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Abstract

Background: Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. Intrahepatic metastasis, such
as portal vein tumor thrombosis (PVTT), strongly indicates poor prognosis of HCC. But now, there are limited
understandings of the molecular features and mechanisms of those metastatic HCCs.

Methods: To characterize the molecular alterations of the metastatic HCCs, we implemented an integrative analysis
of the copy number variations (CNVs), DNA methylations and transcriptomes of matched adjacent normal, primary
tumor and PVTT samples from 19 HCC patients.

Results: CNV analysis identified a frequently amplified focal region chr11q13.3 and a novel deletion peak
chr19q13.41 containing three miRNAs. The integrative analysis with RNA-seq data suggests that CNVs and
differential promoter methylations regulate distinct oncogenic processes. Then, we used individualized differential
analysis to identify the differentially expressed genes between matched primary tumor and PVTT of each patient.
Results show that 5 out of 19 studied patients acquire evidential progressive alterations of gene expressions (more
than 1000 differentially expressed genes were identified in each patient). While, another subset of eight patients
have nearly identical gene expressions between the corresponding matched primary tumor and PVTT. Twenty
genes were found to be recurrently and progressively differentially expressed in multiple patients. These genes are
mainly associated with focal adhesion, xenobiotics metabolism by cytochrome P450 and amino acid metabolism.
For several differentially expressed genes in metabolic pathways, their expressions are significantly associated with
overall survivals and vascular invasions of HCC patients. The following transwell assay experiments validate that they
can regulate invasive phenotypes of HCC cells.

Conclusions: The metastatic HCCs with PVTTs have significant molecular alterations comparing with adjacent
normal tissues. The recurrent alteration patterns are similar to several previously published general HCC cohorts, but
usually with higher severity. By an individualized differential analysis strategy, the progressively differentially
expressed genes between the primary tumor and PVTT were identified for each patient. A few patients aquire
evidential progressive alterations of gene expressions. And, experiments show that several recurrently differentially
expressed genes can strongly regulate HCC cell invasions.
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Background
Hepatocellular carcinoma (HCC) is one of the most
common cancer types worldwide. More than 700,000
people were diagnosed yearly [1]. Of them, intrahepatic
metastasis, such as portal vein tumor thrombosis
(PVTT), is a strong indication of poor prognosis [2].
Characterizing the molecular alterations of the meta-
static HCCs with PVTTs is important for understanding
the molecular mechanisms during HCC progression and
metastasis. Previous studies mainly focused on single
molecular layer, such as somatic mutations [3], gene ex-
pressions [4, 5] or miRNA expressions [6]. Integrative
analysis of multiple molecular levels can overcome the
potential bias of any single level information and provide
a broader understanding of the molecular subtyping and
the driving molecular alterations of cancer [7–10]. Sev-
eral recent integrative molecular projects of HCC ren-
dered more novel systems biological insights than the
previous single level studies [11–14]. In this study, we
systematically examined the copy number variations
(CNVs), DNA methylations, and transcriptomes of
matched adjacent normal tissues, primary tumors, and
portal vein tumor thrombi (PVTTs) from 19 HCC pa-
tients. Based on the integrative molecular profiles, we
identified a set of recurrent CNVs, abnormal DNA
methylations, and candidate drivers of the metastatic
HCCs. We observed that most arm-level CNVs and focal
amplified regions are consistent with the previous co-
horts, but several focal regions (such as chr11q13.3) are
much prevalent in our metastatic cohort.
Another important question is whether there exist

