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Abstract

Background: Cancer is a complex and heterogeneous disease with many possible genetic and environmental
causes. The same treatment for patients of the same cancer type often results in different outcomes in terms of
efficacy and side effects of the treatment. Thus, the molecular characterization of individual cancer patients is
increasingly important to find an effective treatment. Recently a few methods have been developed to construct
cancer sample-specific gene networks based on the difference in the mRNA expression levels between the cancer
sample and reference samples.

Methods: We constructed a patient-specific network with multi-omics data based on the difference between a
reference network and a perturbed reference network by the patient. A network specific to a group of patients was
obtained using the average change in correlation coefficients and node degree of patient-specific networks of the
group.

Results: In this paper, we present a new method for constructing cancer patient-specific and group-specific gene
networks with multi-omics data. The main differences of our method from previous ones are as follows: (1) networks
are constructed with multi-omics (MRNA expression, copy number variation, DNA methylation and microRNA
expression) data rather than with mRNA expression data alone, (2) background networks are constructed with both
normal samples and cancer samples of the specified type to extract cancer-specific gene correlations, and (3) both
patient individual-specific networks and patient group-specific networks can be constructed. The results of evaluating
our method with several types of cancer show that it constructs more informative and accurate gene networks than
previous methods.

Conclusions: The results of evaluating our method with extensive data of seven cancer types show that the
difference of gene correlations between the reference samples and a patient sample is a more predictive feature than
mMRNA expression levels and that gene networks constructed with multi-omics data show a better performance than
those with single omics data in predicting cancer for most cancer types. Our approach will be useful for finding genes
and gene pairs to tailor treatments to individual characteristics.
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Background

For the past years, we have witnessed the rapid devel-
opment of targeted cancer therapy. Targeted therapies for
cancer work by targeting specific genes, proteins or tis-
sues that contribute to cancer growth and survival. Many
targeted therapies are effective only for patients with spe-
cific genetic alterations (known as driver mutations) that
help cancer cells form and grow [1, 2]. Thus, identify-
ing genetic mutations specific to individual patients is of
utmost importance to determine targeted therapies that
can effectively cure cancer patients while minimizing side
effects [3].

Motivated by a massive amount of data generated by
high-throughput technologies, several cancer studies used
gene networks to explore gene expression characteris-
tics [4—8]. However, constructing a patient-specific gene
network with a single sample obtained from a patient is
difficult because a gene network requires many samples to
compute gene-gene relations.

Recently a few methods have been proposed to con-
struct cancer sample-specific gene networks based on
the difference in the mRNA expression levels between
the cancer sample and reference samples. For example,
Liu et al. [9] proposed a method to construct a sample-
specific network by computing the difference between a
reference network from multiple reference samples and
a network perturbed by a new sample. However, a slight
change to the reference samples can result in a signif-
icantly different sample-specific network for the same
sample due to the small number of reference samples. Fur-
thermore, their sample-specific networks cannot reflect
post-translational modification and epigenetics because
the networks are built using mRNA expression data only.

This paper presents a new method for constructing
cancer patient-specific and group-specific gene networks
with multi-omics data using a sample-specific network
and network propagation method. Network propaga-
tion strategies are widely used in recent cancer-related
research. Li et al. [10] presented a synergy prediction algo-
rithm using network propagation and predicted the drug
synergy in various cancers. Zhang et al. [11] introduced
a propagation algorithm, which learns the mutated sub-
networks underlying tumor subtypes using a supervised
approach and classified tumors to known subtypes on
breast and glioblastoma tumors. Peng et al. [12] identified
bladder cancer-related genes by propagating information
from seed genes to candidate genes. The primary focus
of our method is to construct a gene correlation net-
work specific to cancer with multi-omics data. Thus, it is
different from a typical gene co-expression network that
represents co-expression relations between genes from
mRNA expression data. Our gene network is not a gene
regulatory network because our network does not show
regulatory relations between genes.
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The main differences of our method from previous ones
are as follows: (1) networks are constructed with multi-
omics (MRNA expression, copy number variation, DNA
methylation and microRNA expression) data rather than
with mRNA expression data alone, (2) background net-
works are constructed with both normal samples and
cancer samples of the specified type to extract cancer-
specific gene correlations, and (3) both patient individual-
specific networks and patient group-specific networks can
be constructed. As shown later in this paper, the results
of evaluating our method with several types of cancer
show that it constructs more informative and accurate
target-specific networks than previous methods.

