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Association of blood pressure with
cognitive function at midlife: a Mendelian
randomization study
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Abstract

Background: Whether high blood pressure has a causal effect on cognitive function as early as middle age is
unclear. We investigated whether high blood pressure (BP) causally impairs cognitive function at midlife using
Mendelian Randomization (MR).

Methods: We applied a two-sample MR approach to investigate the causal relationship between BP and midlife
cognitive performance measured by the Digit Symbol Substitution Test (DSST), Rey Auditory Verbal Learning Test
(RAVLT), and Stroop Interference test. We used a total of 109 genetic polymorphisms with established associations
with BP as instrumental variables and estimated gene-cognitive function association in 1369 middle-aged adults
(Mean age (SD): 50.8 (3.3), 54.0% women) from the CARDIA study.

Results: A 10 mmHg increment in genetically-predicted systolic, diastolic, or pulse pressure was associated with a
4.9 to 7.7-point lower DSST score (P = 0.002, SBP; P = 0.005, DBP and P = 0.008, PP), while a 10 mmHg increment in
genetically-predicted SBP was associated with a 0.7 point lower RAVLT and a 2.3 point higher Stroop (P = 0.046 and
0.011, respectively).

Conclusions: This MR analysis shows that high BP, especially SBP, is causally associated with poorer processing
speed, verbal memory, and executive function during midlife. These findings emphasize the need for further
investigation of the role and mechanisms of BP dysregulation on cognitive health in middle age and perhaps, more
broadly, across the lifespan.
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Background
Hypertension is one of the long-established modifiable
risk factors for age-related dementia [1]. Several studies
have reported that high blood pressure (BP) developed
by middle age is associated with cognitive decline [2, 3]
and with global and domain-specific cognitive impairment

in late life [4, 5]. However, other studies have reported non-
monotonic or null relationships between high BP and late-
life cognitive function [6, 7]. The inconsistency of results
may be due to differences in study populations, study
design, and methodological aspects. Reverse causation may
also play a role. Randomized clinical trials (RCTs) that
examine the long-term effects of elevated blood pressure
on cognitive ability would represent a gold standard but are
costly and difficult to conduct since only randomization
based on anti-hypertensive treatment rather than on BP
level can be achieved. Early clinical trials designed to evalu-
ate the cognitive benefits of antihypertensive treatment
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showed conflicting results, most of which were not in favor
of beneficial effects [8]. The more recent SPRINT MIND
trial reported that, in older adults at increased risk of car-
diovascular disease, intensive systolic BP control reduced
the risk of mild cognitive impairment (MCI) as well as the
combined occurrence of MCI or dementia [9]. Whether
the possible benefits of BP control in older adults extend
earlier in life is unknown.
We employed a two-sample MR approach to expand

existing knowledge about the effect of high BP burden
on cognitive health during middle age [10], a pivotal
period in the life course when cognitive function begins
to decline among healthy adults [11].

Methods
Study population
Participants were from the Coronary Artery Risk Develop-
ment in Young Adults (CARDIA) study, a prospective
multi-center cohort study investigating the natural history
and etiology of cardiovascular disease in 2637 African-
Americans and 2478 European-Americans aged 18–30
years at the time of initial examination in 1985–1986 [12].
Participants were recruited from the community in
Birmingham, AL; from selected census tracts in Chicago, IL
and Minneapolis, MN; and from the Kaiser-Permanente
health plan membership in Oakland, CA. The sample was
approximately balanced with respect to race, age, sex, and
education groups. Participants have completed nine
sequential examinations every 2 to 5 years for 30 years. For
this study, we used 1369 subjects of European ancestry who
had genome-wide genotype data and phenotypic data for
three cognitive tests at Year 25 examination.

Cognitive assessment
Three standardized tests in CARDIA were administered at
Year 25 examination (2010–2011) to assess major aspects
of cognitive function by trained and certified technicians
following an established protocol as described elsewhere
[13] and in the supplemental materials (Additional File 1).
Briefly, the battery of tests included the Rey Auditory
Verbal Learning Test (RAVLT) (score range: 0–15), a
measure of verbal learning and memory [14]; the Digit
Symbol Substitution Test (DSST) (Part D) (score range: 0–
133), a measure primarily of psychomotor speed; and the
Stroop Interference Test (score range: 1–160), a measure of
executive function [15]. A higher score in DSST and RAVL
T indicates better cognition in the corresponding domain
whereas that in the Stroop Interference test reflects poor
cognitive performance.