progressive molecular alterations between primary tu-
mors and matched PVTTs. Ye et al. found that the gene
expression patterns of metastatic lesions are nearly iden-
tical to their corresponding primary HCCs [4]. Similar
results are observed for somatic mutations and miRNA
expressions: Huang et al. found that more than 94%
somatic mutations are shared by primary tumor and
PVTTs [3], and Wong et al. reported that no obvious
differences of miRNA expressions could be found be-
tween primary HCCs and the venous metastases [6]. As
these previous studies, computational analysis shows
that the inter-patient differences are much larger than
the intra-patient heterogeneities between matched pri-
mary tumor and PVTT in most cases. Few consistent
molecular alterations can be found between primary tu-
mors and matched PVTTs. However, we observed that a
few patients may have progressive molecular alterations
according to the clustering analysis. So, we used a novel
individualized differential analysis strategy to identify the
progressively differentially expressed genes between
matched primary tumor and PVTT for each patient. Re-
sults show that different patients have very different
numbers of progressively differentially expressed genes

and five patients even have more than 1000 differentially
expressed genes. Twenty genes, mainly associated with
focal adhesion, xenobiotics metabolism by cytochrome
P450, and amino acid metabolism, are found to be re-
currently differentially expressed in multiple patients.
The following validation experiments suggest that these
genes can regulate invasive phenotypes of liver-derived
cell lines.

Methods
Clinical samples
All samples used in this study were obtained from pa-
tients undergoing surgery for HCC at the Eastern Hepa-
tobiliary Surgery Hospital (Shanghai, China). Patient
samples were obtained following informed consent ac-
cording to an established protocol approved by the Eth-
ics Committee of Eastern Hepatobiliary Surgery
Hospital. Frozen adjacent normal tissues, primary tu-
mors, and PVTTs were derived from 19 HCC patients
(median age 49, 17 male, 18 HBV positive, and no HCV
infection detected). The majority of the primary tumors
are larger than 5 cm (15 patients) and Edmondson-
Steiner histological grades are III or IV. Please see de-
tailed information in Additional file 1: Table S1.

Total RNA preparation
Samples were treated with 1 mL TRIzol reagent (Life
Technologies Cat.#15,596–026) according to manufac-
turer’s instructions. Nanodrop ND-1000 was used for
RNA density/purity detection. Agilent BioAnalyzer 2100
was used for RNA quality control.

Genomic DNA extraction
DNeasy Blood & Tissue Kit (QIAGEN Cat.#69,504) and
RNase A (QIAGEN Cat.#19,101) were used for genomic
DNA extraction according to manufacturer’s
instructions.

CNV analysis
Affymetrix CytoScan HD was used for CNV analysis.
Raw CEL files were processed as segmentations files by
Nexus Copy Number v7.5 (BioDiscovery) with default
settings. Then, the segmentation files were used as in-
puts to GISTIC2 [15] with default parameters for analyz-
ing arm-level and focal CNVs. To identify the significant
variations, for arm-level CNVs, the cutoffs were set as
frequency ≥ 0.5 and z-score ≥ 1.5. For focal CNVs, we
used the default cutoffs as q-value < 0.05.

DNA methylation analysis
Illumina HumanMethylation450 BeadChip was used to
profile ~ 480,000 CpG methylation levels. Genome Stu-
dio was used to process .idat raw data into beta-values.
The data points with p-value > 0.05 were treated as
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outliers. FastDMA [16] was used to identify differentially
methylated sites and regions. A promoter region (from
upstream 1500 bp to downstream 500 bp around the
transcription start site) was identified as “hyper-methyl-
ated” with q-value <1e-4 and differential methylation
level (tumor minus adjacent beta-value) > 0.2 for at least
two promoter probes.

miRNA-seq analysis
Total RNA was treated mirVanaTM miRNA Isolation
Kit (Life Technologies Cat.#AM1560). 50 bp single-end
sequencing was performed on Illumina HiSeq2500 plat-
form. Raw reads were subjected to initial quality control
using FastQC. miRDeep2 [17] was used to remove
adapters and quantify miRNA expressions based on
miRBase annotations (release 20) [18].

