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A novel prognostic prediction model based 
on seven immune‑related RNAs for predicting 
overall survival of patients in early cervical 
squamous cell carcinoma
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Abstract 

Background:  In this study, we aimed to mine immune-related RNAs expressed in early cervical squamous cell carci-
noma to construct prognostic prediction models.

Methods:  The RNA sequencing data of 309 cervical squamous cell carcinoma (CSCC) cases, including data of 
individuals with available clinical information, were obtained from The Cancer Genome Atlas (TCGA) database. We 
included 181 early-stage CSCC tumor samples with clinical survival and prognosis information (training dataset). Then, 
we downloaded the GSE44001 gene expression profile data from the National Center for Biotechnology Informa-
tion Gene Expression Omnibus (validation dataset). Gene ontology annotation and the Kyoto Encyclopedia of Genes 
and Genomes pathway analyses were used to analyze the biological functions of differentially expressed immune-
related genes (DEIRGs). We established protein–protein interactions and competing endogenous RNA networks using 
Cytoscape. Using the Kaplan–Meier method, we evaluated the association between the high- and low-risk groups 
and the actual survival and prognosis information. Our univariate and multivariate Cox regression analyses screened 
for independent prognostic factors.

Results:  We identified seven prognosis-related signature genes (RBAKDN, CXCL2, ZAP70, CLEC2D, CD27, KLRB1, 
VCAM1), the expression of which was markedly associated with overall survival (OS) in CSCC patients. Also, the risk 
score of the seven-gene signature discripted superior ability to categorize CSCC patients into high-risk and low-risk 
groups, with a observablydifferent OS in the training and validation datasets. We screened two independent prognos-
tic factors (Pathologic N and prognostic score model status) that correlated significantly by univariate and multivariate 
Cox regression analyses in the TCGA dataset. To further explore the potential mechanism of immune-related genes, 
we observed associated essential high-risk genes with a cytokine–cytokine receptor interaction.

Conclusions:  This study established an immune-related RNA signature, which provided a reliable prognostic tool 
and may be of great significance for determining immune-related biomarkers in CSCC.
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Background
Cervical cancer (CC) is the second primary cause of 
death for women worldwide, accounting for more 
than 260,000 deaths each year (1). Cervical squamous 
cell carcinoma (CSCC) is the most common type of 
CC (2). Cervical intraepithelial neoplasia (CIN) is a 
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precancerous lesion that is strongly related to CC and 
includes CIN I–III, each of which reflects the succes-
sive progression of CC (3). The early clinical symptoms 
of CC are often undetectable. Therefore, it is crucial to 
find markers of early-stage CC to improve the preven-
tion and treatment of this disease. Biomarker discovery 
is a key to the early diagnosis of CC and improvements 
in cure and survival rates.

Recently, immunotherapy has been proved to be a 
vigorous modality to treat multifarious conditions, 
given that our understanding of immune system func-
tion has improved in essence (4). As a Human Papillo-
mavirus (HPV)-driven cancer, CC appears to be at least 
partly mediated by the immune system. Checkpoint 
immunotherapy has shown significant efficacy in lung, 
bladder, renal, and head and neck cancers (5). CC will 
hopefully, at some point, be considered a tumor that 
benefits from immunotherapeutic agents. Zhao et  al. 
(6) found that MMP1 may be a novel biomarker for 
immunotherapy and prognostic assessment of patients 
with CC. Karpathiou et  al. (7) indicated that PD-L1 
and CTLA-4 immune cell expression was associated 
with lymph node metastasis and are, therefore, poten-
tial therapeutic targets in CC. Wang et  al. (8) found 
that immune system-related genes referred to the T cell 
receptor (TCR) signaling pathway are associated with 
the overall survival (OS) of CSCC patients. Previous 
studies reported that immune checkpoints are initiated 
by ligand-receptor interactions that are simply blocked 
by antibodies or modulated by recombinant forms of 
ligands or receptors. Thus, these immune checkpoints 
are attractive drug targets for cancer therapeutics (9). 
Furthermore, Yu et  al. (10) analyzed the gene expres-
sion data from The Cancer Genome Atlas (TCGA) and 
constructed a risk model based on 26 DElncRNAs. The 
results indicated that the risk prediction model had 
a properly high accuracy to predict the prognosis of 
CSCC patients, suggesting that these DElncRNAs were 
possibly related to CSCC prognosis. Zhou et  al. (11) 
established a regression model by CSCC gene expres-
sion, the prediction accuracy of which for CSCC was 
high. Although previous studies have identified a num-
ber of gene markers in the occurrence and recurrence 
of CSCC, further research is needed on the impact of 
gene characteristics on OS survival and prognosis.

