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Abstract

Background: High-throughput sequencing technology has yielded reliable and ultra-fast sequencing for DNA and
RNA. For tumor cells of cancer patients, when combining the results of DNA and RNA sequencing, one can identify
potential neoantigens that stimulate the immune response of the T cell. However, when the somatic mutations are
abundant, it is computationally challenging to efficiently prioritize the identified neoantigen candidates according
to their ability of activating the T cell immuno-response.

Methods: Numerous prioritization or prediction approaches have been proposed to address this issue but none of
them considers the original DNA loci of the neoantigens from the perspective of 3D genome. Based on our
previous discoveries, we propose to investigate the distribution of neoantigens with different immunogenicity
abilities in 3D genome and propose to adopt this important information into neoantigen prediction.
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Results: We retrospect the DNA origins of the immuno-positive and immuno-negative neoantigens in the context
of 3D genome and discovered that DNA loci of the immuno-positive neocantigens and immuno-negative
neoantigens have very different distribution pattern. Specifically, comparing to the background 3D genome, DNA
loci of the immuno-positive neoantigens tend to locate at specific regions in the 3D genome. We thus used this
information into neoantigen prediction and demonstrated the effectiveness of this approach.

Conclusion: We believe that the 3D genome information will help to increase the precision of neoantigen
prioritization and discovery and eventually benefit precision and personalized medicine in cancer immunotherapy.
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Background
In a variety of human malignancies, immunotherapies
via boosting the endogenous T cell’s ability to destroying
cancer cells have demonstrated therapeutic efficacy [1].
Based on clinical practices in a substantial fraction of pa-
tients, the inference of endogenous T cell with mounted
cancer-killing ability is that the T cell receptor (TCR) is
able to recognize peptide epitopes that are displayed on
major histocompatibility complexes (MHCs) on the sur-
face of the tumor cells. These cancer rejection epitopes
may be derived from two origins: the first origin of po-
tential cancer rejection antigens is formed by non-
mutated proteins to which T cell tolerance is incomplete
for instance, because of their restricted tissue expression
pattern; the second origin of potential cancer rejection
antigens is formed by peptides that cannot be found
from the normal human genome, so-called neoantigens
[1]. With the development of genome sequencing, it has
been revealed that during cancer initiation and progres-
sion, tens to thousands of different somatic mutations
are generated. Most of these mutations are passenger
mutations, meaning there is no obvious growth advan-
tage, and are often caused by genomic instability within
the tumor cells. A limited number of cancer mutations
are driver mutations which interfere with normal cell
regulation and help to drive cancer growth and resist-
ance to targeted therapies [2]. Both passenger mutations
and driver mutations can be nonsynonymous that alter
protein coding sequences, causing tumor to express ab-
normal proteins that cannot be found in normal cells.
When cell metabolize, the proteins possessing abnormal
sequences are cut into short peptides, namely epitopes,
and are presented on the cell surface by the major histo-
compatibility complex (MHC, or human leukocyte anti-
gen (HLA) in humans) which have a chance to be
recognizable by T cell as foreign antigens [2]. Because
each cancer patient has a unique somatic mutation com-
bination, leading to personalized epitopes, the neoanti-
gen therapy shed light on precision and personalized
cancer immunotherapy.

According to the discoveries mentioned above, in
theory therefore, if the potential neoantigens can be

identified via sequencing technology, one can
synthesize epitope peptides in vitro and validate their
efficacy in vivo (cancer cell-line or in mouse model)
before clinical practice [1, 2]. Indeed, cancers with a
single dominant mutation can often be treated effect-
ively by targeting the dominant driver mutation [2, 3].
However, when the somatic mutations are abundant,
which is the case in most cancer types, it is computa-
tionally challenging to efficiently prioritize the identi-
fied neoantigen candidates according to their ability
to activate the T cell's immuno-response [4]. Over
the past few decades, numerous neoantigen prediction
approaches have been proposed to address this issue
[5-7]. These approaches can be classified into two
major categories: the protein 3D structure-based ap-
proaches, which consider the peptide-MHC (pMHC)
and TCR 3D conformation, and the protein sequence-
based approaches, which consider the amino acid se-
quence of protein antigens. For the protein 3D
structure-based approaches, in some specific cases
when high quality pMHC 3D structures are available,
molecular dynamic (MD) methods are used to explore
the contact affinity of pMHC-TCR complex [8-10], in
most cases, however, the modelling or simulation by
protein docking and threading has to be used due to
the lack of high quality pMHC 3D structures. Most
approaches belong to the sequence-based category as
there are much larger data sets for training and valid-
ation [11, 12] and because they are usually very effi-
cient to set up [4, 13].