RNA-seq analysis
rRNA depletion was conducted before RNA-seq library
preparation using TruSeq Stranded Total RNA Library
Prep Kit (Illumina Cat.#RS-122-2302). 100 bp paired-end
sequencing was performed on Illumina HiSeq2500 plat-
form. Raw reads were subjected to initial quality control
using FastQC. TopHat [19] and Subread [20] were used
for reads mapping and counting. EdgeR [21] was used to
identify differentially expressed genes (paired test q-
value < 0.01).

Integrative analysis with RNA-seq
Non-parameter Spearman’s correlation was used to
identify candidate genetic and epigenetic candidate
driver genes. In this study, the genes expressions and
CNV correlation > 0.4 or promoter DNA methylation
correlation < − 0.4 are used as the cutoffs to select can-
didate drivers.

Clustering analysis
LRAcluster [22] was used to visualize multi-omics data
in two-dimensional principal subspace. Discretized
CNVs, beta-values of promoter DNA methylation
probes, normalized counts of coding genes, and normal-
ized counts of miRNAs were used for the multi-omics
integrative analysis. R package pvclust [23] was used for
the hierarchical clustering.

Individualized differential analysis for sequencing data
(IDASeq)
IDASeq was developed for identifying individualized dif-
ferentially expressed genes (or lncRNAs) using paired
samples of each patient (see details in Additional file 2:
Methods). The expression data of adjacent normal tis-
sues were pooled to estimate the variations conditional
on different expression means σ2 ∣ μ. The difference and
mean of i-th gene of j-th patient’s paired primary tumor

and PVTT samples were calculated as dij ¼ epi; j−e
t
i; j and

μij ¼
epi; jþeti; j

2 , respectively. The statistical significance of

the difference was calculated as z-score zij ¼ dij
ffiffiffiffiffiffiffiffiffiffi

2σ2jμij
p (zij

follows standard normal distribution). The p-values, cal-
culated from z-scores, were adjusted for each patient
using BH correction. We set adjusted p-value < 0.1 to se-
lect differentially expressed genes for each patient. Then,
a permutation test was used to empirically calculate the
statistical significances of the recurrently differentially
expressed genes.

Third-party cohorts
Two cohorts, TCGA-LIHC (HCC samples only) and
GSE54504, were used to compare the copy number ana-
lysis results. Two cohorts, TCGA-LIHC (HCC samples
only) and GSE14520, were used for overall survival ana-
lysis. For a given gene, the samples were split into two
groups according to its expression levels (above median
and below median). Then, KM-test was used to compare
the survivals between the two groups. Three cohorts,
TCGA-LIHC (HCC samples only), GSE9843, and
GSE19977 were used for vascular invasion analysis. The
gene expressions were compared between the samples
annotated with/without the vascular invasions in each
dataset using Wilcox’s rank test.

Cell cultures
Human HCC cell line HCC-LM3 (Cell Bank of Chinese
Academy of Sciences (Shanghai), Cat. #TCHu94) and
immortalized liver-derived cell line QSG-7701 (Cell
Bank of Chinese Academy of Sciences (Shanghai), Cat.
#GNHu7) were maintained in Dulbecco’s modified Ea-
gle’s medium (DMEM; Gibco, USA) supplemented with
10% (v/v) fetal bovine serum (FBS). All cells were incu-
bated at 37 °C in a humidified atmosphere of 5% CO2 (v/
v) in air.

Cell transfections
Human HCC-LM3 and QSG-7701 cells (5 × 105 cells)
were cultured in 6-well plates with antibiotics-free
DMEM for 24 h and then subjected to transfection with
siRNA using Lipofectamine™ 2000 (Invitrogen, USA) ac-
cording to the manufacturer’s protocol. The sequences
of the siRNAs and NC are provided in Additional file 3:
Table S2.

