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Abstract

Background: Colon cancer is one of the common cancers in human. Although the number of annual cases has
decreased drastically, prognostic screening and translational methods can be improved. Hence, it is critical to
understand the molecular mechanisms of disease progression and prognosis.

Results: In this study, we develop a new strategy for integrating microRNA and gene expression profiles together
with clinical information toward understanding the regulation of colon cancer. Particularly, we use this approach to
identify microRNA and gene expression networks that are specific to certain pathological stages. To demonstrate the
application of our method, we apply this approach to identify microRNA and gene interactions that are specific to
pathological stages of colon cancer in The Cancer Genome Atlas (TCGA) datasets.

Conclusions: Our results show that there are significant differences in network connections between miRNAs and

genes in different pathological stages of colon cancer. These findings point to a hypothesis that these networks
signify different roles of microRNA and gene regulation in the pathogenesis and tumorigenesis of colon cancer.

Background

Colon cancer, which is reported to be one of the few cur-
able cancers, is one of the most common cancers around
the world. The complex progress of colon cancer stage
induces the poor prediction prognosis of colon cancer.
According to previous studies, there is a 92% 5-year rela-
tive survival rate [1, 2] in stage I colon cancer. For patients
with stage II colon cancer, there are two stage subtypes:
stage IIA and stage IIB colon cancers [1, 2]. There is an
87% 5-year relative survival rate for stage IIA and 63%
for stage IIB. Similarly, for stage III colon cancer there
are three subtypes: stage IIIA, IIIB and IIIC colon cancers
[1, 2]. In patients with stage IIIA, the 5-year relative sur-
vival rate is 89%, for stage IIIB it is 69% and 53% for stage
IIIC [1, 2]. When the cancer has reached stage IV and
metastasized to other parts of the body, the 5-year relative
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survival rate is significantly decreased to approximately
12%. The drastic decrease in survival rate in colon can-
cer speaks to the need for better early diagnostic and
prognostic procedures.

The role of pathologic prognostic markers is impor-
tant in the advancement of personalized medicine and
can help reduce the risk of recurrence, especially in high-
risk patients with stage II colon cancer [3-5]. Due to the
benefits of personalized medicine, these patients have an
increased overall survival with therapies such as adjuvant
chemotherapy. Gene expression signatures have shown
much promise as prognostic markers [6]. For example,
the progression of colon cancer is directly linked to the
functional epithelial-mesenchymal transition (EMT) gene
expression signatures [7]. Genes ZEB1 and ZEB2 are
known repressors that regulate targets in the EMT path-
way by changing the phenotype of normal cells to cancer-
ous cells [8]. These genes are also known to be present in
the beginning of metastasis.
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Cell invasion and migration are also critical components
in colon cancer progression. For instance, genes PRKCQ
and PRKCZ are members of the protein kinase family and
PRKCZ is often involved in cell survival and cell migra-
tion in different cancers such as ovarian cancer [9]. It
has also been reported that ARID4B is a key player in
pathogenesis and is classified as a metastasis modifier
gene. Over-expression of this gene is thought to enhance
the cell migration process as well as cell invasion. In con-
trast, the knockdown of ARID4B, causes metastasis of
cancer cells to other regions of the body [10, 11].

More recently, microRNA (miRNA) expression profiles
have been utilized as predictive markers for survival of
colon cancer [12]. Previous studies have reported several
miRNAs were relevant with poor survival and therapeu-
tic outcome in colon cancer [13-15]. For example, miR —
148, miR — 26a — 2 and miR — 130a were identified
to be significantly associated with a poor clinical prog-
nosis [16]. Exploiting the downstream neighborhoods of
genes with such a critical role in the pathogenesis of
colon cancer provide long-term benefits in personalized
medicine and adjuvant therapies. Studies have also found
that the genetic changes varied among different stages
of colon cancer, specially between stage II and stage III
[3, 17, 18]. However, the genetic mechanism underly-
ing these genetic changes that drive pathological stage
progression are remain poorly studied.