Early sequence-based methods relied on position-
specific scoring matrices (PSSMs), such as BIMAS [14]
and SYFPEITHI [15], in which the PSSMs are defined
from experimentally confirmed peptide binders of a par-
ticular MHC allele [4]. Later, more advanced methods
based on machine-learning techniques have been devel-
oped to capture and utilize the nonlinear nature of the
pMHC-TCR interaction which indeed demonstrated
better performance than the PSSM-based methods. Con-
sensus methods that combine multiple tools to obtain
more reliable predictions were also developed, such as
CONSENSUS [16] and NetMHCcons [17], which
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demonstrated better performances; for these methods
however, the performance gain is determined by the
weighting scheme which cost increased computational
power. When considering peptide binding, most
methods did not consider the HLA allele variety, there-
fore, pan-specific methods, such as NetMHCpan [6, 7],
are developed which allow the HLA type independent
prioritization.

As one of the widely adopted practices in neoanti-
gen prioritization, NetMHCpan first trains a neural
network based on multiple public datasets, then the
affinity of a given peptide-MHC considering the
polymorphic HLA types HLA-A, HLA-B or HLA-C
is computed according to the trained neural net-
work. NetMHCpan [7] and NetMHCIIpan [18] per-
form remarkably, even compared to allele-specific
approaches [4, 19]. However, although several assess-
ments and criteria were proposed in the past aiming
at a more fair and effective comparison [19-21],
there are no recent independent benchmark studies
that can be used to recommend specific tools up
until now. More importantly, however, to the best of
our knowledge, none of the neoantigen prediction
methods mentioned above consider the mutation
DNA loci of the neoantigens in the perspective of
3D genome, which carries much richer information
compared to the amino acid sequence alone [22]. In
this work, we retrospect the DNA origin of the
immuno-positive and immuno-negative neoantigens
in the context of the 3D genome and demonstrate
some discoveries that worth paying attention to.

Methods

Data collection and curation

All the peptide sequences and their corresponding im-
mune effectiveness were collected from IEDB (T Cell
Assay )[12] on May 27th 2018; the raw dataset contains
337,248 peptide records. We narrowed down to Homo
sapiens and MHC-I subtypes and then further restrain
the AA length to be equals to 9 with duplicated peptide
merged. Finally, we obtained 3909 qualified records with
809 immuno-positive peptides and 3100 immuno-
negative peptides that has mapping hits in the human
hg19 reference genome. Note that for identical peptides
with multiple immune experiments, we define positive
rate >0.8 as immuno-positive peptides and positive
rate < 0.2 as immuno-negative peptides. In detail, there
are two steps in this procedure: Step I. Extracting the
Homo sapiens peptide sequences and cleaning up the
dataset from initial dataset. We used the R package
PANDAS to create a data frame object and assigned the
column name by importing a name dictionary. Then we
filtered the dataset so that the only entries left have
“Homo sapiens” as their hostname and further cleaned
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up the dataset by filtering peptides with illegal amino
acid alphabet. Step II: Counting the number of the se-
quences that have positive qualitative measure. We keep
counting until the last appearance of a target sequence
and increase the positive counter by one whenever a
positive qualitative measure is detected. For the last ap-
pearance of the sequence, we can either add 1 if its posi-
tive or we skip to the next step. The counter resets every
time we finish counting positivity for a sequence and
move on to the next one. We store the counted values
into a hash table where the sequence combining the
MHC type serves as the hash key.

For the chromatin 3D conformation data, we used the
Hi-C data of hESC and IMR90 cell lines generated by
Bin Ren’s lab [23]. The contact frequencies and the sub-
sequent chromatin 3D modeling are based on these Hi-
C (genome-wise chromatin conformation capturing
technology) data.