In our study, we first analyzed the transcriptome to 
determine the expression level characteristics of early-
stage CSCC cases in TCGA database. After assessing 
immune-related genes, we screened the RNAs closely 
related to CSCC and the immune system. The results 
allowed us to construct a prognostic model based on 
prognosis-related RNAs.

Methods
Data collection and preprocessing
As of March 12, 2020, the RNA sequencing data of 309 
patients with CSCC, including individuals whose clini-
cal information was available, were downloaded from 
TCGA. After analyzing the corresponding clinical data, 
only the early-stage CSCC tumor samples, marked as 
“stage I” and “stage II” in the “Pathologic stage” category, 
were retained. Finally, we included 181 early-stage CSCC 
tumor samples with clinical survival-related prognostic 
information. These cases served as the training dataset 
to construct a prognostic model. Therefore, we down-
loaded the GSE44001 gene expression profile data from 
the National Center for Biotechnology Information Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) 
(17) based on the platform of the GPL14951 (18) Illumina 
HumanHT-12 WG-DASL V4.0 R2 Expression Bead-
Chip. The GSE44001 dataset included 300 CC samples 
with survival-related prognostic information; these cases 
served as the validation dataset to construct the prognos-
tic model.

Screening of differentially expressed RNAs 
and differentially expressed immune‑regulated genes
We used 4528 lncRNAs and 19,194 protein-coding genes 
in the HUGO Gene Nomenclature Committee (http://
www.genen​ames.org/) (20) to identify the lncRNAs and 
mRNAs in the expression profile. Then, we divided the 
cancer cases into the poor prognostic group (A group: 
cases with a survival time less than three years and death) 
or the good prognostic group (B group: cases with a sur-
vival time greater than five years) (21). Next, limma pack-
age (Version 3.34.7, https​://bioco​nduct​or.org/packa​ges/
relea​se/bioc/html/limma​.html) (22) was used to screen 
the differentially expressed RNAs (DERs) in the poor 
prognostic and good prognostic groups using the false 
discovery rate (FDR) threshold of < 0.05 and |log2FC|> 1 
(2 times). According to the expression value of the DERs 
in the training dataset, the heatmap package in R 3.4.1 
(Version 1.0.8; https​://cran.r-proje​ct.org/web/packa​ges/
pheat​map/index​.html) (23) was used to perform bidirec-
tional hierarchical clustering on the expression of DER 
values based on the centered Pearson correlation algo-
rithm (24).

Moreover, in the AmiGO 2 (http://amigo​.geneo​ntolo​
gy.org/amigo​) database, “immune” was used as the key-
word to search the biological processes related to immu-
nity, after which we downloaded the genes involved in 
immune-related biological processes. We also down-
loaded all the related pathways and genes involved in the 
“immune” entry from the KEGG database. We obtained 
differentially expressed immune-regulated genes 
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(DEIRGs) by crossing the previously acquired DEGs list 
with the list of immune-related genes.

Construction of the co‑expression network
We used the cor.test function in R3.4.1 (https​://stat.ethz.
ch/R-manua​l/R-devel​/libra​ry/stats​/html/cor.test.html) to 
calculate the Pearson correlation coefficient (PCC) (25) 
between the expression level of the intersecting DEGs in 
the CSCC training dataset and the DElncRNAs, which 
was performed to construct a co-expression network of 
DElncRNA and intersecting DEGs. This network was 
visualized using Cytoscape software (version 3.6.1, https​
://cytos​cape.org/) (26). An analysis of the Gene Ontology 
(GO) (22) biological process, and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment anno-
tation, based on the Database for Annotation, Visualiza-
tion and Integrated Discovery (27) (version 6.8, https​://
david​.ncifc​rf.gov/) (28, 29), was performed on the inter-
secting DEGs with P < 0.05 as the threshold.

