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Abstract 

Background: Recently, a next‑generation sequencing (NGS)‑based method has been used for the successful detec‑
tion of circulating tumor DNA (ctDNA) in various cancer types. Thus, the use of NGS on liquid biopsies will improve 
cancer diagnosis and prognosis. However, the low‑allelic fraction of ctDNA poses a challenge for the sensitive and 
specific detection of tumor variants in cell‑free DNA (cfDNA). To distinguish true variants from false positives, the char‑
acteristics of errors that occur during sample preparation and sequencing need to be elucidated.

Methods: We generated capture‑based targeted deep sequencing data from plasma cfDNA and peripheral blood 
leucocyte (PBL) gDNA to profile background errors. To reveal cfDNA‑associated DNA lesions, background error profiles 
from two sample types were compared in each nucleotide substitution class.

Results: In this study, we determined the prevalence of single nucleotide substitutions in cfDNA sequencing data 
to identify DNA damage preferentially associated with cfDNA. On comparing sequencing errors between cfDNA and 
cellular genomic DNA (gDNA), we observed that the total substitution error rates in cfDNA were significantly higher 
than those in gDNA. When the substitution errors were divided into 12 substitution error classes, C:G>T:A substitu‑
tion errors constituted the largest difference between cfDNA and gDNA samples. When the substitution error rates 
were estimated based on the location of DNA‑fragment substitutions, the differences in error rates of most substitu‑
tion classes between cfDNA and gDNA samples were observed only at the ends of the DNA fragments. In contrast, 
C:G>T:A substitution errors in the cfDNA samples were not particularly associated with DNA‑fragment ends. All obser‑
vations were verified in an independent dataset.

Conclusions: Our data suggested that cytosine deamination increased in cfDNA compared to that in cellular gDNA. 
Such an observation might be due to the attenuation of DNA damage repair before the release of cfDNA and/or the 
accumulation of cytosine deamination after it. These findings can contribute to a better understanding of cfDNA‑
associated DNA damage, which will enable the accurate analysis of somatic variants present in cfDNA at an extremely 
low frequency.
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Background
The presence of circulating tumor DNA (ctDNA) in blood 
samples from patients with cancer has been identified 
due to the detection of somatic tumor variants in cell-
free DNA (cfDNA) [1–4]. Furthermore, cfDNA analysis 
has drawn enormous attention for its clinical potential as 
a non-invasive method to detect and profile tumor muta-
tions [5]. In addition to the non-invasiveness of a simple 
blood draw, since blood samples represent the profile of 
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many anatomical locations, cfDNA analysis is expected 
to overcome the limitations of tissue biopsies involving 
the overrepresentation of a subpopulation enriched at a 
sampling site [2, 6]. cfDNA analysis has been made possi-
ble by targeted deep sequencing methods based on next-
generation sequencing (NGS) technologies [7].

However, several challenges remain with respect to the 
clinical application of cancer diagnosis and monitoring 
through cfDNA analysis by targeted deep sequencing [5, 
8]. Of these, the most critical technical challenge is posed 
by the low allelic frequency of tumor-derived cfDNA 
fragments, which is often far below 1% [9, 10]. To detect 
such low-frequency variants, the detection method has 
to be not only extremely sensitive but also extremely 
specific. Achieving high sensitivity requires a high depth 
of unique coverage [11], which can be achieved cost-
effectively by target enrichment methods based on PCR 
amplification or hybridization-based capture. A depth 
of unique coverage of approximately 500 × is usually 
reported to be sufficient to profile genetic alterations 
in tumor specimens [12], but many cfDNA sequencing 
studies have aimed for a higher depth of unique coverage 
of 2000–10,000 × [13, 14].