Mapping peptides to human genome

To map the peptides to human genome (hgl9), we wrote
a pipeline to query the BLAST [24] web server and map
the gene names to chromosomes and starting positions.
The algorithm first divided the dataset into 711 folds
where each fold has 100 sequences for the BLAST server
to process. To set up the BLAST search, we regulated
the searching algorithm to search for Homo sapiens
matches only with entrez ID keywords and used the
PAM30 matrix to search for matches. We also adjusted
the gap costs to regulate gap penalty. After the setup, we
called BLAST iteratively and wrote the result into a tsv
file. For each match, we saved the accession and raw bit
score for the first hit. After acquiring the accessions, we
uploaded a list of refseq id to the DAVID tool [25] to
obtain the gene names composed with gene symbols.
The algorithm mapped gene names to chromosome po-
sitions, and we started with a dataset that records
chromosome positions and gene names for numerous
genes as our database. To save time during iterations,
we created two dictionaries recording chromosome posi-
tions with gene names as keys, one from the dataset we
produced from BLAST results and one from the data-
base. We iterated through the dictionaries simultan-
eously. If we found a match for the keys, we recorded
the chromosome positions in the result file. The final re-
sult is in the form of a tuple that contains peptides, HLA
subtype, chromosome number, and chromosome
position.

Chromatin 3D modeling

We developed a new method for modeling 3D confor-
mations of human genome using molecular dynamics
(MD) based approach with resolution of 500kb (bin
size) for hESC and IMR90 Hi-C data. In this method,
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each bin was coarse-grained as one bead and intact gen-
ome was modeled as 23 polymer chains represented by
bead-on-the-string structures. The spatial position of
each bead is affected by two factors: (1) chromatin con-
nectivity that constrains sequentially neighbor beads in
close spatial proximity and (2) chromatin activity that
ensures active regions are more likely to be located close
to the center of cell nucleus. In this work, chromatin ac-
tivity was estimated as compartment degree that can be
directly calculated from Hi-C matrix with algorithm de-
scribed in previous work [26]. Based on the relative
values of compartment degrees, all the beads were
assigned distances with different values to nuclear center
and then the conformation of chromatin was optimized
from random structures with molecular dynamics ap-
proach by applying bias potential to satisfy these dis-
tance constraints. For each cell linage, 300 conformation
replicas were optimized from random ones to reduce
possible bias for further analysis.

Neoantigen prediction via 3D genome nearest
neighboring

For a given target peptide, we first retrieve its 3D coordi-
nates <X, y, z>based on the 3D modeling results men-
tioned above. For the training dataset, i.e., the peptides
with known immunogenicity, we also retrieve their 3D
coordinates. We then compute the Euclidean distances
between the target peptide’s 3D genome coordinates
with all the training peptides’ 3D coordinates. Note that
we only consider those peptides whose corresponding
chromosome are the same as the target peptide since
intra-chromosomal distances are usually significantly
closer than the inter-chromosomal distances due to the
chromosome territory principle. We then collect the K-
nearest neighbor (KNN) peptides and count the im-
munogenicity percentage, where k is chosen to be 10.
The majority voting scheme is adopted to calculate the
target peptides’ KNN prediction scores. The predicted
scores were further combined with the state-of-the-art
neoantigen prediction algorithm, ie, netMHCpan to
generate the final prediction scores. In detail, a
netMHCPan prediction score is subtracted by the KNN
prediction score to achieve the final immunogenicity
prediction score. We term this method 3DGenome-NN.
The neoantigen prediction is then the prioritization
based on this score.

Results

Neoantigen proximity in individual chromosome (intra-
chromosome)

We generated all peptide pairs between immuno-
positive peptides and peptide pairs between
immuno-negative peptides. Then on each chromo-
some (intra-chromosome), we generate each pair’s
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contact frequency on hESC and IMR90 Hi-C data
[23]. The results are shown in Fig. 1la and b. Jointly
from these results, we found that positive peptides’
corresponding DNA loci tend to be more proximate
(p <0.05) than the negative ones on chromosome 1
(chrl), chr7, chrl0, and chrl2, while negative pep-
tides’ corresponding DNA loci tend to be more
proximate than the positive ones on chromosome
chr2, chr5, chr8, chrll, and chr20.