There are some recent studies on delineating miRNAs
and genes differentially expressed in different stages of
colon cancer [19, 20]. These work started with conduct-
ing differentially expressed miRNAs and/or differentially
expressed gene analysis to find the pathways that target
genes and/or miRNAs are involved in different patholog-
ical stages of colon cancer. In our study, we intend to
integrate miRNA and gene expression interactions from
mining miRNA and gene expression profiles of cancer
patients to investigate different network communities and
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patterns specific to different pathological stages of colon
cancer. We hypothesized that as colon cancer progresses,
there are unique functional patterns present in early stages
that are not present in later stages and vice versa. We
believe that identifying these functional signatures in dif-
ferent pathological stages can lead to improved prognosis
and better understanding in the stage progression of colon
cancer. Ultimately, the identification and analysis of the
evolution and dynamics of these miRNA-gene networks
will improve our understanding of the etiology and treat-
ment of colon cancer. Using The Cancer Genome Atlas
(TCGA) project [21] colon cancer data [22], we developed
a novel strategy to integrate miRNA and gene expression
data, incorporate known miRNA and gene targets, and
protein protein interactions to generate a more compre-
hensive view of the miRNA-gene interactions.

Methods

Our integrative strategy for this work can be summarized
as a workflow containing the following five steps (Fig. 1)
after preprocessing the data.

Step 1. For each pathological stage, we conducted an
association analysis between miRNA expression and gene
expression quantifications in the same patients respec-
tively using MatrixeQTL [23]. Those miRNA and gene
associations that are statistically significant are kept for
further analysis.

Step 2. For the miRNAs that are significantly associ-
ated with gene expression variations identified in Step 1,
we obtained their target genes by retrieving from miRNA
target gene databases like miRTarBase[24].

Step 3. We generated a gene set directly associated
with or targeted by miRNAs for each pathological stage
by merging all genes significantly associated with miR-
NAs output from Step 1 and all of the targeted genes of
those miRNAs significantly associated with gene expres-
sion obtained from Step 2. We then conducted the
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Gene Ontology (GO) Enrichment analysis for the gene
set of each pathological stage to compare the functional
differences among four stages.

Step 4. We overlapped the gene set directly associ-
ated with or targeted by miRNAs to InWeb, a compre-
hensive interaction database, to generate a preliminary
miRNA-gene network in each pathological stage. We
then expanded these preliminary miRNA-gene networks
by adding interacting genes using two different meth-
ods and generated an integrated miRNA-gene network
for each stage. The integrated miRNA-gene network for
each pathological stage is now composed of miRNAs sig-
nificantly associated with gene expression changes, the
genes associated with or targeted by these miRNAs, and
extended genes interacting with these genes.

Step 5. Finally, we performed community identification,
network alignment, and statistical test to investigate the
differences among the integrated miRNA-gene networks
of all of the four pathological stages.

Data preprocessing

The data in this study was first downloaded from TCGA
(download date: June 11, 2015). Specifically, we retrieved
miRNA expression data, gene expression data and clin-
ical profiles for all colon cancer patients. The miRNA
and gene expression data, quantified from miRNA and
RNA sequencing respectively, were then preprocessed by
first removing samples with missing data. We retained all
clinical profiles of patients whose pathologic stage was
known. If the sample stage was unknown, we did not
include that sample in the study. We hence collected all
samples with pathological stages marked as pathological
stage [, II, III, and IV. We then conducted the analysis
on these samples in each pathological stage respectively.
We filtered the miRNA and gene expression matrices by
removing those with over 10% of missing values in the
samples. To reduce the variation between samples, we
utilized inverse quantile normalization to normalize the
miRNA and gene expression data separately. The quantile
normalized miRNA and gene expression matrices are then
used for this study.