In addition to a high depth of unique coverage, cfDNA 
sequencing requires a lower level of systemic back-
ground substitution errors [15], as it is difficult to iden-
tify a true variant present at a frequency below or at the 
same level as that of errors. As the number of false vari-
ants is correlated with the number of tests, a high speci-
ficity is required for panels designed to examine large 
genomic regions [15]. For this reason, conventional panel 
sequencing has limitations with respect to detecting 
tumor variants present at an allele frequency of less than 
1‒5%, which is sufficient to detect somatic alterations in 
tumor specimens but not in cfDNA. To overcome these 
problems, studies have reported several diverse strate-
gies, including methods for reducing background errors 
by exploiting various statistical models for data analy-
sis and/or the data generation scheme; for example, by 
including a unique molecular identifier (UMI) [16, 17]. 
Newman et  al. (2016) demonstrated a ~ 0.004% detec-
tion rate for tumor variants utilizing a UMI combined 
with several statistical models for suppressing substitu-
tion errors [10]. Phallen, Jillian et  al. demonstrated that 
a UMI-based assay can detect ~ 0.1% tumor variants with 
more than 99.99% specificity [9]. Technical replicates of 
sequencing libraries have been used to remove prevailing 
background errors and to detect low-level somatic muta-
tions [18]. Physical isolation of DNA clones from the 
NGS substrate after the sequencing procedure was also 
attempted to distinguish true variants from sequencing 
errors [19].

In addition to these methods for filtering out errors 
from sequencing data, many studies have sought to sup-
press the occurrence of errors or characterize the causes 
of these errors. Many of these errors were caused by 
DNA damage and were introduced during DNA extrac-
tion, library construction, or sequencing procedures [15, 
20]. Of the various forms of DNA damage, deamination 
and oxidation-induced DNA damage are especially well 
documented [21–23]. It is important to characterize the 
etiology of background errors in sequencing data to make 
the attenuation of errors by avoiding their cause feasible. 
For instance, errors due to oxidative DNA lesions could 
be reduced using anti-reactive agents or by modifying 
experimental conditions to minimize DNA oxidation 
[23]. We also reported that the oxidation of guanine resi-
dues may cause C:G>A:T errors during DNA fragmenta-
tion, which can be suppressed by lowering the acoustic 
shearing power [15]. Another prominent DNA damage 
is cytosine deamination, which converts cytosine to ura-
cil. Given that uracil hydrogen bonds with adenine in a 
subsequent replication step, a C:G>T:A transition during 
PCR amplification results in C:G>T:A errors in sequenc-
ing data. In addition to these studies, sequencing plat-
form-, hybrid selection-, storage-, and chemical-induced 
errors were also reported [10, 15, 24, 25].

Although many studies have identified errors artificially 
introduced during experimental procedures, sequencing 
errors caused by cfDNA-associated DNA damage have 
not yet been systematically examined. We hypothesized 
that cfDNA has more DNA lesions than cellular genomic 
DNA for two reasons. First, cellular genomic DNA is 
constantly repaired to remove DNA lesions; this might 
not be properly executed after the initiation of cell death. 
Given that cfDNA release is known to be associated with 
cell death, cfDNA might carry accumulating DNA dam-
age prior to or during cell death. Second, despite the rela-
tively short half-life of cfDNA, DNA damage might occur 
during its circulation after release, and thus, not be prop-
erly repaired.