Neoantigen proximity in the whole genome (inter-
chromosome)
For the inter-chromosomal peptide pairs, i.e., three types
of immuno-pos.-pos. Pairs, immuno-neg.-neg. Pairs, and
immune-pos.-neg. Pairs, we collect their contact fre-
quencies based on the hESC and IMR90 Hi-C datasets
respectively, and calculate the average values and median
values. Figure 2 demonstrates the distributions of the
contact frequencies of all the three types of peptide pairs
on the two Hi-C datasets respectively. We found that
the immuno-pos.-pos. Peptide pairs are statistically more
proximate to each other comparing to immuno-neg.-
neg. Peptide pairs, while the immune-pos.-neg. Pairs’
proximities are in between; the corresponding P-values
are all smaller than 1x 10 % (note: large sample size,
i.e., number of pairs, also contribute to small P-values).
Combining the results shown in Figs. 1 and 2, it tells
us that globally (inter-chr.), immuno-positive peptide
pairs tend to cluster more than the immuno-negative
peptide pairs, while locally (intra-chr.), it varies from
chromosome to chromosome, and in general, this piece
of information contributes to prioritizing peptide’s
immunogenicity.

Neoantigen prediction results

We adopted the leave-one-out cross validation scheme
to compare the neoantigen prediction effectiveness be-
tween our proposed method 3D Genome Nearest Neigh-
boring (3DGenome-NN) described in subsection 2.4 of
the Methods section and the current state-of-the-art al-
gorithms NetMHC and NetMHCpan. After prediction
for each target peptide, we obtain a prediction score vec-
tor, we then collected their corresponding known im-
munogenicity vector (ground truth) and calculate and
plotted their ROC curve and Precision-Recall curve as
shown in Fig. 3. Based on the AUC (area under ROC)
and AUPR (area under precision-recall) scores, we dem-
onstrate that 3DGenome-NN outperforms NetMHC and
NetMHCpan to a significant level in distinguishing
immuno-positive neoantigens and immuno-negative
neoantigens. As this gain of discriminative power is due
to the employment of 3D genome information, it sup-
ports the conjecture that the distributions of the DNA
origins of the immuno-positive peptides and immuno-
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negative peptides are not random on the 3D genome but
obey certain patterns.

Discussion

In cancer immune therapy, neoantigen therapy is a
rising and promising topic as it can be genuinely
personalized and precise. However, when the som-
atic mutations are abundant, it is computationally
hard to efficiently prioritize the identified neoanti-
gen candidates according to their ability of activat-
ing the T cell immuno-response and numerous
prioritization or prediction approaches have been
proposed to address this issue. However, none of
the existing approaches considers the original
DNA loci of the neoantigens in the 3D genome
perspective, to the best of our knowledge. In this

work, we retrospect the DNA origin of the
immuno-positive and immuno-negative neoanti-
gens in the context of 3D genome and discovered
that immuno-positive and immuno-negative
neoantigens’ corresponding DNA tend to cluster
differently in different chromosomes (intra-
chromosome) and tend to cluster genome-wise (in-
ter-chromosome). Specifically, = immuno-active
neoantigens’ corresponding DNA tend to locate at
specific regions in the 3D genome. We therefore
believe that by adopting the 3D genome informa-
tion in advanced machine learning [27-29] and
feature selection technologies [30-32], more pre-
cise neoantigen prioritization and discovery can be
achieved and may eventually benefit precision
medicine in cancer immunotherapy.
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Conclusion

In this work, we discovered that the corresponding DNA
loci of the immuno-positive and immuno-negative
neoantigens are distributed differently in the 3D genome
space. Specifically, in some chromosomes, positive ones
tend to cluster together, comparing to negative ones. In
whole-genome scale, this also holds true. We discovered
that by incorporating the 3D genome information into
existing neoantigen prediction methods, better predic-
tion accuracies can be achieved. We thus believe that
the 3D genome information can increase the precision
of neoantigen prioritization and discovery and eventually
benefit precision and personalized medicine in cancer
immunotherapy.
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l: peptide-MHC Class I; HLA: Human Leukocyte Antigen

Acknowledgements
We would like to thank the reviewers for their valuable suggestions and
remarks, which have contributed to the improvement of our paper.

About this supplement

This article has been published as part of BMC Medical Genomics Volume 13
Supplement 6, 2020: Selected articles from the 15th International Symposium
on Bioinformatics Research and Applications (ISBRA-19): medical genomics.
The full contents of the supplement are available online at https://
bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-
supplement-6.