Transwell invasion assay
Cell invasion assay was performed in a 24-well transwell
chamber (Corning, USA) with a pore size of 8 mm (Grei-
ner Bio-One, USA). For migration assay, after the appro-
priate treatments, cells were trypsinized and seeded in
the upper chamber at a density of 5 × 104 cells/well in
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300 μL of serum-free medium. Five hundredmicroliter
of complete medium was added to the lower chamber as
a chemo-attractant. After incubation for 24 h, the in-
vaded cells were fixed with 4% paraformaldehyde,
stained with 0.1% crystal violet, and quantified from
microscopic fields.

Results
The recurrent genomic and epigenetic alterations
CNV analysis indicates that the genomes of these meta-
static HCCs (both primary tumors and PVTTs) are
highly abnormal. The average percentage of genome af-
fected by CNV is 31.2%. Recurrent arm-level copy num-
ber gains are found in 1q, 4p, 5p, 8q, 17q and loss in 4q,
8p, 9p, 11p/q, 13q, 14q, 16p/q, 17p, 19p (frequency ≥ 0.5
and z-score ≥ 1.5 by GISTIC2) (Fig. 1a), which are much

more serious than previous studies (see the frequent
arm-level CNVs reviewed by [24]). Six focal amplifica-
tions and 25 deletion regions were identified in primary
tumors (Fig. 1b, Additional file 4: Table S3). The most
significantly amplified region is located at 11q13.3 with
11 genes including CCND1, FGF19, FGF3, and FGF4 (q-
value 1.33e-05). Previous studies suggest that chr11q13.3
CCND1-FGF19 focal amplification is strongly associated
with HCC progression [25–27]. In our cohort, this re-
gion is amplified in 36.8% (7 out of 19) primary tumors.
This ratio is much higher than another two previous
studies (to make the results more comparable, we re-
processed the raw CEL files with the same pipeline):
15.6% in GSE54504 (36 out of 231 samples, Fisher’s
exact test p-value 0.042) and 14.7% in TCGA-LIHC (55
out of 375 samples, p-value 0.018). It suggests that

Fig. 1 The genomic and epigenomic landscapes of primary hepatocellular carcinomas and PVTTs. a Copy number variations in primary tumor
and PVTTs. b Focal copy number (CN) alterations detected by GISTIC2 (only the primary tumors were shown). c The DNA methylation levels in
CpG islands and in whole genomes
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CCND1-FGF19 amplification is a candidate driver event
for HCC metastases. For the copy number loss, a known
deletion region 9p21.3 (q-value 5.85e-3) including
CDKN2A and CDKN2B, was identified in our study. We
also identified a novel deletion peak in 19q13.41 (q-value
6.57e-23, the second most significant peak) which con-
tains three miRNAs, let-7e, miR-125a, and miR-99b.
MiR-125a is a known tumor suppressor in HCC, which
can inhibit cancer cell proliferation and metastasis [28].
Let-7e and miR-99b are also proved as tumor-
suppressors in other solid tumors [29, 30]. The deletion
of these miRNAs should play an important role in HCC
progression.
Whole-genome DNA methylation analysis shows that

about a half of tumors have global hypo-methylation
patterns and ~ 40% tumors acquired strong CpG island
methylator phenotype (CIMP) (Fig. 1c). A few gene pro-
moters are strongly hyper-methylated. With a stringent
threshold (q-value <1e-4 and differential methylation
level > 0.2 for at least two promoter probes), 51 genes
are hyper-methylated in their promoter regions (Add-
itional file 5: Table S4). NKX6–2, TBX15, CDKL2 are the
top genes with ≥9 hyper-methylated probes in pro-
moters. Three novel candidates with ≥6 hyper-
methylated probes, NKAPL, GRHL2, and EVX1, were
identified. Several other known promoter hyper-
methylated genes were also confirmed in this study, such
as RASSF1, TSPYL5, and HOXA11 [13, 31, 32]. Interest-
ingly, these hyper-methylated promoters are frequently
associated with histone coding gene clusters (HIST1H4F,
HIST1H3G, HIST1H2BH, and HIST1H2BM), but its
functional consequence remains unclear.