Identification of associations between miRNA and gene
expression

We performed miRNA-gene association analysis between
the miRNA expression and gene expression profiles
in four pathological stages separately. We identified
significant associations between miRNAs and genes
where they are on the same chromosome and located
across different chromosomes. The reference genome
we used was GRCH38 with the gene reference of gen-
code.v29.annotation.gff3 downloaded from [25], and the
miRNA reference of hsa.gff3 was downloaded from
[26-30] The association analysis was performed using
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Matrix eQTL [31], which is an R package that uses
matrix operations to identify pairwise associations. We
conducted miRNA-gene association analysis by running
a linear regression model using Matrix eQTL for each
pair of miRNA and gene, and selected significant miRNA-
gene associations using a 5% cutoff of false discovery rate
(FDR). For each pathological stage, we extracted all of the
experimentally validated target genes of those miRNAs
asscociated with gene expressions from the miRTarBase
target database [24]. At this point, we generated a target
and associated gene set of miRNAs for each pathological
stage by merging the genes associated with miRNAs and
the genes targeted by miRNAs for further analysis.

Gene Ontology analysis of miRNA associated and targeted
genes

We conducted GO enrichment analysis for target and
associated gene set of miRNAs (GO annotation released
2018-12-01) for each stage using the PANTHER over-
representation test (Fisher’s exact test with a Bonferroni-
corrected p-value cutoff at 0.05) [32, 33]. Using the
20,996 human whole-genome genes as background, we
performed GO enrichment analysis of the genes for three
categories including molecular function, biological pro-
cess and cellular component.

The construction of integrated miRNA-gene networks

To explore the genetic network induced by miRNA
expression, we constructed a miRNA-gene interaction
network for each pathological stage using the following
strategy. First, we overlapped the gene set, composed of
miRNA associated genes and targeted genes, with the
genes in an interaction database InWeb [34, 35]. InWeb
is a comprehensive protein-protein interaction network
that integrated various interaction resources and was
constructed using a stringent orthology majority-voting
scheme [35]. We used InWeb as a template network for
our network extension since it is dense and covers a wide
spectrum of interaction information among genes. This
overlapping process generated a preliminary miRNA-gene
network for each pathological stage that is composed of
miRNAs, their associated and targeted genes, and direct
interactions among these genes.

Next, we expanded our miRNA and gene expression
network for each stage using two methods. The first
method is called GeNets [36], which uses a randomiza-
tion approach to choose a new node to connect, based
on a known network structure from InWeb [34, 35].
The second method we applied was a spin-glass model
[37-39] that uses simulated annealing to identify the com-
munities in a network. Our network extension process
thus includes two stages. First, we used a scalable spin-
glass algorithm in R’s igraph library [40] to identify all
communities in the preliminary network including InWeb
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interactions among the associated and targeted genes of
miRNAs. Second, we selected the most connected genes
in the communities to find their downstream genes. The
final integrated miRNA-gene network for each pathologi-
cal stage was then constructed by including the miRNAs,
the associated and targeted genes of these miRNAs, and
the communities and extended neighborhood genes of
the these associated and targeted genes. With this strat-
egy, we constructed the final miRNA-gene network for
each pathological stage that captures the direct and indi-
rect effect of miRNAs on gene expression and provides a
network view of how miRNAs affect gene expression in
different pathological stages.

Network analysis and alignment

We conducted comparative network analysis and net-
work alignment among the integrated miRNA-gene net-
works across different pathological stages of colon can-
cer to investigate the differences in network properties
and topology that may indicate disease progression. We
first calculated important network properties of the four
miRNA-gene networks for the four pathological stages.
Specifically, we calculated the following four network
properties, namely edge similarity, centrality, diameter
and betweenness. Edge similarity indicates the similarity
of edges/connections in two networks. Here we calculated
the edge similarity as the proportion of common edges
between stage I and all other stages respectively. Network
diameter measures the length of the longest path from one
vertex to another in a network and indicates the size of
a network. Network centrality indicates the importance
of vertices within a network. The betweenness of a net-
work denotes the degree to which nodes stand between
each other and is an important measurement of network
centrality. We also calculated the degree distribution of
all nodes in each network. We then performed network
alignment to investigate how these miRNA-gene networks
in different pathological stages align and differ in network
topology. We utilized the “GraphAlignment” package in R
[41] that aligns two networks or graphs using the adja-
cency matrices of two networks. We can thus identify
subnetworks specific to each stage based on common
nodes in the intersection of two networks.