Instrumental variables and association analysis
A total of 152 single nucleotide polymorphisms (SNPs)
previously identified in one of the largest GWAS of BP
in individuals of European descent [16] were selected for

analysis. These SNPS were selected based on their
genome-wide significant association with blood pressure
traits (P < 5 × 10− 8) and evidence of independent replica-
tion in multiple studies. From the summary statistics, we
obtained the association estimate of each SNP with
systolic blood pressure (SBP), diastolic blood pressure
(DBP), and pulse pressure (PP) respectively, which had
been replicated among 140,886 European participants.
Of these, 145 were available in CARDIA. To minimize
pleiotropic effects [17], we removed 8 SNPs which over-
lapped or were in high linkage disequilibrium (LD) (r2 >
0.8) with SNPs influencing either known BP risk factors
(body mass index (BMI), smoking, and type 2 diabetes),
which can serve as confounders; or education, which
may bias the gene-cognition association [18]. We also
pruned SNPs that were in LD with one another at r2

greater than 0.001 within a 10 kb distance. Thus, we
used 109 SNPs independently and exclusively associated
with BP at genome-wide significance level as instrumen-
tal variables (IVs) (99 for SBP, 98 for DBP, and 98 for
PP, Table S1). We estimated the allelic effect of each
SNP on measures of cognitive performance in 1369
CARDIA participants adjusting for age, sex, and study
site. We aligned the direction of SNP-cognitive function
association with that in the BP GWAS.

Statistical analysis
We implemented a multivariable two-sample Mendelian
Randomization (MR) approach using the TwoSampleMR
R package [19] to explore the causal association of
genetically-predicted BPs with DSST, RAVLT, and Stroop
test’s performance. A summary of our analytical approach
is shown in Figure S1 (Additional file 1). As primary ana-
lysis, we employed a standard inverse-variance weighted
(IVW) method to derive the causal estimates for each
variant, which were combined by random-effects meta-
analysis. We carried out detection of potentially invalid or
influential instruments using radial plots in RadialMR
[20]. We then repeated IVW MR analyses after removing
the outliers. We applied additional MR methods including
the weighted median method [21], MR-Egger regression
[22], and the contamination mixture MR [23] as sensitivity
analyses for robust inference.
To examine the effect of potential unbalanced plei-

otropy on causal estimates, we employed the MR-Egger
intercept test [24], the Mendelian Randomization
Pleiotropy RESidual Sum and Outlier (MRPRESSO) test
[25] and constructed funnel plots [26]. We evaluated the
assumption of “NO Measurement Error” (NOME) by
Bowden I2 statistics. We further estimated the hetero-
geneity of selected IVs by Cochran’s Q test [27]. To pre-
clude the possibility that the causal inference was driven
by any individual variant, we performed a leave-one-out
analysis for the IVW and MR-Egger methods.
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Because of the overlap in genetic instruments for the 3
BP measures (Table S1, Additional file 1) and correlations
among cognitive tests, we did not adjust for multiple test-
ing. A P-value of association less than 0.05 is considered
significant.

Results
The CARDIA participants were in their fifties (Mean
[range] age: 51 [42–57] years) at Year 25. They were well
educated but were slightly overweight. One-quarter of
them were hypertensive, but less than one fifth were
taking anti-hypertension medication. The prevalence of
type 2 diabetes and current smoking were low (Table 1).
The most notable association by the standard IVW

method was found between midlife genetically-predicted
BP level and DSST score. For each unit (mm Hg) incre-
ment in genetically-predicted BP level, there was a 0.49
to 0.67-point lower DSST score. There was no signifi-
cant association between genetically-predicted BPs and
performance on the RAVLT or Stroop Interference test.
The direction of association was however consistent
among the 3 cognitive tests (Table 2).

We conducted analyses to detect potential invalid and/
or influential instruments. Radial plots indicated the
presence of outlier instruments (Figure S2 in Additional
file 1). After removing these outliers, the causal associa-
tions between genetically-predicted BPs and midlife cog-
nitive function were generally strengthened (Table 2).
Notably, genetically-predicted SBP was now also associ-
ated with RAVLT and Stroop performance. Each unit
(mm Hg) increment in genetically-predicted SBP level
was associated with a 0.07-point lower RAVLT score
and a 0.23-point higher Stroop Interference test score
(Table 2).
The IVW method is optimally efficient when all

genetic variants are valid IVs but is biased when one or
more genetic variants are invalid IVs. Therefore, we
performed sensitivity analyses using additional MR
methods that vary in their robustness to the presence of
invalid IVs (Tables 3 and 4). The weighted median
method indicated a similar or stronger magnitude of
causal associations, although with larger confidence in-
tervals, while the MR-Egger method was insufficiently
powered. Estimates from the contamination mixture MR
method were similar to those of the IVW (Tables 3 and 4).
The Bowden I2 statistics across the three BP exposures
were all high, around 0.96, indicating a high strength of IVs
and a less than moderate degree of NOME assumption
violation (Tables 3 and 4). The mean F-statistics, another
measure of IV strength, were 29.4 for SBP, 32.8 for DBP,
and 26.0 for PP, indicating that our causal estimates are not
likely to be biased by weak IVs.
We also conducted sensitivity analyses to investigate