The integrative analysis with RNA-seq
About 7700 genes are significantly differentially
expressed between primary tumors and adjacent normal
tissues (EdgeR paired test q-value < 0.01) (Add-
itional file 6: Table S5). Then, we combined CNVs and
DNA methylations with gene expressions to identify
candidate cancer driver genes [9]. Integrative analysis
shows that CNVs strongly positively regulate gene ex-
pressions and promoter DNA methylations are weakly
negatively correlated with gene expressions (Fig. 2a).
Positive correlation identified 861 copy number candi-
date driver genes (Spearman’s correlation > 0.4 for at
least one promoter probe, one-side p-value < 0.05),
which are enriched in cell cycle (p-value 4.3e-04, using
DAVID v6.8 [33]) and DNA repair (1.8e-03). And, nega-
tive correlation identified 223 methylation candidate
drivers (correlation < − 0.4 for at least one promoter
probe), which are associated with inflammatory response
(2.5e-04), cell differentiation (2.5e-03), and coagulation
(9.2e-03) (Additional file 7: Table S6). The second-order
correlation shows that copy number candidate drivers

are almost independent with methylation candidate
drivers (correlation 6.3e-03, p-value > 0.5) (Fig. 2b). Only
twenty genes are both copy number and methylation
candidate drivers (Fisher’s exact test p-value 0.897).
These results suggest that CNVs and promoter DNA
methylation alterations contribute to different oncogenic
processes. CNVs tend to affect basic cellular processes,
and promoter DNA methylation alterations are more
likely to disturb cellular responses to microenvironment.
Chromosome arms 5q, 7q, and 13q are the top three

regions significantly enriched with copy number candi-
date drivers adjusted by gene numbers (binomial test p-
value 6.39e-05, 1.48e-04, and 6.45-e04, respectively), and
1q and 19p are depleted (3.60e-17 and 4.66e-04). For
methylation candidate drivers, 4p, 3q, and 3p are
enriched (2.19e-02, 2.32e-02, and 4.85e-02) and 5q, 17q,
and 12q are depleted (2.41e-02, 2.76e-02, and 4.88e-02).
Region 11q13 is a hotspot of candidate drivers, with 28
copy number candiate drivers and 2 methylation candi-
date drivers. CCND1 and SERPINH1 are both copy
number and methylation candidate drivers (Fig. 2c).
CCND1 is a widely studied oncogene in HCC [25]. We
interestingly observed that CCND1 is down-regulated in
primary HCCs in many independent cohorts although
its expression is strongly positively correlated with CNV
and negatively correlated with its promoter DNA methy-
lation. SERPINH1, a serpin peptidase inhibitor also
named heat shock protein 47, has been reported to
driver cancer cell invasion by regulating extracellular
matrix gene network [34]. But, its cellular function in
HCC remains unknown. Overall, this integrative analysis
provides important information for studying the molecu-
lar mechanism of the metastatic HCCs.

Recurrently differentially expressed genes between
paired primary tumors and PVTTs
Another important question is whether there exist progres-
sive molecular alterations between adjacent normal tissues,
primary tumors, and PVTTs. Integrative analysis of multi-
omics data shows that cancerous tissues (including primary
tumors and PVTTs) are significantly different with adjacent
normal tissues, and the variations between cancerous tis-
sues are much larger than those in adjacent normal tissues
(Fig. 3a). Gene expressions show similar but stronger pat-
terns: the first component (x-axis in Fig. 3b) can accurately
discriminate adjacent and cancerous tissues. To further ex-
plore the possible differences between primary tumors and
PVTTs, we performed clustering by only using the differen-
tially expressed genes between primary tumors and PVTTs
(EdgeR paired test, 777 genes with raw p-value < 0.05). Un-
expectedly, the primary tumors and PVTTs are still clus-
tered dominantly according to their patient indexes (13 out
of 19 patients) (Fig. 3c). To estimate the level of intra-
patient heterogeneity between matched samples, we used
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the differences among adjacent normal samples as a refer-
ence: the average pairwise difference (measured as 1 -
Spearman’s correlation of gene expression) is 0.019. The
average pairwise difference between matched adjacent nor-
mal and primary tumors is significantly higher (difference =
0.059, Wilcox test p-value 7.47e-13). While, the average dif-
ference between matched primary tumors and PVTTs is
comparable to the reference (difference = 0.021, p-value
0.167). These results suggest that the matched primary tu-
mors and PVTTs derived from different patients have dis-
tinct progression paths, and the intra-patient tumor
heterogeneity is comparable to the inter-patient variation of
adjacent normal tissues.
Based on above observations, we proposed an individ-

