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4q27 deletion and 7q36.1 microduplication
in a patient with multiple malformations
and hearing loss: a case report
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Abstract

Background: Chromosome deletions of the long arm of chromosome 4 in 4q syndrome are characterized by mild
facial and digital dysmorphism, developmental delay, growth retardation, and skeletal and cardiac anomalies, which
is regarded as an autism spectrum disorder. Moreover, some scarce reports indicate that patients with 4q interstitial
deletion and 7p duplication may present symptoms associated with hearing loss.

Case presentation: A boy with a severe developmental delay not only post-natal but also intrauterine and several
dysmorphic features including microcephaly, ocular hypertelorism, exophthalmos, low-set ears, single palmar flexion
crease, and overlapping toes presented discontinued cyanosis and recurrent respiratory infections. MRI, BAEP,
echocardiogram and bronchoscopy revealed that he had persistent falcine sinus with a thin corpus callosum, left
auditory pathway disorder, patent foramen ovale (2 mm), and tracheobronchomalacia with the right superior
bronchus arising from the lateral posterior wall of the right main bronchus. Finally, the patient died with severe
pneumonia at 10 months. Array CGH revealed a 23.62 Mb deletion at chromosome 4q27, arr [hg19] 4q27-q31.21
(121, 148, 089–144, 769, 263) × 1, and a 0.85 Mb duplication at chromosome 7q36.1, arr [hg19] 7q36.1-q36.2 (152,
510, 685–153, 363,5 98) × 3. It is rare for 4q syndrome cases or 7q duplications previously reported to have a
hearing disorder, pulmonary dysplasia, and pulmonary arterial hypertension.

Conclusions: The phenotype of our patient mainly reflects the effects of haploinsufficiency of FGF2, SPATA5,
NAA15, SMAD1, HHIP genes combined with a microduplication of 7q36.1.
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Background
Chromosome deletion/duplication is associated with
mental disorders and dysmorphism. 4q-syndrome is
characterized by chromosomal deletion at the break-
point 4q31 by Townes and colleagues firstly [1], and was
subsequently extended to interstitial and terminal dele-
tions of chromosome 4 [2–5] with an estimated inci-
dence of roughly 1 in 10,000 live births [3, 4]. In the
case of chromosomal duplications, the variable pheno-
typic expressions may vary due to different gene content
as a result of the unbalanced rearrangement and the in-
volvement of extrachromosomal material from other
chromosomes [6]. The incidence of duplication in the

long arm of chromosome 7 is much lower than 4q dele-
tion, and most of the 7q duplicated cases showed unbal-
anced aberrations resulted from the inheritance of
parental balanced chromosomal rearrangements [7–11].
Till now, there is no clinical report on patients with

genetic abnormality associated with chromosome 4q de-
letion and 7q duplication. In this paper, we describe a
patient with genetic abnormalities characterized with
23.62Mb deletion on the long arm of chromosome 4
and a microduplication on the long arm of chromosome
7 presented with hearing impairment, severe develop-
mental delay, and multisystem malformation.

Case presentation
The child was born as the third child and the first boy
to non-consanguineous healthy parents, at completion
of 36th weeks of gestation, with a reduced birth weight
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of 1350 g, length of 35 cm, and head circumference of
28 cm (less than -2SD), borne via cesarean delivery due
to the reduction of amniotic fluid. The mother was 30
years old and the father was 36 years old at the time of
delivery. Ultrasounds done during pregnancy was nor-
mal before the 30th week but indicated significant intra-
uterine growth retardation afterward. Dexamethasone
was prenatally administered to promote lung maturation
before delivery. The child suffered from irregular hypop-
nea immediately after birth and was relieved by positive
pressure ventilation within 30 s. After 10 minutes, the
child presented obvious respiratory distress syndrome
with tachypnea, chest-wall retraction, and cyanosis, and
was admitted to NICU for 41 days. However, on success-
ful therapies such as nasal intermittent positive pressure
ventilation, traumatic mechanical ventilation, and surfac-
tant replacement therapy dyspnea was relieved. Ultra-
sonic cardiogram was performed during the first week
revealed the patent ductus arteriosus and pulmonary ar-
terial hypertension, for which the sildenafil therapy was
initiated. Still, the cyanosis symptoms persisted when the
child cried or screamed, and had shown complete hear-
ing loss in the screening tests without congenital cyto-
megalovirus or syphilis infections. Chromosome analysis
revealed 46 XY, 4q deletion.
At the age of 3 months, the child was again hospital-