In this study, we sought to identify cfDNA-associ-
ated sequencing errors. From duplicated targeted deep 
sequencing data sets generated from five healthy donors, 
we estimated and compared the substitution error rates 
between paired cfDNA and gDNA samples across 12 
substitution classes. The results from the analysis were 
validated in another data set from our previous study 
involving the detection of circulating tumor DNA in 
patients with lymphoma [12]. Like the characterization 
of sequencing errors due to other artificial DNA dam-
age, the identification of cfDNA-associated errors will be 
helpful for improving the detection specificity of ctDNA 
in cfDNA sequencing.
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Methods
Sample collection and DNA extraction
This study and its protocol were approved by the 
Research Ethics Committee of the Samsung Medical 
Center and ST. Mary’s Hospital. Whole blood sam-
ples were collected in two Cell-Free DNA™ BCT tubes 
(Streck Inc., Omaha, NE, USA) from five healthy vol-
unteers and EDTA tubes from eleven prostate cancer 
patients. To estimate the degree of technical variability 
between repeated experiments, we made two dupli-
cated pairs of plasma and peripheral blood leucocyte 
(PBL) samples in healthy volunteer cohort. While 
plasma was obtained by performing three centrifuga-
tion steps using increasing centrifugal forces, PBLs 
were isolated from the initial centrifugation step. 
After the preparation steps, plasma and PBL samples 
were stored at − 80 °C until DNA extraction. Genomic 
DNA (gDNA) was isolated from blood samples using 
a QIAamp DNA mini kit (Qiagen, Santa Clarita, CA, 
USA). Plasma DNA was obtained from 3.5 to 4.5 mL of 
plasma using a QIAamp Circulating Nucleic Acid Kit 
(Qiagen, Santa Clarita, CA, USA). The concentration, 
purity, and fragment size of the DNA were measured 
using previously reported methods [14].

Generation of sequencing data
As part of this study, we generated targeted sequenc-
ing data for paired cfDNA and gDNA samples from five 
healthy donors. In addition, the sequencing data from 
our previous study [12] on patients with lymphoma were 
analyzed to validate our observations, which had been 
also generated for paired cfDNA and gDNA samples 
from the same patients.

Purified gDNA was sonicated into 400–500  bp frag-
ments using Covaris S2 (Covaris Inc. Woburn, MA, 
USA). The PBLs and plasma DNA libraries were pre-
pared using a KAPA Hyper Prep Kit (Kapa Biosystems, 
Woburn, MA, USA), as described previously [14]. Hybrid 
selection for target enrichment was performed using cus-
tomized panels. Target enrichment baits (Agilent, Santa 
Clara, CA, USA) targeting 82 cancer-related genes were 
used in healthy cohort, while 60 prostate cancer-related 
gene panel (Twist Biosciences, San Francisco, CA, USA) 
was customized for the prostate cancer cohort.

As previously described [14], libraries were diluted to a 
concentration of 2 nM, based on DNA concentration and 
average fragment size, and then pooled in equal volumes. 
The pooled libraries were denatured and then subjected 
to cluster amplification according to the manufacturer’s 
instructions (Illumina, San Diego, CA, USA). Flow cells 
were sequenced in the 100  bp paired-end mode using 
HiSeq 2500 v3 Sequencing-by-Synthesis Kits (Illumina, 

San Diego, CA, USA) and then analyzed using RTA 
v.1.12.4.2 or later.

Sequencing data processing
All generated reads from each sample were aligned to the 
hg19 human reference with BWA-mem (v0.7.17) [26] to 
create BAM files. Samtools (v1.9) [27] was used to sort 
and index BAM files. The MarkDuplicate module in the 
Picard (v2.19.0) package was used to categorize reads into 
UMI families, and then a home-built python (v2.7.10) 
script was used for digital error suppression (DES). The 
DES method was based on previously reported studies 
[10] with a minor modification. Briefly, a degenerated 
four-base barcode adjacent to sample barcode for mul-
tiplexing was sequenced as part of the index read and 
used for UMI. Based on UMI combined with the chro-
mosomal positions of DNA fragment, sequence reads 
were categorized into UMI families to distinguish true 
somatic mutations from PCR and/or sequencing errors. 
The base quality score recalibration (BQSR) process was 
performed using the GATK package (v4.1.0.0) [28]. All 
sequencing statistics were collected from Samtools and 
the Picard QC processes (Additional file 1: Table S1). The 
typical MarkDeduplicate method was used to compare 
with the DES method.