ualized differential analysis for sequencing data

(IDASeq) to identify differentially expressed genes from
each pair of matched primary tumor and PVTT based
on the variations estimated from all adjacent normal tis-
sues (see Methods in Experimental Procedures). IDASeq
identified different sizes of differentially expressed genes
for different patients (Fig. 4a and Additional file 8: Table
S7). The top three patients have ~ 3000 differentially
expressed genes. But, eight patients have less than 100
differentially expressed genes. Similar results are ob-
served for lncRNAs (Additional file 2: Figure S1 and S2).
Twenty genes were consistently differentially

expressed in at least seven patients (FDR < 0.001), in-
cluding TNC, LAMA2, LAMC3, PDGFRA of focal adhe-
sion, CYP2E1, CYP3A4, CYP2C8, CYP1B1 of
cytochrome P450 family, and CPS1, TAT, HPD of amino

Fig. 2 Candidate driver genes regulated by CNVs and promoter DNA methylations. a The correlations between gene expressions and CNVs/
promoter DNA methylations. b Scatterplot of the correlations. A few top candidate drivers, whose expressions are significantly affected both by
CNVs and promoter DNA methylations, are highlighted. c A hotspot genomic region of candidate driver genes (chromosome 11q13). The first
row shows the accumulated CNVs, the second shows the differential DNA methylation levels in promoters, the third shows the differential gene
expressions, the fourth indicates candidate genetic driver genes whose expressions are positively correlated with CNVs and the fifth indicates
candidate epigenetic driver genes whose expressions are negatively correlated with promoter DNA methylations
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acid (AA) metabolism (Table 1). The differential expres-
sions patterns are varied in different patients (Fig. 4b-d).
In the third-party cohorts, 13 genes’ expressions are
strongly correlated with vascular invasion states in at
least one cohort (ANOVA test, p-value < 0.05), in which
TAT, CPS1, CYP3A4, and CYP2C8 are significant in all
the three cohorts. Low expressions of five genes,
CYP2E1, CYP3A4, TAT, CPS1, and HPD are strongly as-
sociated with poor prognosis in at least one of the two
cohorts with overall survival data (KM-test based on ex-
pression medians, p-value < 0.05). The genes of

cytochrome P450 have been widely studied in hepatocel-
lular carcinoma and many other cancer types [35–38],
and CYP2C8 is a relatively novel candidate in hepatocel-
lular carcinoma. Cell adhesion molecules play important
roles in metastasis. LAMA2, encoding a subunit of lam-
inin protein, has been identified as a tumor suppressor
in a recent genomic study [39] and LAMC3 is another
member of this gene family. A recent study reported that
the up-regulation of TNC is a poor prognostic marker
and can promote cancer cell migration [40]. AA metab-
olism is one fundamental physiological function of liver.