Authors’ contributions

YS, MZ, LD, TWC, GH, and ZH conceived and designed the study. YS, MZ, LM,
XS, XS, ZG, and QL carried out experiments. YS, MZ, LM, XS, XS, ZG, QL, ML
YY, YW, LD, TWC, GH, and ZH interpreted the data and provided insights. YS,
MZ, and LM drafted the manuscript. All authors read and approved final
version of the manuscript.

Funding

This project is supported by the National Key Research and Development
Program (2016YFC0906400, the National Natural Science Fund of China
(NSFC 81502423, 81672772, 21703136), China National Science and
Technology Major Project for Prevention and Treatment of Infectious
Diseases (20172X10203207, to ZG.H), the Shanghai Pujiang Talents Fund
(15PJ1404100), the Chinese Education Minister-Returned Oversea Talent Ini-
tiative Fund (15001643), the Shanghai Board of Education-Science Innovation
(1527014), and the Shanghai Jiaotong University Translational Medicine
Funding (18X190020016, 19X190020124, 19X190020114) and Shanghai Jiao-
tong University Chenxin-B (16X100080032 to Y.S.). Publication costs are
funded by one of the above mentioned funding. The funding authorities did
not have any role in the design of the study and collection, analysis, and in-
terpretation of data and in writing the manuscript.

Availability of data and materials
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no conflicts of interest to disclose.

Page 7 of 8

Author details

'Bio-X Institutes, Key Laboratory for the Genetics of Developmental and
Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan
Road, Shanghai 200030, China. “Shanghai Key Laboratory of Psychotic
Disorders, and Brain Science and Technology Research Center, Shanghai Jiao
Tong University, 1954 Huashan Road, Shanghai 200030, China. *Key
Laboratory of Systems Biomedicine, Ministry of Education. Shanghai Center
for Systems Biomedicine, Shanghai Jiaotong University, Shanghai 200240,
China. “University of California at San Diego, 9500 Gilman Dr. La Jolla, San
Diego, CA 92093, USA. °College of Biophotonics, South China Normal
University, Guangzhou 510631, China. °The Eighth Affiliated Hospital, Sun
Yat-Sen University, Shenzhen 518033, China. 7University of California at Los
Angeles, Los Angeles, CA 90095-1732, USA. ®David R. Cheriton School of
Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
“International Peace Maternity and Child Health Hospital, Shanghai Jiaotong
University School of Medicine, Shanghai 200030, China. '°School of
Computer Science, The University of Sydney, Sydney, NSW 2006, Australia.

Received: 4 March 2020 Accepted: 24 March 2020
Published: 27 August 2020

References

1. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy.
Science. 2015,348(6230):69-74.

2. Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM. Targeting
neoantigens to augment antitumour immunity. Nat Rev Cancer. 2017;17(4):
209-22.

3. OBrien SG, et al. Imatinib compared with interferon and low-dose
cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N
Engl J Med. 2003;348(11):994-1004.

4. Hackl H, Charoentong P, Finotello F, Trajanoski Z. Computational genomics
tools for dissecting tumour-immune cell interactions. Nat Rev Genet. 2016;
17(8):441-58.

5. Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M.
NetMHC-3.0: accurate web accessible predictions of human, mouse and
monkey MHC class | affinities for peptides of length 8-11. Nucleic Acids Res.
2008;36(Web Server issue):W509-12.

6. Nielsen M, Andreatta M. NetMHCpan-3.0; improved prediction of binding to
MHC class | molecules integrating information from multiple receptor and
peptide length datasets. Genome Med. 2016;8(1):33.

7. JurtzV, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0:
Improved Peptide-MHC Class | Interaction Predictions Integrating Eluted
Ligand and Peptide Binding Affinity Data. J Immunol. 2017;199(9):3360-8.

8. Blevins SJ, et al. How structural adaptability exists alongside HLA-A2 bias in
the human alpha beta TCR repertoire. Proc Natl Acad Sci U S A. 2016;113(9):
E1276-85.

9. Riley TP, et al. T cell receptor cross-reactivity expanded by dramatic peptide-
MHC adaptability. Nat Chem Biol. 2018;14(10):934.