Construction of a prognostic model based on DERs
Our univariate and multivariate Cox regression analy-
ses, using the survival package in R3.4.4 (version 2.41-1, 
http://bioco​nduct​or.org/packa​ges/survi​valr) (30) were 
used to screen the DERs that were significantly related to 
overall survival (OS) and prognoses based on the CSCC 
tumor samples in the training dataset; a P < 0.05 was used 
as the threshold according to the log-rank test. A LASSO 
Cox regression (31) model, based on the L1-penalized 
regularization regression algorithm in the penalized 
package (Version 0.9-50; http://bioco​nduct​or.org/packa​
ges/penal​ized/) (32) in R3.4.1, was used to screen out 
the optimized combinations of the prognosis-related sig-
nature DERs (the optimized parameter “lambda” in the 
model was selected and calculated through a 1000 times 
cross validation likelihood cycle). The Kaplan–Meier 
(KM) (33) survival curve in the R3.4.1 language survival 
package (version 2.41-1) (30) was used to evaluate the 
association between patients OS time and the expression 
of the optimized DERs. Then, based on the prognostic 
coefficient of genes in the optimal DER combinations, 
obtained from the previous regression algorithm, we 
constructed a risk prediction model, based on the gene 
expression level in the training dataset, and calculated 
the risk score of each sample. The prognostic score (PS) 
was calculated as follows:

where βDERs represents the prognostic coefficient of the 
optimized DERs in the LASSO algorithm, andExpDERs 
represents the expression level of the corresponding 
DERs in the training dataset.

PS =

∑
βDERs × ExpDERs

With the median PS as the cutoff, the samples in the 
training dataset were separate into high-risk and low-
risk groups, and the correlation between the risk model 
and prognosis was evaluated by a KM (33) survival curve 
in the R3.4.1 language survival package (version 2.41-1) 
(30). Moreover, we extracted the expression value of the 
target DEGs from the GSE44001 validation dataset. Each 
sample’s PS score was obtained according to the equa-
tion described above by using the β value from training 
dataset. The validation dataset samples were divided into 
the high- and low-risk sample groups based on the PS 
value of the validation dataset. The survival package (ver-
sion 2.41-1) and the KM curve method in R3.4.1 (30) was 
used to evaluate the association between the high- and 
low-risk groups and the actual survival-related prognosis 
information for the validation dataset samples.

Screening of independent prognostic clinical factors
We performed the univariate and multivariate Cox 
regression analyses using the R3.4.1 language survival 
package (Version 2.41-1) (34) and screened the inde-
pendent prognostic clinical factors in CSCC samples 
from the TCGA dataset with a threshold of P < 0.05 from 
the log-rank test to screen for significant correlations.

To explore the association between the independ-
ent prognostic clinical factors and the risk groups, we 
performed a clinical factor stratification analysis of the 
selected independent prognostic factors that were signifi-
cantly correlated: the samples were divided into different 
groups according to the clinical factors, and a correlation 
analysis of the risk prognostic models was performed for 
these different groups.

According to the PS values, the samples in the TCGA 
training dataset were separatedinto high-risk and low-
risk groups. Then, the limma package was used to analyze 
the differences between the mRNA expression matrices 
of the samples in the high- and low-risk groups. Similarly, 
an FDR < 0.05 and |logFC|> 0.5 were used as thresholds 
for determining significant differences. Then, an analy-
sis of the GO (22), BP, and KEGG pathway enrichment 
annotation based on The DAVID (version 6.8, https​://
david​.ncifc​rf.gov/) (28, 29) was performed on the inter-
secting DEGs with P < 0.05 as the threshold.

Results
Screening of significant DEGs
With intersections among the TCGA, and GSE44001 
datasets, 343 lncRNAs and 15,735 mRNAs were 
obtained. Then, we divided the samples into the 
poor prognostic and good prognostic groups, which 
included 26 and 28 samples, respectively. In all, 454 
DERs (197 down-regulated DERs and 257 upregulated 
DERs) were screened using the limma package (Fig. 1a). 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cor.test.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cor.test.html
https://cytoscape.org/
https://cytoscape.org/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://bioconductor.org/packages/survivalr
http://bioconductor.org/packages/penalized/
http://bioconductor.org/packages/penalized/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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The heatmap showed that the samples were clustered in 
two different directions (Fig. 1b).