Fig. 3 Clustering analysis reveals individualized molecular profiles between primary tumors and PVTTs. a The generalized principal component
analysis (PCA) of multi-omics data in all the samples by LRAcluster. b The generalized PCA of RNA-Seq data in all the samples. c Supervised
clustering analysis of RNA-Seq data in primary tumors and PVTTs. The top differentially expressed genes (777 genes with p-value < 0.05 detected
by EdgeR) between primary tumors and PVTTs are used for the clustering
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The protein encoded by CPS1 is the key rate-limiting
enzyme of urea cycle, which is important for removing
excess amino groups from cells. The proteins encoded
by TAT and HPD are two enzymes of tyrosine metabol-
ism. One study reported that TAT located in chr16q22
deletion region is a tumor suppressor in HCC [41]. All
the three genes are significantly associated with survivals
and vascular invasions (Fig. 4e and f). The altered activ-
ities of enzymes in AA metabolism pathways are usually
regarded as the indication of liver function abnormality
accompanied by tumor development, but only a few
studies concern their roles in regulating HCC metastasis.

Then, we selected seven genes for functional valida-
tions from above three categories (LAMA2, LAMC3,
CYP2C8, CYP2E1, CYP3A4, HPD, and TAT). Results
show that six out of seven genes (except CYP2C8)
can regulate cell invasion in at least one of the two
studied HCC cell lines (Fig. 5). Most interestingly,
knockdown of HPD and TAT, which encode two key
enzymes in in phenylalanine and tyrosine metabolism,
can significantly induce cell invasions in both cell
lines, which suggest that inhibition of tyrosine synthe-
sis may cause cellular stresses and promote invasive
phenotypes of cancer cells.

Fig. 4 The individualized differential expression patterns between primary tumors and PVTTs identified by IDASeq. a The number of differentially
expressed genes in each patient (q-value < 0.1). The log2 fold changes of recurrently differentially expressed genes in b) focal adhesion, c
cytochrome P450 family, and d) amino acids metabolism. e Survival analyses based on CPS1, HPD, and TAT expressions. High (red) and low (blue)
expression groups are split by median expressions. f Differential expression analyses of CPS1, HPD, and TAT between vascular invasion and non-
invasion patients. The invasion group is further divided as micro-vascular invasion (second column) and macro-vascular invasion (third column) in
TCGA dataset
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Discussion
This study integratively analyzed the recurrent molecular
alterations by profiling the genomic, epigenomic, and
transcriptomic features of HCCs with PVTTs. Compared
with several general HCC cohorts from the previous
studies, few distinctive alterations were identified for
these metastatic HCCs. But the alteration levels are usu-
ally more severe, such as the arm-level CNVs and
chr11q13.3 focal amplification. These results suggest
that these CNVs drive the progression of HCCs and the
genes in the progressively over-amplified regions can be
used to identify novel therapeutic targets or biomarkers.
For example, the pathways of FGF4 and FGF19 in
chr11q13.3 have already been studied as potential drug
targets [42, 43].
As the previous studies, few differentially expressed

genes between PVTTs and primary tumors can be found
by traditional differential analysis methods which take all
the studied patients as a group. We proposed a novel
method IDASeq to analyze the differentially expressed
genes for each patient. The main idea of IDASeq is to
pool all the adjacent normal tissues to estimate the bio-
logical variances for a give expression level. To reduce
the risk of over-estimation, a global permutation strategy

was implemented to calculate the false discovery rate of
the consistently differentially expressed genes. The IDA-
Seq results suggest that the cancerous tissues (primary
tumors and matched PVTTs) derived from different pa-
tients have highly individualized progression paths and
different patients have very different levels of progressive
alterations between matched primary tumors and
PVTTs (range from more than 3000 to less than 10 dif-
ferentially expressed genes). These results indicate that
PVTT formation may have different mechanisms. For
the patients with few progressively differentially
expressed genes, PVTTs may form by the accumula-
tion of randomly fallen cancer cells from the primary
tumors. And, for the patients with evidential progres-
sive alterations, PVTTs may form by highly invasive
sub-clones or the randomly fallen cancer cells acquire
adaptive changes for the portal vein microenviron-
ment. Futher studies are needed to clarify these infer-
ences. Generally, the progressive molecular alterions
are much less than inter-tumor heterogeneities. Simi-
lar results are also found in previous genomic and
transcriptomic studies [3, 4].
Out of twenty recurrently differentially expressed

genes between matched primary tumors and PVTTs,

Table 1 The recurrently differentially expressed genes between matched primary tumors and PVTTs