10. Wang Y, et al. How an alloreactive T-cell receptor achieves peptide and
MHC specificity. Proc Natl Acad Sci U S A. 2017;114(24):E4792-801.

11. Zhang GL, Lin HH, Keskin DB, Reinherz EL, Brusic V. Dana-Farber repository
for machine learning in immunology. J Immunol Methods. 2011;374(1-2):
18-25.

12. Vita R, et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic
Acids Res. 2019;47(D1):D339-43.

13. Gupta SK Jaitly T, Schmitz U, Schuler G, Wolkenhauer O, Vera J. Personalized
cancer immunotherapy using systems medicine approaches. Brief Bioinform.
2016;17(3):453-67.

14.  Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2
binding peptides based on independent binding of individual peptide side-
chains. J Immunol. 1994;152(1):163-75.

15. Schuler MM, Nastke MD, Stevanovikc S. SYFPEITHI: database for searching
and T-cell epitope prediction. Methods Mol Biol. 2007;409:75-93.

16.  Moutaftsi M, et al. A consensus epitope prediction approach identifies the
breadth of murine TCD8+-cell responses to vaccinia virus. Nat Biotechnol.
Jul 2006;24(7):817-9.

17. Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consensus

method for the major histocompatibility complex class | predictions.

Immunogenetics. 2012,64(3):177-86.

Karosiene E, Rasmussen M, Blicher T, Lund O, Buus S, Nielsen M.

NetMHClIpan-3.0, a common pan-specific MHC class Il prediction method

o


https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-6
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-6
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-6

Shi et al. BMIC Medical Genomics 2020, 13(Suppl 6):62

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

including all three human MHC class Il isotypes, HLA-DR, HLA-DP and HLA-
DQ. Immunogenetics. 2013;65(10):711-24.

Trolle T, et al. Automated benchmarking of peptide-MHC class | binding
predictions. Bioinformatics. 2015;31(13):2174-81.

Peters B, et al. A community resource benchmarking predictions of peptide
binding to MHC-I molecules. PLoS Comput Biol. 2006;2(6):e65.

Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B. A systematic
assessment of MHC class Il peptide binding predictions and evaluation of a
consensus approach. PLoS Comput Biol. 2008:4(4):21000048.

ShiY, Su XB, He KY, Wu BH, Zhang BY, Han ZG. Chromatin accessibility
contributes to simultaneous mutations of cancer genes. Sci Rep. 2016;6:
35270.

Dixon JR, et al. Topological domains in mammalian genomes identified by
analysis of chromatin interactions. Nature. 2012;485(7398):376-80.

Boratyn GM, et al. BLAST: a more efficient report with usability
improvements. Nucleic Acids Res. 2013;41(Web Server issue):W29-33.
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of
large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):
44-57.

Xie WJ, Meng L, Liu S, Zhang L, Cai X, Gao YQ. Structural Modeling of
Chromatin Integrates Genome Features and Reveals Chromosome Folding
Principle. Sci Rep. 2017;7(1):2818.

Mnih 'V, et al. Human-level control through deep reinforcement learning.
Nature. 2015;518(7540):529-33.

Yuan Y, et al. DeepGene: an advanced cancer type classifier based on deep
learning and somatic point mutations. BMC Bioinformatics. 2016;17(Suppl
17):476.

Yuan Y, et al. Cancer type prediction based on copy number aberration and
chromatin 3D structure with convolutional neural networks. BMC Genomics.
2018,19(Suppl 6):565.

Cai ZP, Xu LZ. Using gene clustering to identify discriminatory genes with
higher classification accuracy. Bibe 2006: Sixth leee Symp Bioinformatics
Bioeng Proc. 2006. p. 235-42.

Yang K, Cai Z, Li J, Lin G. A stable gene selection in microarray data analysis.
BMC Bioinformatics. 2006;7:228.

Cai Z, Zhang T, Wan XF. A computational framework for influenza antigenic
cartography. PLoS Comput Biol. 2010;6(10):21000949.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 8 of 8

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Data collection and curation
	Mapping peptides to human genome
	Chromatin 3D modeling
	Neoantigen prediction via 3D genome nearest neighboring

	Results
	Neoantigen proximity in individual chromosome (intra-chromosome)
	Neoantigen proximity in the whole genome (inter-chromosome)
	Neoantigen prediction results

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	About this supplement
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