ized due to aspiration pneumonia and showed
exophthalmos, single transverse palmar creases, overlap-
ping toes, left inguinal hernia and severe dystrophy
(Fig. 1), and also developed gastroesophageal reflux dis-
ease (GERD). MRI showed persistent falcine sinus with a
thin corpus callosum (Fig. 2). Brainstem auditory evoked
potential (BAEP) was tested at 4 months of age which
revealed the left auditory pathway disorder showing no
reaction to clicking sounds ranging from 30 to 120 dB.
However, the right auditory pathway reaction was well
with a BAEP threshold of 30 dB. Bronchoscopy showed

tracheobronchomalacia (TBM) and the right superior
bronchus arising from the lateral posterior wall of the
right main bronchus. Ultrasonic cardiogram showed pa-
tent foramen ovale (2 mm) and normal pressure in the
pulmonary artery. CT and CTA of the heart were per-
formed which showed normal results. Metabolic diseases
screened with serum amino acids and urine organic
acids excluded congenital disorders, but all yielded nor-
mal results. During hospitalization, the child gained
weight nearly 1 kg per month when fed on Alfaré, but
was stopped due to family financial crisis and the weight
growth speed reduced drastically to a low level of 5.3 kg
at 8 months (less than -3SD). Finally, on reaching 10
months of age the child could not recover from cyanosis
and died due to severe pneumonia.

Chromosomal microarray analysis
CMA (Chromosomal microarray analysis) was per-
formed using SurePrint G3 customized array (Agilent
Technologies, Santa Clara, CA, USA). Previously vali-
dated platform settings were consistently utilized for
CNV detection and filtering. CNVs within the size range
of 2–400 kb were detected via CMA and were further
confirmed by manual inspection. It was revealed that
there were 23.62Mb deletion and 0.85Mb microduplica-
tion at chromosome 4q27, arr[hg19] 4q27-q31.21 (121,
148, 089–144, 769, 263) × 1 (Fig. 3), and chromosome
7q36.1, arr[hg19] 7q36.1-q36.2 (152, 510, 685–153, 363,
598) × 3 (Fig. 4), respectively. Moreover, it was evident
that within this deleted region there were 117 genes (64
listed in OMIM), and 10 genes listed in OMIM span
over the duplicated region.

Whole-exome sequencing
Genomic DNA samples were extracted from the pa-
tient’s peripheral blood using QIAamp® Blood Mini Kit
(Qiagen, Hilden, Germany). DNA target regions were

Fig. 1 Malformation of hands and feet. A single transverse palmar crease (a); The first toe overlapped with the second toe (b)
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captured by hybridizing the genomic DNA sample li-
brary with the Agilent SureSelect Human All Exon V5
(Agilent, USA). The captured and amplified DNA sam-
ples were sequenced using Illumina NovaSeq6000 (Illu-
mina, San Diego, CA, USA) with 150 base-paired end
reads.
The bioinformatics analysis of the raw data according

to ‘Standards and Guidelines for Validating Next-
Generation Sequencing Bioinformatics Pipelines’ [12],
include the following steps: Sequence Generation, Se-
quence Alignment, Variant Calling (SNV, INDEL, CNV),
Variant Filtering, Variant Annotation, and Variant
Prioritization. Indeed, we could find a deletion at
chromosome 4q27 (chr:121302077–144,797,407) × 1, but

could not get any other significant information from the
results and analysis of WES to explain the real cause of
hearing disorder of the child.

Discussion and conclusions
According to a literature search, there were no previous
reports describing any case with deletion of the long
arm of chromosome 4 and duplication of the long arm
of chromosome 7. Even though the coordinates of the
deletions have varied, our patient shared many clinical
features with patients who had deletions in the similar
region [13–15] (Table 1). All of them presented facial
dysmorphism and developmental delay, which have

Fig. 2 MRI image of head. Persistent falcine sinus and a thin corpus callosum confirmed by MRI

Fig. 3 Red is the deletion at the long arm of chromosome 4
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reported that 99 and 94% of patients with 4q deletions
presented these features respectively [4].
Unilateral hearing loss is more common than bilateral

