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Abstract

Background: Potocki-Shaffer syndrome (PSS) is a rare contiguous gene deletion syndrome marked by haploinsuf-
ficiency of genes in chromosomal region 11p11.2p12. Approximately 50 cases of PSS have been reported; however, a
syndrome with a PSS-like clinical phenotype caused by 11p11.12p12 duplication has not yet been reported.

Methods: 11p11.12p12 duplication syndrome was identified and evaluated using a multidisciplinary protocol. Diag-
nostic studies included intelligence testing, thorough physical examination, electroencephalography (EEG), magnetic
resonance imaging (MRI) of the brain, ultrasonography, biochemical tests and karyotype analysis. Next-generation
sequencing analysis clarified the location of the chromosomal variations, which was confirmed by chromosome
microarray analysis (CMA). Whole-exome sequencing (WES) was performed to exclude single nucleotide variations
(SNVs). A wider literature search was performed to evaluate the correlation between the genes contained in the chro-
mosomal region and clinical phenotypes.

Results: The proband was a 36-year-old mother with intellectual disability (ID) and craniofacial anomalies (CFA).
She and her older son, who had a similar clinical phenotype, both carried the same 11p11.12p12 duplication with a
copy number increase of approximately 10.5 Mb (chr11:40231033_50762504, GRCh37/hg19) in chromosome bands
11p11.12p12. In addition, she gave birth to a child with a normal phenotype who did not carry the 11p11.12p12
duplication. By literature research and DECIPHER, we identified some shared and some distinct features between
this duplication syndrome and PSS. One or more of ALX4, SLC35CT, PHF21A and MAPK8IPT may be responsible for
11p11.12p12 duplication syndrome.

Conclusions: We present the first report of 11p11.12p12 duplication syndrome. It is an interesting case worth report-
ing. The identification of clinical phenotypes will facilitate genetic counselling. A molecular cytogenetic approach was
helpful in identifying the genetic aetiology of the patients and potential candidate genes with triplosensitive effects
involved in 11p11.12p12 duplication.

Keywords: 11p11.12p12 duplication, Intellectual disability, Chromosome 11, Molecular cytogenetics, Genetic
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and duplications/microduplications have been detected
and identified, affording new development opportunities
for genetics and new challenges for clinical genetic coun-
selling, especially prenatal genetic counselling. Potocki—
Shaffer syndrome (PSS) is caused by a rare contiguous
gene deletion in chromosomal region 11p11.2p12 (chrl1:
43421550_48821552, GRCh37/hg19). Our patient’s clini-
cal phenotype is also similar but not entirely identical to
that of PSS; however, a syndrome caused by 11p11.12p12
duplication has not yet been reported. Here, we report a
de novo 11p11.12p12 duplication in a small family pre-
senting with intellectual disability (ID) and craniofacial
anomalies (CFA). The duplication encompasses approxi-
mately 10 Mb (chrll: 40231033_50762504, GRCh37/
hg19), which cannot be distinguished by G-banding 400-
band resolution in karyotype analysis; therefore, it may
also be called a microduplication.

The most common phenotype caused by chromosomal
abnormalities is ID, which affects approximately 1% of the
population [1]. There are approximately 1900 high-/mod-
erate-confidence ID-causing genes that are annotated in
the Genomics England ID panel and DDG2P (https://
www.ebi.ac.uk/gene2phenotype). The gene-disease iden-
tities of 484 genes (including many non-ID genes) have
been curated by ClinGen (https://www.clinicalgenome.
org/) [2]. The organ specificity of four genes involved in
the 11p11.12p12 chromosomal region, namely, SLC35C1,
PEX16, PHF21A, and RAPSN, is considered in DDG2P
to be related to brain/cognition, and the patients’ pheno-
types suggest that one or more genes that likely contrib-
ute to the clinical phenotype in this syndrome are located
in the duplicated region.

Methods

Karyotype analysis

Karyotype analysis was performed in 6 main members
of the family to identify the genetic aetiology. Chromo-
somes were obtained from cultured peripheral lympho-
cytes. The conventional technique of G banding analysis
was used. Twenty-five metaphases of the family members
were analysed at 550 chromosome band resolution. The
International System for Human Cytogenomic Nomen-
clature (ISCN, 2016) served as the reference for describ-
ing the chromosomes.