Methods

At the top level, our method consists of the following
steps: (1) data processing, (2) constructing individual-
specific gene networks, and (3) constructing a group-
specific gene networks. A high-level description of the
method is given in Fig. 1.

Data collection and preprocessing

From the Broad Institute TCGA GDAC Firehose [13],
we obtained multi-omics data of cancer samples of seven
types: breast invasive carcinoma (BRCA), colon adenocar-
cinoma (COAD), head and neck squamous cell carcinoma
(HNSC), pan-kidney cohort (KIPAN), liver hepatocellu-
lar carcinoma (LIHC), lung adenocarcinoma (LUAD) and
lung squamous cell carcinoma (LUSC).

The multi-omics data used in this study include
mRNA expression (mRNAseq), copy number variation
(CNV), DNA methylation and mature miRNA expres-
sion (miRseq) data. The mRNAseq data were processed
using quartile normalized RSEM [14] and then log2-
transformed. The segmented CNV data were converted
to gene-level data using the Ensembl API [15] and the
CNTools package [16] of Bioconductor. The methylation
data were filtered to select the probe with the mean sig-
nal values for each gene. The miRseq data were processed
by RPM and log2-transformed. mRNAs and miRNAs that
were not expressed in more than 10% of the total samples
were excluded in further analysis. Missing expression val-
ues of mMRNAs and miRNAs were replaced by the smallest
positive normalized floating-point number (realmin) of
MATLAB. The number of samples and genes used in this
study are available in Additional file 1.

Individual-specific gene network

In each group of tumor samples and normal samples, we
first computed gene-gene relations by the Pearson corre-
lation coefficient (PCC), selected highly correlated gene
pairs (i.e., those with |PCC| >0.8), and constructed two
sample networks, one for each group. From the tumor
sample network, we removed edges common to both
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STEP 1. Data processing

Data collection

Genes with missing data removed

Reference network

Perturbed network

Individual-specific network

perturbed networks

Group-specific network
types in the individual-specific networks

Cancer-relevance score of genes

Tumor samples and normal samples from TCGA GDAC Firehose
Integrating multi-omics data and gene filtering

Multi-omics data integrated and transformed into a same form

STEP 2. Constructing individual-specific networks

Reference network constructed based on inter-gene correlations (PCCs) in normal samples

Perturbed network constructed by adding a single tumor sample to the normal samples

Individual-specific network constructed based on APCC between the reference and

STEP 3. Constructing group-specific networks

Group-specific network constructed based on the average APCC, node degree and edge

Cancer-relevance score of each gene calculated by an iterative process

Fig. 1 Overview of constructing an individual-specific network and a group-specific network with multi-omics data

tumor and normal sample networks and obtained a tem-
plate reference network for cancer (Fig. 2a). The template
reference network consists of highly-correlated gene pairs
that are specific to cancer.

With #n reference samples, which may be different from
tumor samples used in the template network, we com-
puted PCC for every pair of genes in the template ref-
erence network and constructed a reference network for
the reference samples. For a patient of interest, we con-
structed a network, which is a perturbed network by
adding a single sample of the patient to the n refer-
ence samples. A patient-specific network was obtained
by subtracting the reference network from the perturbed
network.

APCC = |PCCy41| — |PCCy| (1)

We computed the difference in the absolute value of
PCC between the perturbed reference network and ref-
erence network by Eq. 1. We also carried out a Z-test of
PCCy41—PCC,, by Eq. 2. For alarge n, we can approximate
the mean (u) and standard deviation (o) of PCC,41 —
PCC,as0and (1 — PCC,ZI)/(n — 1), respectively [9].