Analysis of background error profiling
We identified background errors in the sequencing data 
by removing putative variants and bases with a quality 
score. The following selection steps were used: (1) the ref-
erence allele was excluded in the analysis; (2) low qual-
ity bases were filtered out (Phread quality score < 30); (3) 
genomic locations with less than 500 × sequencing cov-
erage depth was removed; (4) if the variant was present 
at an allele frequency above 1% in either cfDNA or PBL 
sample, it was excluded from the analysis. For the anal-
ysis of sequencing data from patients with lymphoma 
samples, we also removed somatic tumor variants from 
the plasma DNA samples. The detailed process for iden-
tifying somatic tumor variants has been described in our 
previous study [12]. After the removal of somatic and 
germline variants, we identified 12 classes of substitu-
tion errors in each sample and conducted statistical com-
parative analysis using the R program [29]. Mutational 
signature analysis performed by signal web analysis tool 
(http:// signal. mutat ional signatures.com) and SBS muta-
tional signature was selected for analyzing the signatures 
contributions from COSMIC database [30].

Background error analysis based on the position 
on the DNA fragment
Background errors across all substitution classes were 
assigned at each position relative to the DNA breakpoint 

http://signal.mutational
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(1‒50 bp). The errors were then grouped in the 5 bp bin 
to compare the relative error rates. To extract the loca-
tion and substitution class of errors from sequence reads, 
we used an in-house python (v2.7.10) script and a pysam 
(v0.15.2) library.

Results
Increased C:G>T:A substitution errors in plasma cfDNA
We assumed that the increase in DNA damage in cfDNA 
compared to that in cellular genomic DNA (gDNA) 
would result in increased errors in cfDNA sequenc-
ing data compared to gDNA data. DNA lesions alter-
ing base pairing during DNA replication are known to 
be one of the primary causes of sequencing errors in a 
variety of contexts [31, 32]. To characterize DNA lesions 
preferentially present in cfDNA, we generated sequenc-
ing data for cfDNA and cellular gDNA using the exact 
same method (see Methods). The only exception was 
that cellular gDNA was fragmented using mild acoustic 
shearing, such that DNA damage was minimized, as we 
previously reported. Fragmentation-related DNA lesions 
in cellular gDNA samples, if present, might prevent 
cfDNA-associated damages from being detected. Thus, 
although we could not demonstrate the absence of a par-
ticular cfDNA-associated damage due to this limitation, a 
significant elevation in the error rate for cfDNA samples 
should reflect cfDNA-associated DNA lesions.

First, after identifying errors in cfDNA and gDNA 
sequencing data, we compared the total substitution 
error rates of cfDNA and gDNA. Our results showed 
significantly more errors in the cfDNA sequencing 
data than those in the gDNA sequencing data. The 

average substitution error rates of cfDNA and gDNA 
were 0.00574 ± 0.0003% and 0.00271% ± 0.0002%, 
respectively (p-value = 2 ×  10–4; Fig. 1A). Next, we meas-
ured the error rates across all 12 substitution classes. 
Although the overall patterns across the 12 substitution 
classes were similar for the cfDNA and gDNA data, we 
observed the differences in the cfDNA and gDNA error 
rates in particular substitution classes (Fig.  1B). We 
found that C>T and G>A substitution errors were sig-
nificantly more frequent in cfDNA than in gDNA (Bon-
ferroni adjusted p-value < 0.01; Fig.  1B). To rule out the 
possibility that technical variability might contribute this 
difference, we replicated the data set for each sample. The 
differences in average error rates between the two data 
sets were less than 0.0003% across all substitution classes, 
clearly demonstrating that technical variability hardly 
explains the significant elevation of C:G > T:A errors in 
cfDNA (Additional file  2: Figure S1). Furthermore, the 
increase in C:G > T:A substitution errors in cfDNA was 
also observed in an independent data set (Bonferroni 
adjusted p-value < 0.02; Additional file 3: Figure S2) gen-
erated from 20 patients with lymphoma. To negate the 
possibility of artifacts due to differential DNA damage 
between cfDNA and cellular gDNA caused by the fixa-
tive in the blood collection tube, we performed the same 
analysis using samples collected in EDTA tubes. Consist-
ently, the C:G > T:A error was elevated in cfDNA com-
pared to that in gDNA (p-value < 0.01; Additional file  4: 
Figure S3). Our data strongly suggest that the increase in 
C:G > T:A errors in the cfDNA samples was not due to 
technical artifacts but rather due to sample type-associ-
ated attributes.