Next-generation sequencing analysis

To clarify the location of the chromosomal variations and
exclude normal chromosomal variations, 11 members of
the family underwent next-generation sequencing analy-
sis, which was also performed in 7270 pregnant women
to detect chromosomal microdeletions and microdupli-
cations for prenatal diagnosis. DNA was extracted from
patient whole blood or amniotic fluid using a MagPure
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Universal DNA LQ Kit. A DNA library was obtained
after the DNA was fragmented, end-repaired, linker-
ligated and PCR-amplified. Then, the library DNA was
sequenced using a BioelectronSeq 4000 instrument. The
kits used in this study included the Ion Plus Fragment
Library Kit, the Ion PI Hi-Q OT2 200 Templating Kit, the
Ion PI Hi-Q 200 Sequence Kit and the Ion PI Chip V3. All
reagents were provided by Dongguan BoaoMuhua Gene
Technology Co, Ltd, China.

Chromosome microarray analysis

CMA was used to confirm the location of the chromo-
somal variations in the family and detect chromosomal
microdeletions and microduplications in 2906 pregnant
women for prenatal diagnosis. Human genomic DNA
was extracted from whole blood or amniotic fluid using
a QIAamp DNA Mini Kit. The following standard experi-
mental procedures were performed: digestion, ligation,
polymerase chain reaction (PCR), PCR purification,
fragmentation, labelling, hybridization, washing, stain-
ing, and scanning. The instrument was an Affymetrix
GeneChip System 3000D x v.2 chip system. The CytoS-
can 750 K Array includes 200,000 genotype-able SNPs
and 550,000 non-polymorphic probes. All genotyping
and copy number analysis were performed with Chro-
mosome Analysis Suite (ChAS) Software version 3.0. All
data were required to pass quality control (QC) metrics,
including the median of the absolute values of all pair-
wise differences <0.25, SNPQC>15, and a waviness
standard deviation <0.12.

Whole-exome sequencing (high-throughput testing)
Whole-exome sequencing (WES) was performed to
exclude single nucleotide variations (SNVs). Genomic
DNA was extracted using a QIAamp DNA Extraction
Kit. The extracted DNA was fragmented with DNase
and purified by magnetic beads, followed by PCR ampli-
fication and ligation of the adaptor sequence, which was
twice captured and purified by a TruSight One Sequenc-
ing Panel (Illumina Inc, USA) and then amplified by
PCR. The final library obtained after purification was
sequenced in the exon regions of 4811 clinically rel-
evant genes in a MiSeq sequencer (Illumina Inc, USA).
The TruSight One Sequencing Panel is based on the
Human Gene Mutation Database (HGMD Professional),
the Online Mendelian Inheritance in Man (OMIM), the
GeneTests website (www.genetests.org), and others from
[llumina. Information about the commercial kits that
ultimately incorporate genes relevant to diabetes-related
gene sequencing is provided by the manufacturer (http://
www.illumina.com/products/trusight-one-sequencing-
panel.ilmn).
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All the data were compared to the reference sequence
(UCSC hgl9) using the Burrows-Wheeler Aligner
(BWA; http://bio-bwa.sourceforge.net/) algorithm. In
the screening process, the clinical data were combined
with bioinformatics software (PolyPhen2, LRT, Muta-
tion Taster, etc.) to predict the results, function, variation
and genetic model of each gene; these results were ana-
lysed to identify suspicious candidate mutations, which
were verified by Sanger sequencing. PCR primers were
designed for the sites of suspected candidate mutations.
The corresponding sites of the parents’ genomes were
detected.

Results

Clinical features

The proband (II4, Fig. 1a) was a 31-year-old pregnant
woman. She was 154 c¢cm in height (— 1.22 SDs), shorter
than the mean height (160 cm) of the women in the fam-
ily by 6 cm. She showed mild ID, occasional dizziness,
resting tremor, and CFA (Fig. 1d). Her Wechsler Adult
Intelligence Scale (WAIS) test score was IQ=>56. She
could take care of herself but could not work normally
while chatting with others. Her language expression
exhibited some difficulties; for example, she could not
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accurately read the number 888. She also had difficulty
adding numbers from 1 to 10.