Results

Significant miRNA-gene associations

From our miRNA and gene expression association anal-
ysis, we identified 923, 1964, 838 and 930 significant
miRNA-gene associations for stage I, II, III and IV,
separately (Table 1). We observed that the distances
between miRNAs and their associated genes in different
distance windows follow a similar trend but they do differ
among different pathological stages. We found that these
miRNA-gene associations are stage specific and there is

Page 4 of 9

Table 1 The distance distribution between miRNAs and their
associated genes

Stage (0,TMB] (1,10MB] (10,50MB] (50,10MB] (100,200MB] CrossChr

I 2 5 9 9 1 897
Il 1 5 25 20 13 1900
Il 3 17 21 11 7 779
% 1 4 1 3 6 905

no overlap miRNA-gene pairs among all stages although
there 17 miRNAs and one gene shared among these stages
(Fig. 2). The numbers of significant associations identified
may be confounded by the varied sample sizes in differ-
ent stages (31 for stage I, 82 for stage II, 59 for stage
III and 23 for stage IV). However, this observation that
different stages share little in miRNA-gene associations,
implies that miRNAs may affect gene expression differ-
ently in varied pathological stages and this may indicate
disease progression and etiology. We admit that this lit-
tle sharing of miRNA-gene pairs in different stages might
also be partially due to the limited power of association
analysis resulted from small sample sizes. Nonetheless,
some of the stage-specific miRNAs have been previously
reported to affect the progression of colon cancer. For
example, hsa — mir — 200c was reported to be related
to colon cancer progression [42] that was found to be
associated with cancer genes in stage I but not in other
stages in our results (Fig. 3a). hsa — mir — 1249 which
was shown to up-regulate genes in colon cancer [43] and
was found to be associated with OSMR that affect the
progression of colon cancer in stage II in our association
study [44] (Fig. 3b). hsa — mir — 34a was reported to up-
regulate or down-regulate target genes in colon cancer in
stage III [45] (Fig. 3c). In stage IV, hsa — mir — 130b was
reported to affect the tumor progress in colon cancer. [14,
46, 47] which was associated with cancer gene GPSM?2
in our study [48] (Fig. 3d). In the miRNA-gene asso-
ciations, we also found some stage-specific genes were
reported to be associated with colon cancer in literature.
For example, PLA2G2A was only identified to be asso-
ciated with hsa — mir — 129 — 1 in stage I, and was
previously reported to have low expression in colon can-
cer patients [49] and hsa — mir — 129 — 1 was reported
to act as a tumor suppressor [50]. Another gene MCC was
only found to be associated with ssa — mir — 671 in stage
IT that was reported to have somatic mutations in colon
cancer [51]. Moreover, the associated miRNA /sa — mir —
671 was reported to up-regulate the gene expression in
colon cancer study [52]. Another gene associated with
colon cancer was FGFR3 [53], and the deregulated expres-
sion of the associated miRNA /isa —mir—9, only identified
in Stage IV, had an important role in colon cancer pro-
gression [54]. All these examples demonstrated that some
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Fig. 2 Venn diagrams of miRNA-gene associations identified in each pathological stage. a Comparison of miRNA-gene associations among four
stages; b Comparison of miRNAs associated with gene expression among four stages; ¢ Comparison of genes in association with miRNAs among

of these miRNAs and genes specifically associated in dif-
ferent pathological stages are reported to be related to
colon cancer, and can thus serve as potential biomarkers
and anchor points toward further understanding of the
progression and prognosis of colon cancer.

