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CASE REPORT

Multiple malignant tumors in a patient 
with familial chordoma, a case report
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Abstract 

Background: Chordoma is a rare bone tumor that is typically resistant to chemotherapy and is associated with 
genetic abnormalities of the T-box transcription factor T (TBXT) gene, which encodes the transcription factor brachy-
ury. Brachyury is felt to be a major contributor to the development of chordomas.

Case presentation: We describe a 67-year-old woman who developed an undifferentiated pleomorphic sarcoma in 
her thigh. Despite treatment with standard chemotherapy regimens, she had a rapidly progressive course of disease 
with pulmonary metastases and passed away 8 months from diagnosis with pulmonary complications. Her medical 
history was remarkable in that she had a spheno-occipital chordoma at age 39 and later developed multiple other 
tumors throughout her life including Hodgkin lymphoma and squamous cell carcinoma and basal cell carcinoma 
of the skin. She had a family history of chordoma and her family underwent extensive genetic study in the past and 
were found to have a duplication of the TBXT gene.

Conclusions: Brachyury has been found to associate with tumor progression, treatment resistance, and metastasis 
in various epithelial cancers, and it might play roles in tumorigenesis and aggressiveness in this patient with multiple 
rare tumors and germ line duplication of the TBXT gene. Targeting this molecule may be useful for some malignancies.
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Background
Chordoma is a rare bone sarcoma with an incidence rate 
below 0.1 per 100,000 [1]. It is derived from remnants of 
the notochord, an embryonic structure that is required 
for the induction of the neural plate in the embry-
onic disk. Chordoma typically occurs in the skull base, 
mobile spine, and sacrum. Although distant metastasis 
may occur, chordomas usually behave as low-grade neo-
plasms with a locally aggressive growth pattern and high 
local recurrence rates. Surgery and radiotherapy are the 
mainstays of treatment, but many patients develop tumor 
recurrence or complications from treatment. These 

tumors typically are resistant to traditional chemother-
apy and no standard treatment has been approved [2, 3].

While most cases of chordoma are sporadic, reports 
of two or more close relatives with chordoma suggest a 
genetic predisposition for this disease. Probable auto-
somal dominant inheritance in familial chordoma was 
first reported by Stepanek et  al. [4]. A series of subse-
quent studies demonstrated duplication of the TBXT 
gene, a member of the T-box proteins encoding brachy-
ury, that is felt to be a major susceptibility mechanism 
for the development of chordoma in several families [5, 
6]. Brachyury is a transcription factor within the  T-box 
family  of genes that is expressed in the nuclei of noto-
chord cells and is essential for notochord development 
[7]. Knocking down brachyury in a chordoma cell line 
resulted in decreased proliferation and cell senescence 
[8]. Brachyury is considered a marker for notochord and 
notochord-derived tumors with nearly a 100% expression 
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rate, although it has been reported to be expressed in 
some germ cell tumors and small cell lung cancer [9, 10].

In this report, we described a patient with a history of 
familial chordoma who later developed multiple cancers 
including squamous cell carcinoma (SCC) of the skin, 
basal cell carcinoma (BCC) of the skin, Hodgkin lym-
phoma, and aggressive undifferentiated pleomorphic 
sarcoma (UPS). Genetic mechanisms underlying the 
pathogenesis of familial chordoma and multiple cancers 
are discussed.

Case presentation
A 67-year-old white woman developed gradually increas-
ing right hip and thigh pain over three months. Physical 
examination revealed a 20 × 10 cm medial and posterior 
soft tissue mass in right thigh with moderate tenderness 
to palpation. Motor power and sensation were intact. 
An MRI showed an 18.6 × 13 × 11-cm mass within the 
hamstring musculature (Fig.  1). A biopsy revealed a 
high-grade UPS (Fig.  2), and a PET-CT revealed bilat-
eral hypermetabolic lung nodules and right inguinal 
chain hypermetabolic lymphadenopathy consistent with 
metastatic disease. She was treated with pegylated lipo-
somal doxorubicin (PLD) and infusional ifosfamide with 
mesna [11]. Repeat imaging demonstrated resolution 
of the lung nodules after 1 cycle. However, after the 3rd 
cycle, imaging revealed progression in the primary tumor 
(21 × 20 × 30-cm) (Fig.  3) and multiple new pulmonary 
metastases. The primary tumor was surgically excised 
for symptom control; pathology of the resection speci-
men revealed a FNCLCC grade 3 UPS with lymphovas-
cular invasion and negative margins with a chemotherapy 
effect in ~ 60% of the tumor (Fig. 4).