PCCange = PCCpy1 — PCC,
P CCchange — u(P CCchange) _ P CCchange

o(P CCchange) lfnPfClC%

(2)

Z — score =

The edges of the patient-specific network were classi-
fied into four types [9]: (1) correlation-gained edges for
gene pairs whose PCCs are increased from the reference
network to the patient-specific network, (2) correlation-
lost edges for gene pairs whose PCCs are decreased from
the reference network to the patient-specific network, (3)
correlation-reversed edges for gene pairs whose signs of
PCCs are changed from positive to negative or negative
to positive, and (4) correlation-invariant edges for gene
pairs with little change in PCCs between the reference and
patient-specific networks (i.e., those with |Z-score| < 1)
(Fig. 2b).

The edges were classified in the following way. We first
selected gene pairs with |Z-score| < 1 as correlation-
invariant type, and then selected gene pairs which have
different signs of PCCs between the reference network
and the patient-specific network as correlation-reversed
type. The remaining gene pairs were classified into either
correlation-gained or correlation-lost type depending on
whether their PCCs are increased (correlation-gained) or
decreased (correlation-lost) from the reference network to
the patient-specific network. Thus, |Z-score| > 1 in both
correlation-gained and correlation-list gene pairs.

Group-specific gene network

A group-specific gene network is useful when analyzing
a large number of patient-specific gene networks. After
constructing patient-specific gene networks, we obtained
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Fig. 2 Process of constructing a patient-specific gene network. a template of the cancer reference network obtained by removing edges common to
both networks. b patient-specific gene network and four types of edges in the network. Edges with a |, Z-score|, < 1 represent correlation-invariant
gene pairs, and edges with |, Z-score|, > 1 and different signs of PCC,, and PCCp41 represent correlation-reversed gene pairs. Edges with |Z-score| >
1 and APCC > 0 are correlated-gained gene pairs, and those with |Z-score| > 1 and APCC < 0 are correlation-lost gene pairs

a gene network specific to a group of patients based on
the average APCC and node degree of the patient-specific
networks (Fig. 3). If the dominant type for a particu-
lar edge is ‘correlation-gained’ (positive APCC) in the
patient-specific networks, the edge is represented in red
in the group-specific network. In contrast, if the domi-
nant type for a particular edge is ‘correlation-lost’ (neg-
ative APCC) in the patient-specific networks, the edge
is represented in blue in the group-specific network. In
the group-specific network, only the dominant type is
shown for each edge. If non-dominant types are shown
in addition to the dominant type for each edge, the net-
work becomes cluttered and unreadable. The node size
of a group-specific gene network is proportional to the
average degree of the node.

Integration of multi-omics data

To integrate multi-omics data, we first computed inter-
gene correlations by PCC with four different types of
single omics data (mRNA expression, CNV, DNA methy-
lation and miRNA expression) separately, and selected
significant inter-gene correlations only. In mRNA expres-
sion, CNV and DNA methylation data, we select the
top 1% |PCC| with p-value <0.01. In miRNA expres-
sion data, we selected the top 5% |PCC| with p-
value <0.01 due to a smaller number of miRNAs in
the data. The inter-gene correlations selected in each
single omics data are represented in four correlation

matrices (Mexpr, Mcnv, Mpeyi and  Miypirna) and
normalized.

Using the protein-protein interactions (PPIs) of the
STRING database [17], we constructed separate weighted
networks from each omics data by Eq. 3. In Eq. 3, Wexpr,
Weny and Wiyenny denote the weighted networks, and
PPleyyr, PPIcny and PPy are subnetworks of a PPI
network consisting of genes present in each omics data.
Since the PPI network does not contain information on
miRNA, a weighted network for miRNA was not con-
structed.