We performed a karyotype analysis (G-banding-550
bands), and the result was 46, XX, dup(11)(p11.12p12)
(Fig. 1b). In order to further clarify the location of
the chromosome 11 duplications, CMA and next-
generation sequencing analysis was performed. The
results of sequencing analysis revealed a copy num-
ber increase of approximately 10.53 Mb in chromo-
some bands 11p11.12-p12 ranging from nucleotides
40231033_50762504 (Fig. 2a), a copy number loss of
approximately 292.18 kb in chromosome bands 2q11.2,
and a copy number increase of approximately 104.94 kb
in chromosome bands 16p11.2 (Table 1). Microdupli-
cation of 16p11.2 was detected in 1 of 10,176 foetuses,
with a normal phenotype based on follow-up, whereas
the 11p11.12p12 duplication and 2ql11.2 microdeletion
were not found among these 10,176 foetuses (Table 1). In
addition, microdeletion of 2q11.2 and microduplication
of 16p11.2 involve no pathogenic genes, with full cover-
age of polymorphisms in the Database of Genetic Vari-
ants (DGV). The 11p11.12p12 duplication was confirmed
by a third experiment involving CMA (Fig. 2b). We also
collected peripheral blood from the patients’ parents and
performed karyotype analysis to determine the source of
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Fig. 1 Clinical and genetic findings. a A pedigree of the family. Mother (1l4), father (113), older son (llI1), younger son (lli2). The mother (14), who was
the proband, had mild ID and was 154 cm (6 cm shorter than the mean height (160 cm) of the female family members) at 31 years of age. lll1 had
mild ID and was 141.5 cm tall (— 2.83 SD) at 13.5 years of age. lll2 had normal intelligence and was 91 cm tall (— 1.53 SDs) at 3 years of age. b The
partial karyotype and corresponding idiogram of chromosome 11 at the levels of the 550 bands. ¢ Il11’s bone age as determined by left wrist X-ray
was 13.5 years, matching his actual age. d. Craniofacial features of 114, including low anterior hairline, hypertelorism, depressed nasal bridge, long
philtrum, and slightly upturned corners of mouth. e. Craniofacial anomalies of lll1, including low anterior hairline, thick eyebrows, long eyelashes,
hypertelorism, long philtrum, risus sardonicus, upturned corners of mouth, thick lower lip vermilion, and carious teeth
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Fig. 2 Molecular details. a A next-generation sequencing profile of the 10.53-Mb interstitial duplication at 11p11.12p12 in l14. b CMA profile of the
10.26-Mb duplication at 11p11.12p12 in 14, the same as in [l

the 11p11.12p12 duplication. The chromosome karyo-
types of the parents were normal (Table 1).

At 36 years, the proband’s physical examination in the
neurology department showed resting tremor in both
hands, which was obvious in the right hand. She had

experienced confusion twice in 15 years. The electroen-
cephalogram (EEG) results revealed moderate abnormal-
ities, a small number of spikes as low as 110 microvolts
and sharp slow waves were scattered, with the temporal
region as the focus. Therefore, she was suspected to have
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seizures. Chest computed tomography (CT) displayed
two cumulative changes in the lungs. Magnetic reso-
nance imaging (MRI) of the brain showed abnormal sig-
nals of the centrum semiovale on both sides and a diffuse
corona radiata, which suggested the possibility of demy-
elinating lesions. The analyses of lymphocyte subsets and
immunoglobulin levels were normal.

II11 was the older son of the proband (Fig. le). His
clinical phenotype included mild ID, suspected seizures,
short stature, and CFA. He walked at 15 months. His first
words were at 2 years. At 9 years, his neuropsychiatric
evaluation revealed mild cognitive delay (IQ of 67 using
the WISC-1V), speech delay and learning difficulties. His
computational ability was poor; he could calculate one
plus one but could not correctly calculate two plus two.
He could write only approximately 100 simple words and
could put fewer than three words together. In terms of
self-care ability, he could neither correctly wear compli-
cated clothes nor distinguish the left from the right shoe.
Routine blood tests showed that red blood cell counts
and haemoglobin content were slightly lower than nor-
mal. The results of trace element analysis and biochemi-
cal tests were normal. At 10 years, he could correctly
distinguish the left from the right shoe but could still not
distinguish between his left and right hands.

At the age of 13.5 years, he was 141.5 cm (— 2.83 SDs).
His bone age was also 13.5 years according to left wrist
X-ray (Fig. 1c). His testicular volume was approximately
12~15 ml (normal). His pubic hair was in stage PH1
(normal), and his growth hormone value was also normal
at 14.1 ng/ml (reference value<5.0 ng/ml). These data
suggest that his developmental indicators were typical for
his age of 13.5 years, but his height is significantly lower
than the height of 13.5 y. Though his computing power
and language skills had improved, he could still not speak
in sentences of more than 5 words, and he could still not
distinguish his left and right hands. He could correctly
add 2 plus 2 or 4 plus 4 by memorization but still could
not correctly add 1 plus 3.