Next generation sequencing (NGS) using the Foun-
dationOne platform of the primary tumor revealed 
several genetic changes including missense mutation 
of AXL (R368Q) and RB1 (R661W) and intron 5 rear-
rangement of FAS. The tumor was microsatellite sta-
ble and had a tumor mutational burden of 3 mutations/
Mb. In addition, several variants of unknown signifi-
cance were identified, including T535N in ALK, R496H 
in BRCA1, L2277F in BRCA2, Q740H in BRIP1, S301F 
in CCT6B, L219I in CSF3R, S1134C in CUX1, R127Q in 
ETV6, P197L in IL7R, L168* in JAK3, K2148N in MKI67, 
I754M in MSH3, G1366S in NOTCH1, and ROS1 rear-
rangement. The TBXT gene, which encodes brachyury, 
is not included in the FoundationOne testing (Additional 
file  1:  Technical specifications of FoundationOne NGS 
platform. Genes examined and mutations detected). 
Immunostaining of the primary UPS specimen revealed 
no detectable nuclear brachyury staining (Fig. 5). Due to 
disease progression and performance status, treatment 
with gemcitabine was initiated [12]. The patient only 

received 1 cycle of treatment before she developed acute 
hypoxic respiratory failure with bilateral pleural effu-
sions and left pneumothorax, with clinical and imaging 
findings of disease progression. The treatment regimen 
was changed to pembrolizumab plus pazopanib [13–15]; 
although well-tolerated, she developed continued tumor 
progression and passed away 8 months after diagnosis.

Her past medical history was notable for a spheno-
occipital chordoma excised at age 39. Interestingly, ten 
members of her family were diagnosed with chordoma. 
Of ten cases, nine involved the clivus or nasopharynx 
with the age of diagnosis ranging from 6 to 68-years-old. 
One brother was diagnosed at age 28 with an aggressive 

Fig. 1 Pre-treatment MRI images. A Axial PD fat suppressed MR 
image of the right thigh demonstrates a heterogeneous soft tissue 
mass measuring 13.5 × 11.4 cm in transverse and AP dimension; B 
Coronal stir (short T1 inversion recovery) MR image of a heterogenous 
soft tissue mass measuring 20.8 × 11.3 cm in craniocaudal and 
transverse measurement
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sacral chordoma and later died of metastatic disease. 
The patient and members of her family were involved in 
extensive genetic studies to identify the genetic abnor-
mality in familial chordoma, which showed TBXT 
gene duplication on 6q27 and contained a SNP vari-
ant rs2305089 [5, 6]. Her last follow-up MRI, at age 61, 
still revealed a stable 1.2 × 0. 8 × 2.3-cm soft tissue mass 
localized in the posterior nasopharynx appearing to con-
nect a midline defect in the clivus. There was no evidence 
of progression or metastatic disease, and clinical observa-
tion was recommended. There was no history of second 
malignancy in her other family members with chordoma.

At age 52 she was diagnosed with SCC, which was 
incidentally found in the pathology specimen after 
hemorrhoidectomy. This was an invasive carcinoma 
treated with further surgical excision with no adjuvant 
therapy. Follow-up high-resolution anoscopy with biop-
sies revealed no evidence of any residual dysplasia or 
carcinoma in  situ. She also was diagnosed with several 
superficial BCC lesions, which were removed during 
the previous 15 years before her death. She also had an 
adenomatous colonic polyp removed at age 59. At age 62 
she developed a gradually enlarging right neck mass over 
2  months. A biopsy revealed classical Hodgkin disease, 
nodular sclerosing type, and PET-CT imaging showed 
bilateral hypermetabolic supraclavicular, mediastinal, 
and left hilar adenopathy (stage IIA). She was treated 
with four cycles of doxorubicin, bleomycin, vinblastine, 
and dacarbazine as the ABVD regimen; PET-imaging 
after two cycles revealed a complete response. She com-
pleted chemotherapy followed by radiation therapy to the 
mediastinum, left hilar, and supraclavicular areas. She 
had no subsequent evidence of lymphoma recurrence. 
She also had a benign PET-negative thyroid nodule found 
during work-up for lymphoma that remained stable. She 
had no significant exposure history, worked in an office, 
and was a never smoker.