Moreover, 3020 unique genes related to immune GO, 
817 unique genes related to immune KEGG, 582 inter-
secting genes, and 3255 union genes were obtained 
from the database. When the immune-related genes 
were compared with the DEG dataset, 199 shared genes 

were obtained (Fig.  1c) and were used for the next 
analysis.

Construction of the co‑expression network
The PCC was calculated between the expression level of 
a gene in the CSCC tumor samples from the TCGA data-
set and that of the intersecting DEGs and DElncRNAs. 

Fig. 1  Screening of DEGs. a Effect size (log2FC)–log10 (FDR), shown by a volcano plot. The red triangle and green del triangle represent the 
significantly upregulated and down-regulated DERs, respectively. The horizontal dotted line represents FDR < 0.05, the two vertical dotted lines 
represent |log2FC|> 1, and the size of the point represents the absolute value of log2FC. The larger the value, the larger the point; b Bidirectional 
hierarchical clustering heatmap based on the expression level of DERs. c Venn diagram shows the comparison between immune-related genes and 
DEGs with DERs in the dataset. DEGs, differentially expressed genes; DERs, differentially expressed RNAs; FDR, false discovery rate
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In all, 375 pairs of connections were obtained with a 
cutoff expression correlation coefficient higher than 0.4, 
which was used to construct the DElncRNA and DEG 
intersection co-expression network. As shown in Figs. 2, 
5 lncRNAs and 130 mRNAs were included in this net-
work. Interestingly, we observed antisense lncRNAs 
that were co-expressed with sense mRNAs, such as the 
RBAKDN-SLC7A10, LINC00158-MS4A1/TNFRSF13B-
LINC00426, and LINC00158-FCRL1-PIK3CD-AS1 pairs. 
Moreover, we performed GO and KEGG analyses for 
the DEGs; overall, 22 BPs and 18 KEGG pathways were 
screened. The GO analysis indicated that the DEGs were 
primarily involved in immune response (34 genes, such as 
CXCL2, ZAP70, CD27), regulation of immune response 
(22 genes, such as VCAM1, KLRB1, CLEC2D), inflam-
matory response (21 genes, such as CXCL2, ZAP70, 
CD27), and the innate immune response (20 genes, 

such as ZAP70, CLEC7A). The KEGG pathway analysis 
revealed that the DEGs were primarily enriched in path-
ways related to cytokine − cytokine receptor interac-
tion (19 genes, such as CXCL2, TNFRSF13, CD27), TCR 
signaling pathway (14 genes, such as ZAP70, CD8A), and 
Primary immunodeficiency (10 genes, such as ZAP70, 
TNFRSF13B) (Fig. 2b).

Constructing the prognostic prediction model
In all, 123 DERs that were markedly associated with CC 
prognosis were obtained by univariate Cox regression 
analysis using the cutoff of the log-rank P < 0.05. We 
then obtained 31 independent DEGs that were dramati-
cally related to prognosis by multivariate Cox regression 
analysis. Subsequently, seven optimized DER groups 
(RBAKDN, CXCL2, ZAP70, CLEC2D, CD27, KLRB1, 
VCAM1) were selected through Cox-Proportional 

Fig. 2  Construction of the co-expression network. a There were significant differences in the expressions of lncRNAs and intersecting mRNAs in the 
co-expression network. The squares and circles represent lncRNA and mRNA, respectively, and the change in color from green to red represents a 
significant down-regulation to upregulation of logFC expression. In the co-expression network, the biological process (b) and KEGG signal pathway 
(c) in the scatter plot are related to gene enrichment; the horizontal axis represents the gene number, the vertical axis shows the item name, and 
the color and size of the point represent a significant FDR value. The closer the color of the point is to red, the greater the color and the greater the 
significance. KEGG, Kyoto Encyclopedia of Genes and Genomes
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hazard (Cox-PH) regression models on basis of the 
L1-penalized regularization regression algorithm in 
penalized the package of R. Among the seven genes, 
RBAKDN and CXCL2 were risk factors (hazard ratio 
(HR) > 1), whereas ZAP70, CLEC2D, CD27, KLRB1, and 
VCAM1 were identified as protective factors (HR < 1). 
Additional information on these seven genes is shown in 
Table 1. Moreover, the KM curves indicated that the low 
expression of RBAKDN and CXCL2 was associated with 
good prognosis, while the high expression of ZAP70, 
CLEC2D, CD27, KLRB1, and VCAM1 was related to bet-
ter OS time than their high expression (Fig. 3).