Gene Ontology enrichment analysis

We conducted GO enrichment analysis for the miRNA
associated genes and found that 6 molecular functions,
23 biological processes, 24 cellular components were

enriched for stage I; 9 molecular functions, 30 biological
processes, 23 cellular components were enriched, and
5 biological process depleted for stage II; 2 molecular
functions, 16 biological processes, 12 cellular compo-
nents were enriched, and 2 biological process depleted
for stage III; and 26 molecular functions, 78 biologi-
cal processes, 50 cellular components were enriched for
stage IV (Additional file 1). The comparison of molec-
ular function, biological process and cellular component
are showed in Fig. 4. Besides the common enriched

hsa- 34a

hsa- 130b

Fig. 3 Examples of miRNA-gene subnetworks specific to each stage. Purple nodes represent genes, orange nodes denote cancer genes, and red
triangle nodes represent miRNAs that are associated with genes. Gene network expansion are black lines and miRNA-gene associations are solid blue
lines. a A subnetwork specific to stage I; b A subnetwork specific to stage Il; ¢ A subnetwork specific to stage Ill; d A subnetwork specific to stage IV
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Fig. 4 GO enrichment analysis of gene associated with miRNAs in four stages. a. Enriched molecular functions; b. Enriched cellular components; c.

cellular components, molecular functions and biological
processes, there were different functions in these four cat-
egories enriched by target and associated genes through
our GO analysis. For example, biological processes that
were related to colon cancer such as chemotaxis and reg-
ulation of cell projection organization, were particularly
enriched in stage I; cellular process and cell adhesion were
particularly enriched in stage II; gene expression were par-
ticularly enriched in stage III and cell differentiation and
regulation of immune system process were particularly
enriched in stage IV [55]. Molecular functions that were
related to colon cancer such as sodium ion transmem-
brane transporter activity were particularly enriched in
stage I; growth factor activity and receptor regulator activ-
ity was particularly enriched in stage II; and chemokine
activity and ion channel activity was particularly enriched
in stage IV [55]. Cellular components that were related to
colon cancer such as exocytic vesicle and synaptic vesi-
cle were particularly enriched in stage I; cytoplasmic part
and cytoplasm was particularly enriched in stage II; mem-
brane protein complex and integral component of lumenal
side of endoplasmic reticulum membrane was particu-
larly enriched in stage IV [55]. It is thus important to
investigate the particularly enriched biological processes,
molecular functions, and cellular components that are
specific to certain pathological stage. Such investigations
will help shed light on how miRNAs play a different role in
regulating gene expression in various pathological stages
and thus can serve as biomarkers or signature profiles to
help screen, subtype, diagnose and treat patients.

Network analysis and alignment

First, we checked how the genes are interacting with each
other in the genes targeted by or associated with miRNAs
in each pathological stage (Additional file 2). We found
that 98.87% (12420/12562) of these genes are interacting
according to the protein protein interactions with high
confidence in the InWeb database where we set the confi-
dence score cutoff at 0.2 (Table 2).

Second, we compared the four integrated miRNA-gene
networks of different stages by comparing important net-
work properties of these networks such as the edge
similarity, centrality of vertices, diameter of graph, and
betweenness of the network in each pathological stage
(Table 3). The edge similarity was calculated as the pro-
portion of common edges of the network for stage I and
all other networks for the remaining three stages. The
centrality of vertices denoted the importance of the ver-
tices in the network [56] with higher values implying that
the nodes were closer to the center of the network. The
betweenness of vertices denoted the number of the short-
est paths passing through vertices [57]. The higher the
betweenness of a node, the more of other nodes can reach
the center by the shortest path through this node. We use
the average of centrality and betweenness of all nodes in
the network in Table 3. Another measurement we used
was the diameter of each network of each stage which
measured the longest path from one vertex to another
in the network. We also investigated the degree distribu-
tion of vertices of network in each stage (Fig. 5). These
network properties showed that there was different pat-
tern between stage [ and other stages, which provided evi-
dence on different effect of miRNAs on gene expression
in different pathological stages. Particularly, we observed
that pathological stage II is the most different compar-
ing with networks of the other stages, and stage III and
IV are more similar. The network of stage II is most sim-
ilar to stage I, has the largest diameter, has the lowest