[20], and it was previously reported that more than one
out of ten children initially diagnosed with unilateral
hearing loss will progress to bilateral hearing loss [21–
23]. Cochlear nerve deficiency is the most common type
of malformation observed in the setting of congenital
unilateral hearing loss [24–26]. Although there are re-
ports of familial unilateral hearing loss [27–30], genetic
mutations associated specifically with unilateral hearing
loss have yet not been identified with certainty [31].
There are 4 reports of 4q deletions or 7q duplications
with hearing impairment available in the literature. The
four cases included a 8-year-old boy with deletion in
4q35.1q35.2 region [16], a male infant with deletion in
4q33q35 [17], a 3-year-old girl with duplication of
7q34q35 and deletion in 7q36 [18], and a girl with Com-
plex rearrangement of 7q21.13-q22.1 [19], who were all
having bilateral hearing loss with low-set ears (Table 1).
Reviewing 141 cases in DECIPHER database showed that
only a girl (DECIPHER ID: 293597) with mutations in
SPATA5 (located in 4q28.1) and TSHR presented sen-
sorineural hearing impairment.
SPATA5, also known as a spermatogenesis-associated

factor (SPAF), was thought to express subcellular in the
spermatogonia and spermatocytes, and was associated
with mitochondrial function [32]. But the following
studies of SPATA5 have suggested a role of the SPATA5
gene not only in neuronal development but also in
spermatogenesis. It was dominantly cytosolic in cortical
neurons [33–36]. The SPATA5 deficiency affects

mitochondrial morphology and inhibits mitochondrial
dynamics, delays neuronal development, and is also as-
sociated with decreased cellular ATP [36]. All the pa-
tients with SPATA5 variants reported in the literature so
far have presented with developmental delay starting in
early infancy, 77% presented sensorineural hearing loss,
73% suffered from gastrointestinal problems such as
GERD and feeding problem, and 67% was revealed with
abnormal brain MRI including hypoplasia of corpus cal-
losum [36].
Furthermore, the deletion of fibroblast growth factor-2

(FGF2) might act an important role in our patient’s
phenotype. FGF2 has a haploinsufficiency score (HI
index) of 1.68% indicating a highly likely chance to ex-
hibit haploinsufficiency. It plays an important role in the
regulation of cell survival, cell division, angiogenesis, cell
differentiation, and cell migration and reaches high con-
centrations in the brain and pituitary. Moreover, it
encodes a kind of protein that is a member of the
fibroblast growth factor (FGF) family which is not
only implicated in limb development, wound healing
and tumor growth [37], but also stimulates prolifera-
tion of neuronal precursor cells isolated from differ-
ent regions of the developing central nervous system
[38]. FGF signaling is critically required for the
in vivo induction of the otic placode during embry-
onic inner ear development [39]. It is proved that
FGF2 could induce the proliferation and survival of
auditory neuroblasts in murine [40].
The NAA15 gene located at 4q31.1 involved in our pa-

tient’s deletion region has been proved to encode a com-
ponent of the Nat A N-acetyltransferase complex, which

Fig. 4 Blue is the duplication at the long arm of chromosome 7
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is essential for normal cell function in humans, tethering
the complex to the ribosome for posttranslational modi-
fication of proteins as they exit the ribosome [41]. Cheng
et al. [42] proved that haploinsufficiency, patients with
copy-number variation (CNV) deletions involving
NAA15 and surrounding genes can lead to mild intellec-
tual disability, mild dysmorphic features, motor delays,
growth retardation through identifying and phenotypic-
ally characterizing 38 individuals with different likely
gene disruption (LGD) variants in NAA15 that is
followed by functional assays in yeast.
In addition to SPATA5, FGF2, and NAA15, the defi-

ciency of SMAD1 may also play a role in the develop-
ment of pulmonary hypertension [43–45],. and the
HHIP possibly might have effected the lung malforma-
tion of our patient [46, 47].
In conclusion, we report a boy with a 23.62Mb of 4q

deletion and a 0.85Mb of 7q duplication, suffered from
severe developmental delay, and dysmorphic features
similar to other patients of 4q deletion or 7q duplication.
But his bronchial deformity, pulmonary arterial hyper-
tension, especially unilateral hearing loss seems to be
very unusual. The deletion of the region between 4q27-
q31.21 and the duplication between 7q36.1-q36.2 have
affected some genes leading to exhibit haploinsufficiency
and resulted in these clinical symptoms. The deficiency
of SPATA5 and FGF2 could give a possible explanation
for the unilateral hearing loss. In the future, the molecu-
lar genetic techniques by combining transcriptomic and
proteomic methods with array CGH, it would be pos-
sible to precisely examine this region to understand the
complex genomic characterization leading to various
pathophysiological abnormalities.
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