Evaluation and comparison of the effectiveness 
of the prognostic risk prediction model
The PS model was constructed on basis of the seven 
optimum DERs, found by LASSO algorithm, and their 
expression level in the TCGA training dataset. Then, we 
divided the TCGA training dataset and the GSE44001 
validation dataset into high-risk and low- risk groups. 
The TCGA dataset’s KM curves were used to evaluate the 
connection between the high- and low-risk groups and 
actual prognostic information for CC. As shown in Fig. 4, 
we found that samples from low-risk cases in the TCGA 
dataset had a better survival prognosis (P = 2.351e−04, 
HR = 3.485[1.717–7.076], AUC = 0.906); there was a sim-
ilar trend for the GSE44001 validation dataset (P = 1.57e-
02, HR = 2.238[1.124–4.454], AUC = 0.799). The results 
revealed a notable correlation between the actual prog-
nosis and the different risk groups obtained after the 
samples from the TCGA dataset and GSE44001 dataset 
were divided based on the PS model prediction.

Screening and stratification of independent prognostic 
clinical factors
Two were significantly correlated independent prog-
nostic factors (Pathologic N and PS model status) were 

screened by univariate and multivariate Cox regression 
analyses in the TCGA dataset (Table  2). We found that 
the lower the Pathologic N, the better the prognosis with 
respect to normal platelet indicators in CSCC tumor 
patients, which is consistent with the actual situation. We 
then separated the training dataset samples into the N0 
and N1 sample groups, according to the Pathologic N sta-
tus, and then analyzed the correlation between the pre-
diction results of the PS prognostic model and the actual 
prognosis in each stratified sample dataset (Fig.  5). The 
KM curves of the Pathologic N status revealed that the 
samples in the N0 group had a better OS (P = 1.33e−03). 
Moreover, the KM curves of the Pathologic N0 and Path-
ologic N1 groups showed that the low-risk group had a 
better OS (P = 3.772e−03; P = 7.755e−01).

Functional analysis of high‑ and low‑risk key genes
According to the PS value, the TCGA samples were 
separated into the high-risk and low-risk groups. In all, 
254 DEGs (185 significantly down-regulated and 69 sig-
nificantly upregulated genes) were screened using the 
limma package to analyze the differences between the 
expression matrices of the high- and low-risk group 
samples from the TCGA dataset (Fig.  6a). The heatmap 
showing the DEGs’ expression based on the risk score is 
shown in (Fig. 6b). The heatmap revealed that the DEGs’ 
expression level was significantly altered as the risk score 
changed increased. Then, a GO, BP, and KEGG pathways 
analysis was performed to determine the DEGs with a 
cutoff of P < 0.05. In all, 15 BPs and 7 KEGG pathways 
were screened. The GO analysis indicated that the DEGs 
were primarily involved in adaptive immune response 
(13 genes, such as TNFRSF13B, THEMIS) and immune 
response (18 genes, such as CXCL2) (Fig. 6c); the KEGG 
pathway analysis revealed that DEGs were primarily 
enriched in pathways related to cytokine–cytokine recep-
tor interaction (CXCL2, TNFRSF13B) (Fig. 6c).

Discussion
Although there has been substantial progress in the early 
diagnosis and treatment of CSCC, the incidence of this 
disease is still high, and it has a low diagnosis rate as 
well as a poor prognosis (35, 36). In our study, we used 
comprehensive bioinformatics analyses to identify seven 
prognosis-related signature genes (RBAKDN, CXCL2, 
ZAP70, CLEC2D, CD27, KLRB1, VCAM1). Their expres-
sion was significantly related to OS in CSCC patients. 
In addition, the risk score of the seven-gene feaure 
expressed its superior ability to categorize CSCC patients 
into high-risk and low-risk groups with markedly differ-
ent OS in the training and validation datasets.