Fig. 1 Comparison of the error rates in sequencing data of cell‑free DNA (cfDNA) and cellular genomic (gDNA) samples. The box plots display the 
distribution of the mean error rates A in total and B for the twelve substitution classes for the cfDNA and cellular gDNA samples
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These results demonstrated that C:G > T:A substitution 
errors increased in cfDNA compared to cellular gDNA, 
primarily leading to an overall increase in the error 
rate for cfDNA. Our results indicated that cfDNA was 
relatively prone to a cytosine lesion (i.e., likely cytosine 
deamination) that base-paired with adenine instead of 
guanine.

Random genomic position of cfDNA‑associated C:G>T:A 
errors
Sequencing errors are largely dependent on their con-
text; thus, error rates vary dramatically across different 
chromosomal positions [13]. The context dependency 
of errors is relevant not only for sequencing platform-
associated errors but also for certain types of errors due 
to DNA lesions [15, 33]. For instance, the frequency of 
C:G > A:T transversions due to guanine oxidation dra-
matically changes depending on their context, which also 
varies with the etiology of guanine oxidation [15, 23]. 
Thus, we speculated if the increased C:G>T:A errors in 
cfDNA were associated with a subset of chromosomal 
positions, indicating a context dependency.

First, we compared the fraction of error-free posi-
tions between cfDNA and gDNA. The fraction of error-
free positions is 75 ± 0.72% for plasma cfDNA and 76 

± 1.96% for gDNA (Fig. 2A). Second, we calculated the 
error rate at every genomic position of target regions 
and compared the distribution of errors in cfDNA and 
gDNA. Substitution errors were measured at 199,538 
out of 202,429 bp, excluding positions where any sam-
ple did not achieve 500 × depth of coverage. Consistent 
with the elevated average error rate in cfDNA, the dis-
tribution of cfDNA position-specific error rates shifted 
to the right compared to that in gDNA (Fig. 2B). Then, 
we performed a t-test to identify positions where the 
error rates of the two groups were significantly differ-
ent. Based on the reference sequence, the test was per-
formed for 52,174 positions for A>N, 48,239 positions 
for C>N, 48,062 positions for G>N, and 51,063 posi-
tions for T>N substitution errors. We only found 843 
positions where position-specific error rates differed 
between the groups, which is 0.42% of the total posi-
tions tested (Fig. 2C). Among the 843 positions tested, 
20.2% (171/843) were C:G>T:A substitutions. Although 
the error rate of C:G>T:A substitutions was the high-
est among all the substitution classes, the number of 
positions displaying a significant difference in error 
rate between plasma and genomic DNA was not greater 
than that in other substitution classes. The cfDNA error 

Fig. 2 Position‑specific error rates in sequencing data. A The percentage of error‑free positions in each sample was calculated and presented as 
a box‑plot for each group. B The counts of the position‑specific error rates for each group are plotted on the y‑axis. At each position, the average 
background error rate is calculated for each group. C The position‑specific error rates across the 12 substitution classes is displayed in descending 
order. They are gray dots, except when they differ significantly between groups, in which case they are red for cfDNA and green for gDNA
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rate was higher than that for gDNA at 75 out of 171 
positions, which were highly likely to be false positives.

To examine if these handful of positions contributed 
significantly to the elevated cfDNA error rate, we again 
profiled error rates across 12 substitution classes after 
excluding these 843 positions. Removal of these posi-
tions did not change the error rates across 12 substitution 
classes. The total error rate decreased by less than 4% for 
both cfDNA and gDNA, which means that position spe-
cific errors have little effect on the elevated cfDNA error 
rate. Moreover, the C:G>T:A error rate in cfDNA sam-
ples was not lower than the error rate before the exclu-
sion (1.38 ×  10–5).