potential pleiotropy, which could invalidate MR assump-
tions and bias causal estimates. Indeed, a key assumption
of MR is that the IVs have an effect on the outcome
(cognition) only via the exposure (BP). Using the MR-
Egger intercept test, we did not detect evidence of
significant directional pleiotropy in any of the analyses
performed. Consistently, the MR-PRESSO global test
also did not indicate any evidence of directional plei-
otropy (Tables 3 and 4). We also plotted IV strength
against IV estimates in funnel plots (Figure S3) and con-
firmed the absence of pleiotropy. All of these plots
showed a symmetrical distribution indicating that pleio-
tropic effects were well balanced across all the genetic
variants. Cochran Q statistics also confirmed that there
was no evidence of heterogeneity in causal estimates
(Tables 3 and 4).
To further preclude the possibility that the causal

inference was driven by any individual variant, we
performed additional sensitivity analyses. Leave-one-out
results confirmed that the causal estimates were not
driven by the influence of any individual SNP (Figures
S4 and S5). Indeed, while omitting some variants placed
heavier burden on causal estimates than others, these

Table 1 Characteristics of 1369 CARDIA participants with
cognitive function at Year 25

Variable Value

Sample size, N 1369

Age (SD) (year) 50.8 (3.3)

Female (%) 739 (54.0)

Center (%)

Birmingham, AL 273 (19.9)

Chicago, IL 320 (23.4)

Minneapolis, MN 443 (32.4)

Oakland, CA 333 (24.3)

At least college education (%) 917 (67.0)

BMI (SD) (kg/m2) 28.3 (6.1)

Type2 Diabetes (%) 124 (9.1)

Current Smoking (%) 165 (12.1)

Systolic Blood Pressure (SD) (mmHg) 114.4 (13.7)

Diastolic Blood Pressure (SD) (mmHg) 70.8 (10.1)

Pulse Pressure (SD) (mmHg) 43.6 (7.6)

Hypertension (%) 341 (24.9)

HBP Rx use (%) 228 (16.7)

DSST (Mean (SD): Min-Max) 75.0 (14.9): 21–125

RAVLT (Mean (SD): Min-Max) 9.4 (3.1): 0–15

Stroop (Mean (SD): Min-Max) 19.3 (8.0): 4–71

Abbreviations: CARDIA, the Coronary Artery Risk Development in Young Adults
Study; SD Standard deviation, BMI Body mass index (calculated as weight in
kilograms divided by height in meters squared), HBP Rx Anti-hypertensive
medication, DSST Digit Symbol Substitution Test, RAVLT Rey Auditory Verbal
Learning Test, Stroop The Stroop Interference test
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estimates were, both, stable and consistent in direction
(did not cross the 0 line).

Discussion
Mendelian randomization holds substantial promise for
causal inference from observational data. This approach
mimics the random allocation in RCTs by using risk
factor-associated genetic variants as IVs. It is based on
the principle that the distribution of those genetic vari-
ants in the population is randomly assigned at meiosis,
independent of potential confounders and not suscep-
tible to reverse causation or other biases [17]. In this
study, we inferred the causal effect of high BP on midlife
cognitive function through a two-sample MR method
and further sensitivity analyses. We report that higher
genetically-predicted BP, especially SBP, is causally asso-
ciated with lower midlife processing speed and lower ex-
ecutive function and verbal memory but the estimated
effects of genetically-predicted BP on midlife cognitive
function is small.
A recent MR study from the UK Biobank and includ-

ing participants aged 40 to 70 years observed no detri-
mental effect of genetically-predicted SBP on cognitive
ability measured by a verbal-numerical reasoning test
[28]. Given the differences in study design, including
cognitive assessment and participant characteristics, it is
possible that one does not contradict the other. Indeed,
compared to our study, the UK Biobank study included
a large range in population age. Including older individ-
uals into the analysis has the potential to introduce
biases owing to the effect of high blood pressure on
mortality [29, 30]. Moreover, the relationship between
BP and cognitive function may vary across the lifespan.
For example, a MR study recently reported that higher
genetically-predicted SBP significantly lowered the risk
of Alzheimer’s disease [31].
The specific mechanisms that underlie the causal asso-