Table 2 The numbers of genes targeted by and associated with
miRNAs, and their interactions in each pathological stage

Stage Number of targeted and Number of interactions
associated genes

I 10358 39002

Il 13822 54858

Il 11273 44490

v 11613 42122
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Table 3 Comparison of network properties of the integrated
miRNA-gene networks in four stages

Properties I I Il %
Components 33 30 27 28

Edge similarity NA 0.8826 0.7965 0.7338
Diameter 5986 8108 6487 6449
Centrality 2.23E-06 1.72E-06 2.31E-06 2.22E-06
Betweenness 8959.615 12861.60 9878.94 9834.99
Edge density 0.002278 0.001721 0.002148 0.002076

centrality where nodes are less important comparing to
other networks, and has the largest betweenness with
more nodes reaching to network centers via shortest
paths. Hence, these results suggest that we need to investi-
gate why stage II has distinct network property comparing
to other stages to better understand disease progression
and prognosis.

Finally, we conducted network alignment to find local
network structures that differ in the integrated miRNA-
gene networks in the four pathological stages. We found
many examples that miRNAs affect gene expression
with different patterns among varied pathological stages
(Fig. 3). For example, Fig. 3a showed one miRNA /sa —
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mir — 200c was related to colon cancer progression [42]
that was associated with some cancer genes only in stage
L. hsa — mir — 1249 which was reported to up-regulate
genes in colon cancer [43] was associated with OSMR in
stage II and OSMR affects the progression of colon can-
cer [44]. In addition, another gene CTNNBI reported to
affect colon cancer progression was also involved in this
miRNA-gene network in stage II [58]. sisa — mir — 34a was
reported to up-regulate or down-regulate target genes in
colon cancer and was found to be associated with genes
changes only in stage IV [45]. In stage IV, hsa — mir — 130b
was reported to affect the tumor progression in colon
cancer. [14, 46, 47] which is associated with cancer gene
GPSM?2 in our study [48]. These four networks are only
present in each corresponding stage and do not overlap
cross stages which provide the evidence of our assump-
tion that the miRNA-gene network has different patterns
in colon cancer pathological stages.

Discussion and conclusion

This study implemented an association and network inte-
gration strategy to help understand the underlying mecha-
nism on how miRNAs distinctively affect gene expression in
different pathological stages of colon cancer. Our results
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showed that there is significant difference among the
miRNA-gene associations and interactions in different
pathological stages. Particularly, pathological stage II was
notably different from other stages regarding to their net-
work properties in our miRNA-gene network analysis. We
believe that such analysis will point to potential follow-
up studies dedicated to investigating molecular mecha-
nisms that lead to these differences. With more samples
with clinical information available, together with match-
ing genetic and epigenetic profiles, we expect to apply
the strategy designed in this study to find more detailed
delineations of regulatory changes in different patholog-
ical stages and diseases. It is also worth noting that this
method is applicable to any cancer type or even other
disease that has clinical profile data available.

In summary, we found that there is significant statisti-
cal difference on the miRNA-gene interactions between
different pathological stages in colon cancer, which sup-
ported by other studies that network signature plays dif-
ferent roles in the pathogenesis [59, 60], metastasis [61]
and the tumorigenesis of colon cancer. Our approach
for integrating different types of data (including but not
limited to miRNA expression, gene expression, protein
protein interactions) can reveal the interactions and cross-
talks between multi-layers of genetic components in inter-
preting the etiology, prognosis and progression of various
diseases including different cancer types. Given the evi-
dence that these interactions and network communities
differ in different disease stages, this study also shed
light on potential mitigation or treatment plan that helps
deter or redirect the progression of diseases through
diverting or changing the network structure in a systems
biology way.
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