At 14.6 years, physical examination in the neurology
department revealed appendicular hypotonia and abnor-
mal gait. Approximately a year ago, he had fallen asleep
and could not be awakened for an hour. He was given
an EEG examination, which displayed mild to moderate
abnormalities, and small numbers of spiking waves as low
as 90 microvolts were seen in the left posterior temporal
and occipital regions. Thus, he was suspected seizures.
Medical examinations, including echocardiographic
examination, renal and urinary tract ultrasound, lympho-
cyte subset and immunoglobulin level analysis, chest CT,
and MRI of the brain, were normal.

The karyotype analysis result of III1 was 46, XY, dup
(11)(p11.12p12) mat. Molecular cytogenetic analysis
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of III1 revealed two duplications with a copy number
increase in chromosome bands 11p11.12p12 (10.38 Mb)
inherited from his mother and a copy number increase in
chromosome bands 4q12q13.1 (4.58 Mb) inherited from
his father. Moreover, 4q12q13.1 microduplication was
found in one of 10,176 foetuses, with a low weight and
patent ductus arteriosus; based on follow-up, the micro-
duplication was inherited from a normal-phenotype
mother. It was also found in 5 normal-phenotype mem-
bers in the family (Table 1). To exclude abnormalities in
other genes outside the 11p11.12p12 interval causing the
phenotype of this family, we performed WES in II3, 114,
and III1. No other gene anomalies were found (Table 1).

112 was the younger son of the proband. During the
second trimester, amniotic fluid karyotype analysis and
next-generation sequencing analysis were performed. The
results showed two microduplications and two microde-
letions (Table 1). Del (2q11.2) and dup (4q12q13.1) were
inherited from his mother and father, respectively. Del
(17p11.2) and dup (22q11.21) were de novo copy num-
ber variations (CNVs), which were not found among
10,176 foetuses yet. Not all of the CNVs involving patho-
genic genes were found in OMIM but were fully covered
by GDV. No cases with phenotypes in the same interval
of del (17p11.2) and dup (22q11.21) were found in the
Database of Chromosomal Imbalance and Phenotype
in Humans Using Ensembl Resources (DECIPHER). His
karyotype was also normal. The results indicated that
the foetus had no pathogenic chromosomal abnormali-
ties, and the pregnancy continued to deliver. He began to
learn to walk and vaguely said the word "dad" at 1 year
old. He exhibited no significant difference compared with
normal children in infancy and childhood. His height
was 91 cm (— 1.53 SDs), and the difference between the
younger son and the mean height of the family was -0.24
SDs. No significant differences in chromosome karyo-
type, developmental delay or ID were observed for the
other members of the family.

Discussion

With the exception of the 11p11.12p12 duplication, none
of the microdeletions or microduplications in the pedi-
gree contain the pathogenic genes included in OMIM
and are fully covered by DGV. These microdeletions and
microduplications were also observed in members of
the family or other foetuses with a normal phenotype,
although the 4q12q13.1 microduplication segments were
longer than 4 Mb. A total of 11p11.12p12 segments con-
taining 100 genes were detected only in the patient and
her older son with the clinical phenotype. These findings
suggest that the clinical phenotype of this family is caused
by duplication of the chromosome 11 region. The 5-year
follow-up data after the birth of the child also showed
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that the 11p11.12p12 duplication was the cause of the
disease in this family, and our accurate genetic analysis of
prenatal diagnosis provided the correct genetic counsel-
ling for the child.