Wexpr =1 — (1 - Mexpr) X (1 - PPIexpr)
Weny =1— (1 — Mceny) x (1 — PPIcny) (3)
Winethyt = 1 — (1 - Mmethyl) X (1 - PPImethyl)

We then integrated the multi-omics data by linear
regression using Eq. 4 [12]. In Eq. 4, Y;, XiCNV, Ximethyl
and Xg”RNA denote gene i’s expression level, CNV level,
methylation level, and miRNA regulator expression level,

respectively. ,BCN Vand ,Bmethy ! denote the regression coef-
ficients of gene i’s expression level on CNV and methy-
lation, respectively. ﬁg«"iRNA is the regression coefficient
of gene i’s expression level on its miRNA regulator ;s
expression level.

CNV yCNV_, methyl methy miRNA y-miRNA
Yi= BNV XNV Zﬂ, X te

(4)
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From the regression coefficients and the weighted net-
works, a weight matrix W was derived and normalized
into W (Egs. 5 and 6). The weight matrix W is symmetric,
so Wi = Wji. W11, Waa, W33 and Wy, represent Wy,
Wenvs Wineshyt and Mirna, respectively. The submatri-

ces Wh; and W3; contain regression coefficients ,Bl.CNV

hyl s .
and ,Bim M for every gene i, respectively. Wy, represents
ﬂiszNA. The submatrices W3y, Wy and Wi3 are empty.

W11 Wia Wiz Wia
Wa1 Wi Waz Wag
W31 W3y Wiz Wi
Wa1 Wap Waz Wayg

(5)

W) =Wap/ | D Wik xY Wk (6

k=1 k=1

In network propagation, seed genes have greater impact
than non-seed genes on their neighbors. Thus, only the
genes with a high average APCC were selected as seed
genes for a group-specific network, and their miRNAs
regulators extracted from miRTarBase [18] were used as
seed miRNAs. We calculated the cancer-relevance S’ of
each gene to reflect the effect of the seed genes and miR-
NAs on neighbors. The initial score D was calculated by

Eq. 7 and updated iteratively by Eq. 8 [12]. In this iter-
ative process, the influence of the seed is propagated to
the neighbors until a mean squared error of S¢ and §*~!

<1x107°
ny .
— if vis anon-seed & N, > «
N,

D, = _ ny,

eNv=2 x — ifvisanon-seed & N, < «
v

1 if vis a seed

SE=AxS1x W+ (@Q—21) xD,whereS' =D (8)
where N, is the number of neighbors of node v, and #, is
the number of seeds in the neighbors. The parameter «,
which is a threshold for N,, was set to 50 and A was set to
0.2 [12]. Genes with the top 10% S’ were used in finding
cancer-related genes and in classifying tumor samples and
normal samples.

Results

Patient-specific and group-specific gene networks

In this study, we constructed 2,400 patient-specific gene
networks for seven cancer types (Additional file 1). For
each cancer type, we also constructed group-specific gene
networks. As an example, Fig. 4 shows a group-specific
gene network derived from 300 lung squamous cell carci-
noma (LUSC) patients.
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There are three distinct subnetworks in the network
for the LUSC group. The subnetwork enclosed in box A
of Fig. 4 contains many hub genes (large green nodes).
The subnetwork in box B consists of correlation-gained
edges (dark red edges), whereas the subnetwork in box C
contains many correlation-lost edges (dark blue edges).

Comparison of multi-omics data and single-omics data
We performed leave-one-out cross validation (LOOCYV)
to evaluate cancer-relevance score S* of a gene and the
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contribution of multi-omics data to finding cancer-related
genes. For comparison, the cancer-relevance scores were
computed with multi-omics data and single omics data
separately. Each seed gene was regarded as a non-seed and
a new cancer-relevance score was calculated for the gene.
Seed genes and non-seed genes were considered as posi-
tive and negative, respectively. Seed genes included in the
top n genes were considered as true positives, and seed
genes not included in the top # genes were considered
as false negatives. Similarly, non-seed genes included in

o~

e Lt

Fig. 4 Group-specific gene network for 300 lung squamous cell carcinoma (LUSC) patients. a subnetwork of multiple hub genes (large green
nodes). b subnetwork of correlation-gained edges (dark red edges). ¢ subnetwork with many correlation-lost edges (dark blue edges)
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the top # genes and non-seed genes not included in the
top n genes were considered as false positives and true
negatives, respectively.