Gene Function PvT Freq FDR EdgeR OS VI

DCN Down 11 < 1e-05 No 0 1

CYP2E1 Xenobiotics metabolism Down 8 8.75E-05 No 1 1

LUM Down 8 8.75E-05 No 0 1

TNC Focal adhesion Up 8 < 1e-05 No 0 0

TAT AA metabolism Down 8 8.75E-05 No 2 3

LAMA2 Focal adhesion Down 8 8.75E-05 Yes 0 1

SFRP4 Down 8 8.75E-05 No 0 0

CPS1 AA metabolism Down 8 8.75E-05 No 1 3

CYP3A4 Xenobiotics metabolism Down 8 8.75E-05 No 1 3

IGJ Down 7 1.44E-03 No 0 1

CYP2C8 Xenobiotics metabolism Down 7 1.44E-03 No 0 3

CYP1B1 Xenobiotics metabolism Down 7 1.44E-03 Yes 0 0

COLEC11 Down 7 1.44E-03 No 0 1

IGLL5 Down 7 1.44E-03 Yes 0 0

ASPN Down 7 1.44E-03 No 0 0

PDGFRA Focal adhesion Down 7 1.44E-03 No 0 1

ACTG2 Up 7 3.00E-04 Yes 0 0

INHBA Down 7 1.44E-03 No 0 0

HPD AA metabolism Down 7 1.44E-03 No 1 1

LAMC3 Focal adhesion Down 7 1.44E-03 Yes 0 1

“PvT” denotes the direction of the differential expressions by comparing PVTTs to primary tumors; “Freq” denotes the number of patients with differentially
expressed genes; “FDR” denotes the one-sided FDR calculated by permutation test; “EdgeR” denotes whether the gene is detected by EdgeR differential analysis
(paired test, q-value < 0.1); “OS” denotes the number of datasets (two cohorts in total) in which the gene is significantly associated with overall survivals (KM test,
p-value < 0.05); and, “VI” denotes the number of datasets (three cohorts in total) in which the gene is significantly associated with vascular invasion (ANOVA test,
p-value < 0.05)
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three genes (CPS1, TAT, HPD) encode key enzymes of
amino acid metabolism. All the three genes are signifi-
cantly associated with overall survivals and vascular

invasions. It should be noted that these associations may
depend on a few clinical factors such as clinical stages
and different treatments. Cellular assays validated that

Fig. 5 The transwell cancer cell invasion assays after siRNA knockdown of different candidate genes. a The number of invaded cells using
QSG7701 cell line. b The number of invaded cells using HCC-LM3 cell line
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they can regulate metastatic phenotypes of HCC cells.
Previously, the abnormality of AA metabolism enzymes
is a key feature of liver function failure. Also, the down-
regulations of these liver-specific enzymes are generally
regarded as “passenger” changes along with the de-
differentiated state of tumor cells. Our study established
the links between these enzymes and HCC metastasis.

Conclusions
This study identified many recurrent CNVs, abnormal
DNA methylation, and differential gene expressions of
metastatic HCCs with PVTTs. Integrative analysis shows
that CNVs mainly regulate the genes with basic cellular
functions, and promoter DNA methylations tend to me-
diate cellular responses to microenvironment. Individu-
alized differential expression analysis finds that a few
paitients acquire evidential progressive alterations of
gene expressions between primary tumors and PVTTs.
Twenty recurrently and progressively differentially
expressed genes are identified. They are strongly associ-
ated with focal adhesion, xenobiotics metabolism by
cytochrome P450, and amino acid metabolism, and
many of them can regulate invasive phenotypes of liver-
derived cell lines.
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