider the following four conditions. (1) i = j or k = l.
(2) i �= j, i �= k, i �= l, j �= k, j �= l and k �= l. (3) i �= j and
{i = k, j = l or i = l, j = k}. (4) i �= j, k �= l, and {i = k or
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i = l or j = k or j = l}. The basic covariance unit in (11)
can be rewriten as

cov
{[

(Xi − EX) − (Xj − EX)
] [

(Yi − EY ) − (Yj − EY )
]

,
[(Uk −EU)−(Ul−EU)] [(Vk − EV ) − (Vl − EV )]} .

(12)

There are 2n3 − n2, n(n − 1)(n − 2)(n − 3), 2n(n −
1) and 4n(n − 1)(n − 2) items for the four conditions
respectively. We can further separate (12) into 16 compo-
nents and calculate their values under different conditions.
The derivation is straightforward. Our conclusion thus
holds.
Theorem 3. The sample mean of (X − EX)(Y − EY )(U −
EU)(V − EV ) is an asympototically unbiased estimator
of δ4,

E

⎡
⎣ 1

n

n∑
i=1

⎛
⎝Xi − 1

n

n∑
j=1

Xj

⎞
⎠
⎛
⎝Yi − 1

n

n∑
j=1

Yj

⎞
⎠

⎛
⎝Ui − 1

n

n∑
j=1

Uj

⎞
⎠
⎛
⎝Vi − 1

n

n∑
j=1

Vj

⎞
⎠
⎤
⎦

=
(

1− 4
n

+ 6
n2 − 3

n3

)
δ4+

[
2(n − 1)

n2 − 3(n − 1)

n3

]
(δ2 + σ2+τ2)

n→∞−−−→ δ4.

(13)

Proof 3. Equation (13) can be rewritten as

n∑
i=1

E

⎧⎨
⎩
⎡
⎣(Xi − EX) −

⎛
⎝1

n

n∑
j=1

Xj − EX

⎞
⎠
⎤
⎦

⎡
⎣(Yi − EY ) − (

1
n

n∑
j=1

Yj − EY )

⎤
⎦

⎡
⎣(Ui − EU) −

⎛
⎝1

n

n∑
j=1

Uj − EU

⎞
⎠
⎤
⎦

⎡
⎣(Vi − EV ) −

⎛
⎝1

n

n∑
j=1

Vj − EV

⎞
⎠
⎤
⎦
⎫⎬
⎭ .

(14)

Again (14) can be separated into 16 components which are
solvable under the independence assumption. The rest of
the proof is omitted due to page limit.

By integrating (8-13), the covariance of the LD contrast
test statistics can be estimated. Note that the variance
of the standardized LD contrast test statistic is approxi-
mately 1,

Var(TXY )=Var

⎡
⎢⎣ � ˆLDXY√

Var(� ˆLDXY )

⎤
⎥⎦ ≈ Var(� ˆLDXY )

Var(� ˆLDXY )
= 1.

(15)

Therefore, the covariance of TXY and TUV can be reduced
to the corresponding correlation coefficients,

corr(TXY , TUV ) ≈ cov(TXY , TUV ). (16)

The test statistic for region-based interactions
To aggregate SNP-SNP interaction test statistics, a min-
imum p-value based method is adopted. In detail, we
assume a multivariate normal distribution MVN(0, �) for
the observed test statistics zi, i = 1, 2, ..., k1k2, where k1
and k2 are the number of SNPs in the two regions. The
covariance matrix � is estimated using (8-13).

Then the region-based p-value is defined as the proba-
bility that we observe a value that is larger than the largest
absolute value of SNP-SNP interaction test statistics under
MVN(0, �). Denote the absolute value of the test statistic
related to the minimum p-value as T :

T =
∣∣∣∣�−1

(
min(pi, i = 1, 2, .., k1k2

2

)∣∣∣∣ . (17)

Then the p-value for this region-region interaction reads,

pregion-region = Pr [max(|zi|, i = 1, 2, .., k1k2)

≥ T | zi ∼ MVN(0, �)]
= 1 − Pr [max(|zi|, i = 1, 2, .., k1k2)

< T | zi ∼ MVN(0, �)]
= 1 − Pr [{|zi| < T , i = 1, 2, .., k1k2}| zi

∼ MVN(0, �)] .
(18)

In this paper, We use the results of GBOOST [18], the
GPU version of BOOST, to specify candidate regions.
The regions could also be selected by checking poten-
tial pathogenic pathways or protein-protein interaction
networks.

Results
We conducted simulations under various settings to
examine whether the proposed method can correctly con-
trol type-I-error rates and outperform SNP-based meth-
ods in terms of statistical power. To mimic real LD pat-
terns, we picked all genotyped SNPs from two genomic
regions (A and B) with intensive LD patterns in the
dataset from Myocardial Infarction Genetics Consortium
(MIGen) [19]. Region A is of size 157.874 kbp, located in
chromosome 1, with 34 genotyped SNPs inside and 9 tag
SNPs selected by haploview. Region B is of size 267.528
kbp, located in chromosome 3, with 50 genotyped SNPs
and 10 tag SNPs.