We carried out LOOCV with different ratios of seed
genes to non-seed genes. Figure 5 shows the receiver oper-
ating characteristic (ROC) curve and the area under the
curve (AUC) of LOOCYV of the cancer relevance of genes
on data of 400 breast cancer samples with various seed
ratios ranging from 0.01 to 0.09 (Enlarged plots of Fig. 5
are available in Additional file 2). For comparative pur-
poses, we also computed the cancer relevance of genes
with single omics data. As shown in Fig. 5, multi-omics
data consistently exhibited better performance than single
omics data with any seed ratio between 0.01 to 0.09. For
later analysis, the seed ratio was set to 0.05 by default. The
average APCC and class label of each gene are available in
Additional file 3.
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Indeed, the superiority of multi-omics data over single
omics data in determining the cancer relevance score
of genes was observed in all seven types of cancer
(Additional file 4). In seven types of cancer, the cancer
relevance score of genes computed with multi-omics data
exhibited a good performance (AUC = 0.896 ~0.942). The
cancer relevance score of genes computed with mRNA
expression data showed the second best performance
(AUC = 0.761 ~0.878). In particular, the cancer relevance
score computed with mRNA expression data showed a
very similar performance to that with multi-omics in
breast cancer (BRCA). The performance of the cancer rel-
evance score computed with CNV (AUC = 0.591 ~0.786)
and DNA methylation data (AUC = 0.581 ~0.817) alone
was lower than that with mRNA expression data (AUC =
0.761 ~0.878).
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Lee et al. BMC Medical Genomics 2020, 13(Suppl 6):81

Evaluation of gene correlations and background networks

Many network-based approaches to cancer research have
focused on finding genes that show differential expres-
sions between tumor samples and normal samples. Gene-
gene correlations (i.e., inter-gene correlations) may be
more helpful than individual genes because inter-gene
correlations depend on the expression of neighbor genes
in a gene regulatory network. To compare the effect of
using individual genes to that of inter-gene correlations
(i.e., APCC), we constructed a support vector machine
(SVM) model for classifying cancer samples and normal
samples. The SVM model was implemented using C-SVC
and RBF kernel, and the parameter values of the model
were determined by the grid search algorithm. mRNA
expression levels and APCCs were used as features of
the SVM models. For rigorous validation, the test data
used in testing the models were not used in training them
(Additional file 1).

As shown in Fig. 6a, APCC showed a better per-
formance than mRNA expression levels for six cancer
types except LUSC. The classification model with APCC
showed MCC above 0.9 in six cancer types except HNSC.

We also examined the effect of different background
networks on individual-specific networks. In the work
by Liu et al. [9], PPI data with high confidence scores
in the STRING database were used to construct a back-
ground network. However, the PPI data of STRING
does not reflect cancer type-specific characteristics.
Figure 6b shows the performance of the classification
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model with two different background networks: back-
ground network from PPI data of STRING (the approach
by Liu et al.) and cancer background network (our
approach). APCC was used as a feature of the classi-
fication model. Except for COAD, the performance of
the classification model with the cancer background net-
work was better than the model with the STRING ref-
erence background network. In particular, the classifi-
cation model showed a significant difference for breast
cancer (BRCA) (MCC of 0.992 vs. MCC of 0.841).
Detailed results of the classification model are available in
Additional file 5.