Potocki-Shaffer syndrome (OMIM 601224) is a
rare contiguous gene deletion syndrome due to hap-
loinsufficiency of genes in chromosomal region
11p11.2p12 (chr11:43421550_48821552, GRCh37/
hg19), similar to the segments duplicated in our patient
(chr11:40231033_50762504Mb, GRCh37/hg19).
Although the duplication interval (10 Mb) of our case
was significantly larger than the PSS interval (5.4 Mb),
there was no difference in the phenotypic genes they con-
tained. PSS patients are very rare, with no more than 50
cases described in the literature. To determine the corre-
lation between the genes contained in this chromosomal
region and clinical phenotypes, we searched the clinical
phenotypes of all PSS patients in an attempt to identify
common characteristics. This syndrome is character-
ized by CFA, developmental delay, multiple exostoses,
biparietal foramina, and ID [3-17]. PSS occasionally
manifests as epilepsy, hypotonia and central nervous sys-
tem anomalies [5-7, 9, 11-13, 17]. Craniofacial abnor-
malities include brachycephaly [8—10, 17], microcephaly
[10-12, 17], bilateral parietal foramina [5, 6, 12, 15, 17],
broad forehead [8, 10], high forehead [5, 7, 9, 13], laterally
sparse eyebrows [7, 12, 15, 17], upslanting/downslanting
palpebral fissures [5, 7, 10], bilateral epicanthal folds [6, 8,
10, 13, 14, 17], left ptosis [12, 14], esotropia [5, 6], hyper-
telorism [10, 13, 16], hypotelorism [10], mid-facial hypo-
plasia [11, 15], narrowed nasal bridge [10, 14, 15, 17],
depressed nasal bridge [9, 10], broad nasal bridge [8, 16],
short philtrum [6, 7, 14, 17], thin lips [7, 8, 10, 13], down-
turned mouth angle [5-7], dysplastic low-set ears [5, 10,
13], and mild micrognathia [6, 8, 10]. Most of the over-
lapping phenotypes appear in more than 3 studies and
are most likely caused by 11p11.2p12 deletions. We also
searched cases of chromosomal duplications or micro-
duplications in the same chromosomal region, which
were found only in the DECIPHER (Table 2). Most of the
characteristics of our patient are consistent with those
described in the DECIPHER database (Fig. 3). The most
common clinical features of chromosome duplications in
the 11p11.12p12 region are hypertelorism, ID, and thick
eyebrows, short stature, followed by long eyelashes, EEG
abnormalities, speech and expressive language delay,
and cognitive impairment. The minimal clinical feature
was ID, and the chromosome position was concentrated
between 45427775 and 46949520 (GRCh38), a region that
contains the SLC35C1, MAPKS8IP1, PEX16, CREB3LI,
ZNF408, F2, and LRP4 genes. The critical region involved
in PSS was also 11p11.2, spanning 2.1 Mb between
D11S1393 to D11S1385/D11S1319 (44.6-46.7 Mb), and
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the gene related to ID may be located between 45.6 and
46.7 Mb [17]. Overall, there are common and distinct
features between 11p11.2p12 deletion and duplication.
The common clinical features include ID, hypertelorism,
Micrognathia, hypotonia, Global developmental delay,
and seizures. The distinct clinical features include long
philtrum, low anterior hairline, thick eyebrows, upturned
corners of mouth, and thick lower-lip vermilion (Table 2).
The similarities and differences suggest that gene-dosage
effects are not all linearly superimposed, especially in the
development of the nervous system. The normal range
of gene-dosage effects seems to be very narrow, similar
to the equivalent zone of antigen—antibody reaction, and
more or less doses will not be acceptable.

We know that 11p11.12p12 encompasses approximately
18 morbid genes, including EXT2 (OMIM*608210),
ALX4  (OMIM*605420), CD82 (OMIM*600623),
SLC35C1 (OMIM*605881), MAPK8IP1 (OMIM*604641),
MYBPC3 (OMIM*600958), PHF21A (OMIM*608325),
LRP4 (OMIM*604270), CREB3L1I (OMIM*616215),
ZNF408 (OMIM*616454), F2 (OMIM*176930), DDB2
(OMIM*600811), ACP2 (OMIM*171650), SLC39A13
(OMIM*608735), RAPSN (OMIM*601592), PEXI6
(OMIM*603360), NDUFS3 (OMIM*256000), and PTPR]
(OMIM*600925). Which genes within the interval con-
tribute to 11p11.12p12 duplication syndrome and even
PSS remains to be determined. EXT2 is an important
pathogenic gene in PSS because its mutation mainly
causes multiple exostoses. ALX4 is expressed in various
organs and plays an essential role in the development of
the skull, limbs, and skin [18]. ALX4 mutations result in
functional haploinsufficiency, such as the development
of frontonasal dysplasia 2, impaired interfollicular epi-
dermal differentiation and perturbed regular hair folli-
cle differentiation [19, 20]. This gene may be responsible
for some of our patient’s craniofacial abnormalities. The
SLC35CI gene encodes a GDP-fucose transmembrane
transporter (FucT1) located in the Golgi apparatus [21].
It is abundantly expressed in the brain, gastrointestinal
tract, female tissues, male tissues, kidney and urinary
bladder, bone marrow, and lymphoid tissues. Further-
more, RNA tissue-specific expression is enhanced in the
liver in HPA (https://www.proteinatlas.org). SLC35C1 is
a negative regulator of Wnt signalling in colon cancer.
In fact, overexpressing SLC35C1 inhibits the canonical
Wnt pathway [22]. SLC35C1 heterozygous mutations
may cause partial in vivo defects in fucosylation [23].
The PHF21A gene encodes BHC80, a component of the
BRAF35/histone deacetylase complex (BHC), which
mediates repression of neuron-specific genes through
the cis-regulatory element known as repressor element-1
(RE1) or neural restrictive silencer (NRS). Based on
RT-PCR, the highest level of tissue-specific expression
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Chr11 |