Taken together, our results indicated that the increase 
in C:G>T:A errors in cfDNA was not predominantly due 
to a small fraction of the positions. Instead cfDNA-asso-
ciated cytosine lesions might randomly arise without a 
strong sequence dependency.

Independence of cfDNA‑associated C:G>T:A errors 
from DNA breakpoints
As DNA lesions might be relatively frequent near DNA 
breakpoints, as shown in previous reports, we investi-
gated whether the substitution error rates depended on 
the location relative to the DNA breakpoints. To evalu-
ate how substitution errors differ depending on their 
position in DNA fragments, the substitution error rate 
at every 5-bp interval from 1 to 50  bp (positions rela-
tive to the DNA breakpoint) of the sequencing reads 
were assigned to bins 1–10, respectively. In both sam-
ples types, we observed that the average substitution 
error rate was higher in the first bin than other bins 
(p-value = 1.90 ×  10–11 and 1.98 ×  10–8 for cfDNA and 
gDNA, respectively). On the contrary, we did not find a 
significant difference in the C:G > T:A substitution errors 
between the first and second bins of cfDNA (Fig.  3). 
Although C:G > T:A substitution errors increased slightly 
near the ends of the DNA fragments compared to their 
middle regions (Fig. 3), this pattern was not significantly 
different between the groups; indicating that cfDNA-
associated cytosine lesions were distributed more or less 
evenly across the DNA fragment. These patterns were 
also observed in the other data set (Additional file 5: Fig-
ure S4).

Discussion
In this study, we demonstrated that there were more 
C:G>T:A errors in sequencing data generated for cfDNA 
compared to that generated for cellular gDNA due to 
cfDNA-associated lesions, most likely due to cyto-
sine deamination. A number of studies have reported 
that cytosine deamination can causes C:G>T:A sub-
stitutions [20, 22]. While it is a frequently occurring 

DNA lesion caused by endogenous cellular processes, 
C:G>T:A errors are far more frequently caused by tech-
nical artifacts occurring during experimental procedures, 
including sample preparation and storage. Since DNA 
fragmentation is essential for constructing sequencing 
libraries from cellular gDNA, identification of cfDNA-
associated errors through comparison with the errors in 
cellular gDNA is hampered by its greater level of artificial 
sequencing errors due to DNA fragmentation. Previously, 
we reported a DNA fragmentation protocol that mini-
mizes DNA lesions by lowering the ultrasonic acoustic 
energy [15]. By leveraging this protocol, we could identify 
cfDNA-associated DNA lesions, which would not be evi-
dent had we used a standard protocol (Additional file 6: 
Figure S5).

In fact, the average error rate of cellular gDNA sam-
ples prepared using the standard protocol was higher 
than that of the cfDNA sample, this was reversed when 
the optimized protocol was used. As shown in Fig.  1, 
the error rates across all substitution classes were never 
higher in cfDNA than in gDNA. When we calculated 
the error rates by location in the DNA fragments, the 
gDNA error rate for any of the substitution classes was 
not significantly higher near DNA breakpoints, suggest-
ing that DNA damage associated with DNA fragmenta-
tion was minimal. One exception was the C:G>A:T error 
rate, which was significantly higher in the first 5  bp of 
the gDNA fragments (Bonferroni adjusted p-value < 0.01; 
Fig. 3, Additional file 5: Figure S4). These data indicated 
the presence of guanine oxidation due to acoustic shear-
ing near DNA breakpoints, even though we used a mild 
shearing condition. Thus, we excluded the ends of the 
DNA fragments and compared the C:G>A:T error rate 
between cfDNA and cellular gDNA. Although it did 
not differ significantly between the groups, we could 
not conclude whether the absence of cfDNA-associated 
C:G>A:T errors was due to limitations of our analy-
sis. In addition to C:G>T:A, cfDNA-associated errors 
might occur in other substitution classes. For instance, 
we found that A:T>T:A errors were slightly, yet signifi-
cantly, elevated in cfDNA samples. However, except for 
C:G>T:A substitution errors, the difference in substitu-
tion errors was not significant in our analysis of an inde-
pendent data set (Fig. 1, Additional file 3: Figure S2). In 
addition, when we performed mutational signature anal-
ysis using single base substitution (SBS) mutation signa-
ture from the COSMIC database [30], we observed that 
only SBS6, one of several defective DNA mismatch repair 
signatures, was significantly elevated in cfDNA error pro-
files (9.53% vs. 7.70%; Bonferroni adjusted p-value < 0.01; 
Additional file  7: Table  S2). On the other hand, no dif-
ference was observed in other defective DNA mismatch 
repair signatures. Although these results were consistent 