We developed the software RRIntCC in C++.
The source code of RRIntCC is available at http://
bioinformatics.ust.hk/RRIntCC.html. The results of
RRIntCC and SNP-based methods were compared
for empirical power experiments. We further applied

http://bioinformatics.ust.hk/RRIntCC.html
http://bioinformatics.ust.hk/RRIntCC.html
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RRIntCC to MIGen and a renal complication dataset
of type 2 diabetes (T2D) patients. RRIntCC reported
several significant region pairs in both datasets while
conventional SNP-based interaction detection tools failed
to identify any SNP pairs.

Type-I-Error rate control
For type-I-error rate evaluation, we randomly selected
1000, 2000, 3000, 4000, and 5000 samples from MIGen
dataset and maintained their genotype values to pre-
serve the LD patterns. Phenotype values for the randomly
picked samples were assigned using a Bernoulli distribu-
tion with equal probabilities for case and control disease
status. 1000 simulations were run for each sample size
to determine the empirical type-I-error rates under two
commonly used significance levels, i.e. 0.05 and 0.01. We
repeat the experiment 20 times to examine the robustness
of empirical type-I-error rates. As shown in Fig 1, simu-
lations of empirical type-I-error rates indicated that the
results of RRIntCC are not inflated at given significance
levels.

Empirical statistical power
For power evaluation, phenotype values were generated
using the public software GWASimulator [20], which uses
haplotype information to simulate LD structure and pro-
duces phenotype values according to preset disease preva-
lence, causal SNPs and interactions with certain effect
sizes. In total, 12084 haplotypes of these two regions were
generated by PLINK [7]. We performed 1000 simulations
for 1000, 2000, 3000, 4000, and 5000 samples, respec-
tively. Results of original LD contrast test (LDCont) and
GBOOST were also given for comparison.

GWASimulator simulated genotypes of all SNPs in the
two regions, while only the tag SNPs were analyzed. Even

though non-tag SNPs could be selected as causal SNPs,
we can still observe interaction effects between tag SNPs
due to LD between tag SNPs and non-tag SNPs. We
designed six experimental settings with different tag sta-
tus and allele frequencies for the causal interacted SNP
pair. The effect sizes were determined by the relative
risk ratio. The increment of relative risk ratio by observ-
ing one disease allele was set as

√
2, so that the ratios

for genotype combinations 1/1, 1/2, 2/1, and 2/2 were 2,
2
√

2, 2
√

2, and 4, respectively. The results are summa-
rized in Table 1. Under all settings, RRIntCC achieves
a higher power than LDCont. GBOOST outperforms
RRIntCC and LDCont when the MAFs of both causal
SNPs are large. However, when the MAF of even one
causal SNP goes down, the power of GBOOST drops
dramatically and RRIntCC is the most powerful method
under such settings. Even in the cases where both MAFs
are large, RRIntCC is still valuable when sample size
is small. The results support the use of our region-
based interaction detection method in GWAS studies,
especially considering that GWAS datasets usually have
quite limited sample sizes compared to the huge number
of SNPs.

Experiment using real datasets
We applied our method to the dataset of Myocardial
Infarction Genetics Consortium (MIGen) with 649370
genotyped SNPs and 2967/3075 cases/controls, and the
renal complication dataset collected in Hong Kong with
1257031 SNPs and 882/2231 cases/controls. Current com-
putation capability cannot support whole-genome inter-
action analysis using LD contrast test. Instead, GBOOST
[18] was first used as probes to generate region-pairs qfor
region-based interaction analysis. We adopted 5 × 10−10

as a suggestive p-value threshold to screen out SNP pairs

Fig. 1 The boxplots of empirical type-I-error rates at the significant levels of 0.05 (black) and 0.01 (blue)
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Table 1 Empirical statistical power results

1000 2000 3000 4000 5000

19(0.424) ∼28(0.414)

RRIntCC 0.247 0.564 0.806 0.913 0.975

LDCont 0.205 0.524 0.778 0.888 0.968

GBOOST 0.240 0.624 0.872 0.961 0.994

19(0.424) ∼22*(0.413)

RRIntCC 0.255 0.545 0.814 0.924 0.979

LDCont 0.214 0.489 0.793 0.905 0.969

GBOOST 0.218 0.609 0.885 0.968 0.998

15(0.067) ∼22*(0.413)

RRIntCC 0.244 0.548 0.772 0.880 0.964

LDCont 0.188 0.496 0.724 0.849 0.953

GBOOST 0.058 0.211 0.411 0.559 0.731

23*(0.067) ∼22*(0.413)

RRIntCC 0.307 0.631 0.882 0.954 0.986

LDCont 0.264 0.574 0.856 0.942 0.975

GBOOST 0.088 0.272 0.548 0.713 0.838

15(0.067) ∼25(0.094)