Additionally, to further distinguish the important genes 
that participate in the prognostic model, we constructed 

Table 1  Optimize the  signature DERs combination 
information table

HR, hazard ratio; CI, confidence interval

Symbol Type Univariate Cox regression analysis LASSO 
coefficient

HR 95%CI P value

RBAKDN lncRNA 11.950 4.529–31.54 5.421E−07 1.87328

CXCL2 mRNA 1.427 1.192–1.709 1.098E−04 0.35901

ZAP70 mRNA 0.493 0.323–0.754 1.107E−03 − 0.30060

CLEC2D mRNA 0.329 0.167–0.651 1.399E−03 − 0.47174

CD27 mRNA 0.595 0.428–0.827 2.006E−03 − 0.06947

KLRB1 mRNA 0.498 0.318–0.781 2.403E−03 − 0.03436

VCAM1 mRNA 0.542 0.363–0.809 2.768E−03 − 0.14466
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a protein–protein interaction (PPI) network. The results 
revealed that three hub genes were screened in the PPI 
network, MS4A1, TNFRSF13B, and FCRL1, which are 
significantly expressed. TNFRSF13B, a member of the 
TNF receptor superfamily, which occupied an important 

position in the proliferation and progression of cancer 
cell. Abo-Elfadl MT et al. (37) reported that TNFRSF13B 
silencing could be a therapeutic target for breast can-
cer subtype. Fc receptor-like 1 (FCRL1) is a novel B cell 
receptor (BCR) co-receptor. Zhao et  al. (38) revealed a 

Fig. 3  The KM curves of the 7 optimized DERs. A-G indicated the RBAKDN, CXCL2, ZAP70, CLEC2D, CD27, KLRB1, and VCAM1, respectively. KM, 
Kaplan–Meier; DERs, differentially expressed RNAs
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vital BCR signal enhancement role of FCRL1 via its inter-
nal B cell immune synapse recruitment and subsequent 
c-Abl recruitment on BCR cross-linking. Furthermore, 
KEGG and GO analyses expressed that the genes were 
enriched in the immune response pathway. In particular, 
these results suggest the importance of genes associated 
with the immune response.

Moreover, among the seven prognosis-related sig-
nature genes, RBAKDN and CXCL2 were both deter-
mined to be risk factors. A previous investigation found 
that the chemokine (C-X-C motif ) ligand 2 (CXCL2) 
was originally characterized as a neutrophil chemokine. 

Specifically, CXCL2 could improved the expansion of 
monocytic MDSCs (mo-MDSCs) a subtype of MDSCs. 
Shi et  al. (39) indicated that CXCL2 was expressed in 
tumor cells and tumor-infiltrating CD11b myeloid cells, 
which shows CXCL2′s novel role in increasing mo-
MDSC generation by favoring the differentiation of bone 
marrow cells in tumor-bearing conditions. This suggests 
that inhibiting the levels of CXCL1 and CXCL2 could 
reduce mo-MDSC generation and promote host immu-
nosurveillance. Zhang et al. (40) reported that A-kinase-
interacting protein 1 is crucial in CC angiogenesis and 
growth because it functions to elevate the levels of the 

Fig. 4  Upper panel: TCGA (a) and GSE44001 (b) samples are based on the KM curve of the PS prediction model and the prognosis; the green and 
red curves represent low- and high-risk samples, respectively. Lower panel: ROC curve of the prediction results based on the PS prognostic model. 
The numbers in brackets represent the specificity and sensitivity corresponding to the ROC curve. TCGA, The Cancer Genome Atlas; KM, Kaplan–
Meier; PS, prognostic score; ROC, receiver operating characteristic
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NF-κB-dependent chemokines CXCL1, CXCL2, and 
CXCL8. Zheng et al. (41) revealed that chemokine CXCL2 
induced lung cancer-associated transcript 1 (LUCAT1) 
overexpression and that the CXCL2β axis is a potential 
therapeutic target and molecular biomarker for clear cell 
renal cell carcinoma (ccRCC). All these results indicated 
that CXCL2 could induce the production of adverse fac-
tors, which could contribute to CSCC’s poor prognosis. 
These results are consistent with ours and suggest that 
CXCL2 is highly valuable for predicting the survival and 
prognosis of patients with CSCC. However, no studies 
have considered RBAKDN’s possible role in cancer.