Page 7 of 9Shin et al. BMC Med Genomics          (2021) 14:192  

with our primary observation, it still remained to iden-
tify the mechanism underlying the error rate elevated in 
cfDNA.

Although our results coherently indicated the eleva-
tion of C>T error rate in cfDNA samples, there are also 
limitations in our study. As we used a hybrid selection-
based targeted sequencing method with the Illumina 
sequencer, our study needs to be validated further using 
other methods. The technical advancements in library 
construction or sequencing platforms that decrease the 

background error level in the sequencing data may result 
in the uncovering of subtle differences that are masked 
by background noise in this study. In addition, it would 
be better to test the findings using various pre-analytic 
procedures. Owing to the possibility of low and varied 
DNA damage between cfDNA and cellular gDNA caused 
by the unknown chemical in Streck tubes, we gener-
ated an additional dataset from samples collected using 
EDTA tubes. Although we found a consistent pattern of 
the C:G>T:A error in samples collected in non-fixative 

Fig. 3 Background error rates according to the positions relative to the DNA breakpoint. The error rates were binned by every 5 bp based on their 
nucleotide position in the reads and plotted across the 12 substitution classes for each group. The red line indicates the average error rates of each 
substitution class
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tubes, it is still difficult to directly compare datasets from 
two different collection tubes owing to variations attrib-
uted to other factors in the dataset, such as blood donors 
and capture methodology (see Methods **for details on 
library preparation). Further studies on DNA damage 
involved in these pre-analytical procedures can provide 
us a better understanding of DNA lesions associated with 
plasma cfDNA. Nonetheless, the results from the addi-
tional dataset obtained using EDTA tubes indicated that 
the fixative reagent did not affect our findings.

In this study, we used UMIs to reduce PCR errors. 
UMIs have been suggested to suppress background 
errors and increase the depth of unique coverage. How-
ever, the effect of the UMIs in our study was marginal; the 
mean frequency for all substitution errors was decreased 
by only 32% in gDNA (0.0064% to 0.0044%) and 22% in 
cfDNA (0.0073% to 0.0057%). These results were because 
the average number of progenies in each unique tem-
plate in our sequencing data was only 2.79, which was 
not enough to take full advantage of UMIs for suppress-
ing PCR errors. In the in silico error suppression method 
using UMIs, the number of progenies of PCR duplicates 
is a major factor affecting the performance of the error 
suppression method. To increase the effect of UMI, strat-
egies for increasing PCR progenies, such as improve-
ment of capture uniformity, reduction of PCR bias, and 
increase in data size, need to be considered.

Conclusions
By analyzing the substitution errors in sequencing data, 
we found that C:G>T:A errors were higher in cfDNA 
than in gDNA. These cfDNA-associated errors were not 
related to specific locations in the genome. We also found 
that C:G>T:A substitution errors were still significantly 
increased after removing the position on the DNA frag-
ment with a significant difference in error rate between 
cfDNA and gDNA. The frequency of C:G>T:A substitu-
tion errors did not change with location relative to the 
DNA breakpoints. In conclusion, we identified cfDNA-
associated substitution errors that were likely to be 
caused by cytosine deamination damage. Although there 
may be fewer cfDNA-associated DNA lesions than those 
created during experimental procedures, the characteri-
zation of cfDNA-associated errors is critical for detecting 
somatic mutations that are present at a low frequency, 
especially considering recent rapid improvements that 
reduce technical artifacts.
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