Discussion and conclusions
We describe a patient with a familial chordoma and a 
history of multiple cancers throughout her life including 
Hodgkin disease and UPS. The UPS progressed rapidly 
on PLD/ifosfamide and subsequent treatments with gem-
citabine and then pembrolizumab plus pazopanib. We 
discuss the biology of chordoma and the use of genetic 

Fig. 2 Core needle biopsy specimen showing tumor heterogeneity with high cellularity on the left and stromal collagenization on the right (A). 
Higher magnification image demonstrates a high-grade pleomorphic sarcoma with severe nuclear atypia (B). Microscopy was performed using an 
Olympus BX46 microscope with UPlanFL N lenses and an Olympus DP73 camera with no filter; acquisition software was Olympus cellSens standard 
with a resolution of 4800 (W) × 3600(H) pixels and no downstream processing

Fig. 3 Post-treatment MRI images. Axial PD fat suppressed MR image 
of the right thigh demonstrates interval increase in the size of the 
soft tissue mass, measuring 21.6 × 20.9 cm in transverse and AP 
dimension
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studies to broaden treatment options for aggressive 
tumors that do not respond to standard therapy.

Genomic rearrangements, including copy number 
variants, contribute to disease susceptibility in both 
sporadic as well as some inherited Mendelian diseases. 
The patient and members of her family were involved in 

genetic studies to identify the genetic abnormality under-
lying the pathogenesis of familial chordoma. High-reso-
lution array-CGH (comparative genomic hybridization) 
revealed that her rare variant of chordoma is associated 
with TBXT gene duplication on 6q27 and TBXT gene 
sequencing showed an SNP variant rs2305089 (G177D). 

Fig. 4 The sarcoma shows very high cellularity with a sheet-like growth pattern, multinucleated giant cells and necrosis (A). On higher 
magnification, there are high-grade pleomorphic tumor cells and multiple mitotic figures (B) with areas of heterologous osteosarcomatous 
differentiation (C, right). Chemotherapy effect, characterized by cell death and hyalinization, was present in ~ 60% of the tumor (D, right). 
Microscopy was performed as in Fig. 2

Fig. 5 Immunohistochemistry stain for Brachyury is negative in the tumor cells (A); a positive control shows brachyury expression in a chordoma 
(B). Microscopy was performed as in Fig. 2
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TBXT encodes brachyury, which is important in noto-
chord development and expressed in most sporadic 
chordomas. All affected individuals in the family shared 
a common 6q disease-related haplotype. [5, 6]. These 
findings are in line with data from other studies that 
previously identified brachyury as a crucial factor in the 
pathogenesis of chordoma [16–18]. Furthermore, brach-
yury has been reported to be a driver of cancer stemness 
and therapy resistance, and may play roles in cancer pro-
gression, epithelial-mesenchymal transition (EMT), and 
metastasis in various types of cancer [19–21] including 
breast cancer [22–25], prostate cancer [26, 27], non-small 
cell lung cancer [28–30], colorectal cancer [31], hepato-
cellular carcinoma [32], and some other epithelial cancers 
[33–35]. There is no known association between T gene 
and the other tumors (SCC, BCC, Hodgkin lymphoma, 
or UPS) that occurred in the patient described here. The 
mechanism was proposed to be through the Yes-asso-
ciated protein (YAP) regulatory axis, a key regulator of 

tissue growth and homeostasis [36]. Amplification of the 
YAP gene locus has been reported in a wide spectrum 
of human and murine tumors, and one study found that 
brachyury enhances YAP transcription by binding with 
the proximal promoter region to increase its stability 
post-transcription [37].

UPS is one of the most common subtypes of soft tis-
sue sarcoma. It is characterized by a lack of definite lin-
eage differentiation using currently available diagnostic 
techniques, and studies suggest several subtypes of soft 
tissue sarcoma, including liposarcoma and leiomyosar-
coma, may evolve into UPS [38]. UPS is a disease with 
complex genomic alterations, and gene expression stud-
ies suggest the existence of functional subgroups of UPS 
that have different metastatic propensity and clinical out-
comes [39–41]. The most commonly identified mutated 
genes in UPS were TP53 (66%), ATRX genes (34%), and 
RB1 (28%); although the frequency varies from study to 
study, there are consistent trends among these 3 genes 

Fig. 6 Potential effects of brachyury in promoting cancer aggressiveness. Over-expression of brachyury promotes cancer stemness and resistance 
to chemotherapy and radiation, and also enhances epithelial-mesenchymal transition, migration, invasion, and, eventually, metastasis. The 
mechanism is not well defined, but may relate to up-regulation of YAP transcription and stabilization of YAP protein by increased production of 
brachyury, with subsequent effects mediated primarily by YAP. This is an original figure
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[42–44]. Nonetheless, there are very few clinically targ-
etable mutations identified to date [45].