ciation between high BP and poor processing speed are
not known. One possible mechanism may involve the
known pathologies of hypertension-induced brain vascu-
lar injury, most notably to the cerebral small vessels.
Indeed, long-term hypertension is known to cause
vascular hypertrophy and microvascular remodeling,
which result in regional cerebral blood flow dysfunction
and lead to white matter disease and neuronal loss [32].
Indeed, previous studies have suggested that elevated BP
is a major risk factor for several magnetic resonance
imaging (MRI) markers of cerebral small vessel disease
(SVDs) [33]. For example, elevated SBP is associated
with brain atrophy, reduced gray matter volume and
white matter hyperintensities (WMH) [34], while DBP is
associated with brain atrophy and WMH [35]. It has
been shown that the presence of SVD appears to align
with a compromised cognitive profile of early-impaired

processing speed [36, 37]. Elevated BP may also affect
brain anatomical connectivity. Indeed, regional white
matter integrity is lower among individuals with higher
BP, regardless of hypertension status [38]. In a recent
study of cognitively healthy older adults, the relationship
between SBP and poorer processing speed appeared to
be mediated by functional connectivity of the right
superior temporal gyrus within the ventral attention
network (VAN) [39]. This is consistent with a previous
report showing that variation in structural organization
within the frontoparietal system, which comprises the
VAN, is associated with differences in attentional
functions, including visual short-term memory capacity,
processing speed, and spatial bias [40].
Whether antihypertensive treatment can reverse the

pathological process of vascular damage, restore cerebral
function, and improve cognitive ability remains inconclu-
sive. On one hand, it appears that lowering BP is helpful
to rehabilitate some of the vascular functions impaired by
BP elevation. For instance, a previous clinical trial among
subjects older than 70 suggested that right-shifted cerebral
autoregulation curve induced by hypertension can be
back-shifted towards normal through intensive BP lower-
ing [41]. On the other hand, however, most clinical trials
have failed to identify significant benefits of antihyperten-
sive therapy in improving cognitive fitness [8]. The major-
ity of these studies were carried out over a short period of
time and limited to aged populations on average between
62 to 83 years of age. Elderly individuals may be exposed
to the negative effects of hypertension for a longer time
and may have more severe vascular injury due to hyper-
tension than middle-aged adults, and, thus, may be more
resistant to the benefits of BP lowering. Moreover, the ef-
fects of antihypertensive treatment on cognitive function
or risk of dementia have been shown to differ across
therapeutic classes [42], suggesting that the neuroprotec-
tive effects of antihypertensive therapy may extend beyond
BP lowering.
Strengths of our study include the use of a multi-SNP

genetic instrument with well-established associations with
BP. The largest BP GWAS at the time of this analysis re-
ported genetic association for 267 SNPs in total, 115 of
which were newly validated [16]. We opted for the smaller
set of SNPs, which were previously identified with stronger
evidence of validity, although fewer IVs theoretically
reduce statistical power [43]. The use of summary data for
gene-BP association from a large GWAS analysis also im-
proved power and precision of our study. However, several
limitations are acknowledged. First, the genetic variants for
the various BP measures almost fully overlapped, which
makes it difficult to discriminate possible unique causal
relationships between the specific components of BP and
cognitive function. Excluding genetic variants that overlap
among BP traits would likely result in a loss of strength of
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our MR analyses. Second, possible effects of unmeasured
confounders are a recognized limitation of the MR ap-
proach. In particular, the possible confounding effects of
antihypertensive medication use could not be accounted
for in our analyses because the estimates of allelic effects
on BP were obtained from a GWAS that corrected for
medication use by adding 15 and 10mmHg to the SBP
and DBP values, respectively. If genetically predicted higher
BP is also associated with a higher probability of being on
antihypertensive medication as previously observed [31],
the true causal association between BP and cognitive
function is likely underestimated. Moreover, the GWAS
summary statistics used in this analysis adjusted for BMI
and, thus, can potentially yield biased estimates. However,
a recent study using both simulations and empirical data
from the UK Biobank showed that using adjusted and
corrected GWAS in MR analysis is unlikely to make a large
difference to causal estimates [44]. Third, these analyses
were conducted in persons of European ancestry. Whether
the results are generalizable to diverse populations remains
to be examined. Expanding efforts for genetic discoveries
of BP in African-Americans and Hispanics/Latinos is
required to meet this need. Finally, although this study
provided evidence for a causal relationship between SBP
and processing speed, it does not shed light on the possible
biological mechanisms involved.

Conclusion
By providing support for a causal relationship between
BP and cognitive health in middle age, our MR study
underscores the need for further investigations of the
role and mechanisms of BP dysfunction on cognitive
health across the lifespan, which may inform on early
intervention and timely treatment of hypertension to
maintain brain health.
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