ID: 255428
42985928 50141032

ID: 257002
38700393 _47021287

ID: 291037
43246502_48664526

ID: 401234
46885060_50821348

ID: 371475
49616675_50723082

ID: 340117
45982286_46971071

QOur patient
40231033_50762504

Absent nipple, Carious teeth, Generalized hirsutism, Hypertelorism, Intellectual

disability, Long eyelashes, Short neck, Synophrys, Thick eyebrow, Thin upper lip

Cognitive impairment, Hyperactivity, Hypertelorism, Intellectual disability,
Microcephaly, Short stature, Supernumerary nipple

Bifid uvula, Global developmental
delay, Hypertelorism

Abnormality of the hip joint, Almond-shaped palpebral fissure, Delayed speech
and language development, Hypertelorism, Low anterior hairline, Micrognathia,

Nasal speech, Neonatal asphyxia, Protruding ear, Spasticity, Wide nasal bridge

Autistic behavior, Bruxism, Stereotypy, Myoclonic
absence seizure, Intellectual disability,

Atrial septal defect, Clinodactyly, Intellectual
disability, Microtia, Narrow palpebral fissure

mild intellectual disability, low anterior hairline, thick eyebrows, long eyelashes, depressed nasal
bridge, hypertelorism, long philtrum, upturned corners of mouth, arious teeth, thick lower lip
vermilion, resting tremor, suspected seizures, short stature, appendicular hypotonia, abnormal gait

Fig. 3 Chromosomal duplication or microduplication cases (> 1 Mb) in DECIPHER and our patient

occurs in the brain [24]. PHF21A is the likely cause
of ID and craniofacial abnormalities in Potocki—Shaf-
fer Syndrome [25]. MAPKS8IPI, also called Islet-brain-1
(IB1) or JNK-interacting protein-1 (JIPI), is abundantly
expressed in the pancreas, brain, testis, and prostate and,
to a lesser extent, in the heart, ovary, and small intes-
tine [26]. HPA exhibits tissue-specific expression in the
brain, with the strongest expression in the cerebral cor-
tex. MAPKSIP1/JIP1 is a critical regulator of autophago-
some transport in neurons, which ensures the fidelity of
retrograde autophagosome transport in the axon and is
highly sensitive to defects in autophagy [27]. JIP1 also
plays an important role in neurons as a regulator of
kinesin-1-dependent transport [28]. RAPSN, which is
considered to be related to brain/cognition in DDG2P,
shows low expression in HPA. Therefore, overexpression
of this gene would not cause ID in this syndrome. ALX4,
SLC35CI1, PHF21A, and MAPKS8IPI1 may be the genes
most likely to have a gene-dosage effect in 11p11.12p12

duplication. Further work is required to fully elucidate
the mechanisms leading to 11p11.12p12 duplication. In
ClinGen, there is no evidence for triplosensitive phe-
notypes for any of the above genes and only evidence
for haploinsufficiency phenotypes. This study suggests
that there are triplosensitive effect genes responsible for
11p11.12p12-related syndrome.

We present two patients in a family with de novo
11p11.12p12 duplication and provide the results of
five years of clinical follow-up. The duplication was
identified and evaluated using a multidisciplinary pro-
tocol involving assessment by a geneticist, stomatolo-
gist, neurologist, psychiatrist, and paediatrician. The
clinical features include mild ID, short stature, crani-
ofacial anomalies, suspected seizures, resting tremor,
appendicular hypotonia, and abnormal gait. The iden-
tification of clinical phenotypes will facilitate genetic
counselling, especially prenatal genetic counselling.
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Conclusions

We report the first 11p11.12p12 duplication in a fam-
ily with ID and craniofacial abnormalities. The find-
ings will facilitate the clinical diagnosis and genetic
counselling of patients with 11p11.12p12 duplication
in the future. Karyotype analysis and molecular cytoge-
netics were helpful to identify the genetic aetiology of
the patients in the family and potential candidate genes
with triplosensitive effects involved in 11p11.12p12
duplication.
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