Discussion

In the analysis of finding cancer-related genes and gene
pairs, we focused on a subnetwork of genes with a APCC.
Table 1 shows the top 10 genes with a high average
APCC in each group-specific network of seven cancer
types. In breast invasive carcinoma (BRCA), FAM171A1
showed the highest average APCC in the group-specific
network. FAM171A1 is known as a potential biomarker
in triple-negative breast cancer [19]. FOXC1 is involved
in tumor development and metastasis and associated with
poor prognosis in basal-like breast cancer [20]. IL-33 is
overexpressed in various cancers and the serum concen-
tration of IL-33 is a valuable indicator of poor prognosis in
breast cancer. [21]. MAMDC?2 is significantly correlated
with disease-free survival of breast cancer patients [22].
MTERED1 is closely related to breast cancer recurrence

(A) OmRNA expression Bdelta PCC
10
09
008
O
= 07
06
05 L
BRCA COAD HNSC KIPAN LIHC LUAD LUSC
(B) OSTRING background network mcancer background network
1.0
09
008
O
=07
06
05 L
BRCA COAD HNSC KIPAN LIHC LUAD LUSC
Fig. 6 Results of evaluating features and background networks by a validation set. a Comparison of mRNA expressions of genes and APCC of gene
pairs. b Comparison of the cancer background network with the background network from PPI data
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Table 1 Top 10 genes with a high average APCC in a group-specific network for seven cancer types
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BRCA COAD HNSC KIPAN LIHC LUAD LUSC
FAM171A1 GFRA2 CYP2J2 TFCP2L1 SLC19A3 CLDN18 NSUN2
FOXC1 SCNN1B BARX2 KCNQ1 ECM1 ADAMTSS8 CCTs
IL33 DDX27 ZNF135 ARL15 CYP2B6 PECAM1 FBXO45
MAMDC2 RNPS1 PPFIA1 KCTD1 FBP1 SFTPA1 GPR116
MTERFD1 UBE2I PARL OAZ2 GPAA1 GIMAP6 SLC39A8
HOXA7 MDFIC FADD TMEM458 Fo AKR1C1 FXR1
CTTNBP2 CTNNBL1 CSTe HPCALT1 PAH MME INMT
ZNF204P CDK5RAP1 COBL TMEMO1 AGXT2 ATAD2 VEPH]1
JAM3 ESF1 ORAOV1 SEMASB HSD17B6 CYP3A5 CRTAM
FREM1 TRMT6 XPO7 EGLN3 RNASE4 CHAF1B WDR53

[23] and HOXA7 plays a critical role in regulating the
proliferation of ER-positive cancer cells [24].

In colon adenocarcinoma (COAD), GFRA2 showed the
highest average APCC in the group-specific network. It
is known to be crucial for enteric neuron survival [25].
SCNN1B and DDX27 are significantly related to colorec-
tal cancer [26, 27]. No direct relation of RNPS1 with
colorectal cancer is known, but RNPS1 is essential to
nonsense-mediated mRNA decay [28] that plays complex
functions in cancer [29]. Knockdown of SUMO conju-
gating enzyme UBE2I (also known UBC9 or E2) inhibits
maintenance and self-renewal of colorectal cancer stem
cell, while overexpression of UBE2I increases colorectal
cancer cell stemness [30].

Among the top 10 genes with a high average APCC
in lung adenocarcinoma (LUAD), several genes such as
CLDN18, ADAMTSS, PECAMI1 and SFTPA1 have been
known to be associated with LUAD in previous studies
[31-33]. No direct relation of NSUN2 and SLC39A8 with
lung squamous cell carcinoma (LUSC) has been known so
far. However, recent studies [34, 35] reported that NSUN2
is correlated with survival in other types of squamous cell
carcinomas. Gao et al. also showed that the epigenetic
silencing of SLC39A8 expression by DNA methylation is
involved in the acquisition of resistance against cadmium
in lung cells [36] and the relation between cadmium and
lung cancer has received much attention [37]. Many other
genes in Table 1 found in the group-specific networks
for head and neck squamous cell carcinoma (HNSC),
pan-kidney cohort (KIPAN) and liver hepatocellular car-
cinoma (LIHC) are also directly or indirectly related to
cancer.