To further explore the potential mechanism of 
immune-related genes, we observed that high-risk 

key genes were associated with the cytokine–cytokine 
receptor interaction pathway. The TRAIL/TRAIL-R 
system was regulated by Macrophages and neutro-
phils via cytokines to remove cancer cells (42). Li et al. 
(43) indicated the bistability of the network between 
cytokines and tumor immunity. This model has shown 
that tumors can take advantage of this bistability to 
improve immunosuppression. Eliminating this inter-
action means the immune system can return to an 
immune-boosting state. These results suggest that 
certain differentially expressed immune-related genes 
involved in cytokine–cytokine receptor interaction 
contribute to longer OS.

Table 2  Clinical factor screening information sheet

HR, hazard ratio; CI, confidence interval; N, number

Clinical characteristics TCGA (N = 181) Uni-variables cox Multi-variables cox

HR 95%CI P HR 95%CI P

Age (years, mean ± sd) 47.06 ± 13.83 1.005 0.981–1.029 6.93E−01 – – –

Neoplasm histologic grade (G1/G2/G3/–) 11/77/77/16 1.219 0.655–2.269 5.30E−01 – – –

Pathologic M (M0/M1/–) 79/3/99 11.060 1.130- 108.2 9.48E−03 5.960 0.598–59.39 1.28E−01

Pathologic N (N0/N1/–) 97/30/54 3.410 1.541–7.547 1.33E−03 3.238 1.468–7.142 3.61E−03

Pathologic T (T1/T2/–) 99/50/32 1.263 0.584–2.729 5.52E−01 – – –

Pathologic stage (I/II) 123/58 0.820 0.396–1.696 5.87E−01 – – –

Number of pregnancies (0/1/2/3/over 3/–) 10/18/30/28/75/20 1.028 0.794–1.333 8.31E−01 – – –

Radio-therapy (yes/no/–) 105/53/23 1.190 0.571–2.479 6.42E−01 – – –

RS model status (high/low) 90/91 3.485 1.717–7.076 2.35E−04 2.518 1.122–5.651 2.51E−02

Vital status (dead/alive) 38/143 – – – – – –

Overall survival time (months, mean ± sd) 37.83 ± 40.02 – – – – – –

Fig. 5  Screening and stratification of independent prognostic clinical factors. (a) The KM curve of the prognostic correlation of the Pathologic N 
stage is shown in the TCGA samples, and the black and red curves show the samples that were Pathologic N0 and N1 stages, respectively. (b) The 
samples in the demographic Pathologic N0 group are based on the KM curve of the PS prediction model and the prognosis; the black and red 
curves represent the low- and high-risk samples, respectively. KM, Kaplan–Meier; TCGA, The Cancer Genome Atlas; PS prognostic score
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Fig. 6  Functional analyses of high- and low-risk key genes. a In the effect size (log2FC)—log10 (FDR) volcano map, the red triangle, and green 
triangle represent significantly upregulated and down-regulated DEGs, respectively, the horizontal dotted line represents FDR < 0.05, the two 
vertical dotted lines represent |log2FC|> 1, and the point size represents the absolute value of log2FC. The larger the value, the larger the point; b 
Based on the high- and low-risk groups, the changes in DEGs with the corresponding diagnostic scores from a low to a high expression level. c The 
horizontal axis represents the number of genes, the vertical axis represents the name of the item, and the color and size of the point represent the 
significant FDR value. The closer the color of the point is to red, the greater the color and the greater the significance. DEGs, differentially expressed 
genes; DERs, differentially expressed RNAs; FDR, false discovery rate
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Conclusions
In summary, we identified seven prognosis-related signa-
ture genes (RBAKDN, CXCL2, ZAP70, CLEC2D, CD27, 
KLRB1, VCAM1), the expression of which significantly 
correlated with OS in CSCC patients. Also, the risk score 
of the seven-gene signature demonstrated superior ability 
to divide CSCC patients into high-risk and low-risk groups, 
each of which had a markedly different OS in the training 
dataset and validation datasets. Two significantly corre-
lated independent prognostic factors (Pathologic N and PS 
model status) were screened by univariate and multivari-
ate Cox regression analyses in the TCGA dataset. To fur-
ther explore the potential mechanism of immune-related 
genes, we observed that high-risk key genes were related to 
cytokine–cytokine receptor interaction.
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