Given her known status of TBXT gene duplication, 
brachyury might play a role in both the development 
and the aggressiveness and resistance to therapy of the 
UPS in her case (Fig. 6). Therapy that has demonstrated 
efficacy in pre-clinical studies of chordoma include 
afatinib, an epidermal growth factor receptor (EGFR) 
inhibitor, and THZ1, a cyclin-dependent kinase (CDK) 
7/12/13 inhibitor [46, 47]. Afatinib was the only EGFR 
inhibitor that inhibited the proliferation of all chor-
doma cell lines tested, and its antiproliferative activ-
ity correlated with the ability to promote degradation 
of EGFR and brachyury [46]. CDK inhibitors targeting 
CDK7/12/13 and CDK9 have also been found to sup-
press chordoma cell proliferation, reduce tumor growth 
in  vivo, and decrease brachyury protein expression in 
these systems [47]. The transcription-associated CDKs, 
including CDK7, CDK8, CDK9, CDK12 and CDK13, 
are important regulators of gene expression [48], and 
transcription-associated CDK inhibitors have been 
found to down-regulate highly expressed, enhancer-
associated transcription factors in other cancers [47]. 
TBXT is associated with a 1.5  Mb region contain-
ing strong enhancers or “super-enhancers,” and is the 
most highly expressed super-enhancer associated tran-
scription factor in chordomas [47]. Therefore, tran-
scription-associated CDK inhibitors may exert their 
action by down-regulating brachyury [47, 49], provid-
ing an example of transcription factor down-regula-
tion by a small molecule. Various strategies to target 
brachyury are currently under investigation in clinical 
trials (Table 1). Results of early phase trials of a brach-
yury vaccine demonstrated induction of an immune 
responses to brachyury and showed some evidence of 
clinical benefit in patients with chordoma and meta-
static solid tumors [50–52].

In a panel of soft tissue sarcomas, 0/60 UPS cases not 
associated with chordoma were found to have nuclear 
expression of brachyury. Interestingly, in one study, 75/76 
chordomas had nuclear brachyury expression, while the 
one negative case exhibited sarcomatous transforma-
tion. Thus, the finding that our UPS case did not express 
brachyury does not exclude that it could have arisen from 
a chordoma, although the location of the tumor would be 
very atypical [10]. On a tissue-based NGS study (Founda-
tionOne®), the UPS tumor of the patient described here 
demonstrated microsatellite stability, low tumor muta-
tional burden, and mutations in AXL and RB1. AXL acti-
vation could predict resistance to EGFR inhibitors [55, 
56]. However, no known clinical significance on the effect 
of the AXL missense mutation in this case is known. RB1 
inactivation, predicted by a missense mutation in the 

pocket domain (aa 773–928) as seen in this case, may be 
associated with sensitivity of Aurora kinase A and resist-
ance to CDK4/6 inhibitors, but this is also not clinically 
targetable at present [57]. ROS1 rearrangement, also 
found in our patient’s tumor, is a common event in car-
cinogenesis and has been demonstrated in a variety of 
human cancers, including glioblastoma, non-small cell 
lung cancer (NSCLC), and sarcomas, such as angiosar-
coma and epithelioid hemangioendothelioma [58]. Thus, 
her tumor may have been responsive to ROS1 tyrosine 
kinase inhibitors, such as crizotinib, although she did 
not receive that trial agent; most of the studies to date 
have focused on lung cancer models [59, 60]. Interest-
ingly, despite being the most common gene with genetic 
alteration in UPS, there was no TP53 mutation found on 
the FoundationOne platform in this patient (Additional 
file 1). Several variants of unknown significance were also 
detected as described above, but their association with 
malignancy is currently unknown.

In this patient with multiple rare tumors including a 
UPS with an aggressive nature, multiple genetic altera-
tions such as AXL and RB1 mutation might play a role. 
However, the occurrence of multiple uncommon tumors 
suggests an underlying susceptibility, and the presence of 
the germline TBXT duplication may have an important 
role in the pathogenesis of her tumors and their biology. 
Detailed molecular and genetic studies could offer ther-
apeutic targets to alleviate the progression of disease in 
the future.
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