In addition to individual genes, we identified gene
pairs of the same type (i.e., either correlation-gained or
correlation-lost in most patient-specific networks of the
same type). Table 2 shows the most frequent gene pairs in
400 breast cancer samples. The most frequent gene pairs
in other types of cancer are listed in Additional file 6. It is
interesting to note that all the gene pairs shown in Table 2

include at least one gene in the gene pair MAMDC2-
HOXA?7 and that they are correlation-gained edges in the
group-specific network for breast cancer. Figure 7 shows
a subnetwork containing MAMDC2 and HOXA?7 in the
group-specific network of breast cancer. The subnetwork
was obtained by selecting the edges for which the propor-
tion of the same edge type (i.e., correlation-gained or lost)
is above 90% in the total individual-specific networks of
breast cancer patients. It is interesting to note that all the
gene pairs in Table 2 are included in the subnetwork.

To date, the actual role of the MAMDC2 gene in can-
cer is not clear, but Meng et al. [22] reported MAMDC2
as one of three genes (MAMDC2, TSHZ2, and CLDN11)
that are significantly correlated with disease-free sur-
vival of breast cancer patients. MAMDC2 is known as a
target of miR-196a in head and neck squamous cell car-
cinoma [38]. As a member of the family of homeobox
genes, HOXA?7 is associated with cell proliferation, nerve
invasion, distant metastasis and degree of tumor differen-
tiation in several cancers [24, 39-42]. HOXA?7 is regulated

Table 2 The most frequent gene pairs in 400 breast cancer
samples. All the gene pairs are of a correlation-gained type. The
genes of Table 1 are shown in bold. The proportion represents the
ratio of the gene pairs of the same type (i.e,, correlation-gained or
lost) to the total number of patient-specific networks

Proportion of the gene pairs

Gene pair #gene pairs
in total cancer samples

MAMDC2-HOXA7 380 95.0%
MAMDC2-CCL14 379 94.8%
MAMDC2-ZNF204P 377 94.3%
MAMDC2-KL 376 94.0%
MAMDC2-SVEP1 376 94.0%
MAMDC2-CORO2B 375 93.8%
HOXA7-MEOX2 372 93.0%
HOXA7-HOXA9 366 91.5%
MAMDC2-SOBP 366 91.5%
MAMDC2-HOXA9 365 91.3%
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MFAPS

Table 2 are enclosed by a circle

Fig. 7 A subnetwork of the group-specific network of BRCA, which contains MAMDC2 and HOXA7. Genes in the most frequent gene pairs shown in

by several miRNAs, including miR-196 [43-45]. Thus,
both MAMDC2 and HOXA?7 are related with miR-196,
but a clear relation among them is to be uncovered.

Conclusion

So far, most approaches to constructing individual-
specific gene networks have been constructed based on
the differential expressions between a small number of
reference samples and a sample of interest. However,
such networks cannot reflect post-translational modifica-
tion and epigenetics and are not reliable because a slight
change to the reference samples can result in a signif-
icantly different sample-specific network for the same
sample.

In this paper, we presented a new approach to con-
structing cancer patient-specific and group-specific net-
works with multi-omics data. The main differences of
our method from previous ones are as follows: (1)
gene networks are constructed with multi-omics (mnRNA
expression, copy number variation, DNA methylation
and microRNA expression) data rather than with mRNA
expression data alone, (2) background networks can be
constructed with cancer samples of the specified type, and
(3) both patient individual-specific networks and patient
group-specific networks can be constructed. The results
of testing our method with several cancer types showed
that it constructs more informative and accurate gene
networks than existing methods.

Evaluation of our method with extensive data of seven
cancer types showed that changes in gene correlations
(APCC) between the reference samples and a patient sam-
ple is a more predictive feature than mRNA expression
levels and that gene networks constructed with multi-
omics data are more powerful than those with single
omics data in predicting cancer for most cancer types.
More work is required to validate the genes and gene
pairs identified in the cancer patient-specific and group-
specific networks. However, the method for constructing
networks specific to individual patients or patient groups
with multi-omics data should be useful aids in determin-
ing effective treatments to individual characteristics.
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