RRIntCC 0.116 0.266 0.398 0.551 0.667

LDCont 0.072 0.204 0.323 0.480 0.612

GBOOST 0.012 0.060 0.108 0.224 0.285

23*(0.067) ∼25(0.094)

RRIntCC 0.110 0.282 0.502 0.638 0.790

LDCont 0.081 0.220 0.428 0.576 0.729

GBOOST 0.025 0.064 0.161 0.259 0.397

The indices are the order of SNPs in their corresponding regions, * means this SNP is a tag SNP, and the values in the brackets denote minor allele frequencies (MAFs).

that are unlikely to be associated. The remaining SNP
pairs were clumped into regions with size 200 kbp, which
is roughly the size of typical genes. After identifying the
ranges of clumped regions, all genotyped SNPs in MIGen
dataset were mapped into these regions. For computation
efficiency, the maxmium number of SNPs in each region
was set to be 31, so that the total number of SNP-SNP
interactions within each region pair was controlled below
1000. The choice of this number is arbitrary. In case that
the real number of SNPs inside a region is larger than
this limit, we randomly choose 31 SNPs to represent this
region.

Table 2 lists the top four SNP pairs found by GBOOST
in the MIGen dataset and their corrected family-wise
error rates (cFWER). None of them can pass the
Bonferroni-corrected p-value threshold. Moreover, even
the smallest p-value is 100 times larger than the thresh-
old. Table 3 lists the top four region pairs found by
RRIntCC. One region pair, chr3: [177577480, 177777480]
∼ chr7: [81695481, 81895481], passes the Bonferroni-
corrected p-value threshold. The second and third region
pairs share the same region in chr3 and overlap in the
region in chr20, which indicates that these two region
pairs actually refer to only one region pair with size
larger than the preset 200 kbp. Therefore, we further
analyze the region interaction between chr3: [187498383,
187698383] with size 200 kbp and chr20: [39109460,
39444799] with size 335.339 kbp, leading to a cFWER of

0.0536. Multiple genes, including CACNA2D1, DGKG,
AK057298, TOP1, BC035080, PLCG1, ZHX3, LPIN3,
and EMILIN3, are located in these two region pairs.
CACNA2D1 has been found to be involved in cardiomy-
opathy pathway [21, 22]. Besides, ZHX3 is reported to
be associated with left ventricle wall thickness [23]. Both
ZH3 and EMILIN3 are reported to be associated with
resting heart rate [24]. The regions identified by RRIntCC
might provide clues for factors affecting myocardial
infarction risks.

We also applied GBOOST and RRIntCC to the
renal complication dataset. GBOOST has no signifi-
cant finding, while RRIntCC found one region pair,
chr12: [103040398, 103240398] and chr15: [33102602,
33302602], with a cFWER of 0.00382. Two genes, PAH
and FMN1, are involved in this region pair. Both PAH and
FMN1 were reported to be related to kidney disorders

Table 2 Top four SNP pairs found by GBOOST in the MIGen
dataset

SNP pairs p-value cFWER

rs4678428 (chr3) ∼ rs9961565 (chr18) 2.588 × 10−11 > 1

rs17626606 (chr5) ∼ rs11190346 (chr10) 2.679 × 10−11 > 1

rs11925209 (chr3) ∼ rs1501909 (chr5) 3.006 × 10−11 > 1

rs6930292 (chr6) ∼ rs114313 (chr6) 3.026 × 10−11 > 1
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Table 3 Top four region pairs found by RRIntCC in the MIGen
dataset

region pairs p-value cFWER

chr3: [177577480, 177777480] ∼
chr7: [81695481, 81895481]

1.652 × 10−10 0.0186

chr3: [187498383, 187698383] ∼
chr20: [39244799, 39444799]

5.363 × 10−10 0.0603

chr3: [187498383, 187698383] ∼
chr20: [39109460, 39309460]

7.497 × 10−10 0.0843

chr2: [184236258, 184436258] ∼
chr13: [29010198, 29210198]

7.835 × 10−9 0.8814

[25][26], which implies a potentially target pathway for the
study of renal complications in patients with T2D.

Discussion
There still remain several issues that could be improved
in our method. First, the computation complexity of cal-
culating the covariance matrix is O(n2), which is unac-
ceptable for whole genome analysis. Second, the genomic
resolution has been sacrificed by replacing SNPs with
regions. One potential remedy is to extend statistical fine
mapping methods for interaction detection to determine
the leading SNP pairs within the significant region pairs.

Conclusions
In this paper, we proposed a region-based interaction
detection method named RRIntCC. We derived the cor-
relation coefficients between SNP-SNP interaction test
statistics by using LD contrast test. We aggregated SNP-
SNP interaction test statistics by assuming a multi-variate
normal distribution with the estimated covariance matrix
to account for the potential intensive LD pattern within
the regions. By using region-based strategy, we reduced
the total number of tests and were therefore able to use
a less stringent Bonferroni-corrected p-value threshold.
Simulation results support that our region-based strat-
egy outperforms SNP-based method in terms of statistical
power at similar type-I-error rates.
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