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Abstract 

Background:  Developing efficient and successful computational methods to infer potential miRNA-disease associa-
tions is urgently needed and is attracting many computer scientists in recent years. The reason is that miRNAs are 
involved in many important biological processes and it is tremendously expensive and time-consuming to do biologi-
cal experiments to verify miRNA-disease associations.

Methods:  In this paper, we proposed a new method to infer miRNA-disease associations using collaborative filtering 
and resource allocation algorithms on a miRNA-disease-lncRNA tripartite graph. It combined the collaborative filter-
ing algorithm in CFNBC model to solve the problem of imbalanced data and the method for association prediction 
established multiple types of known associations among multiple objects presented in TPGLDA model.

Results:  The experimental results showed that our proposed method achieved a reliable performance with Area 
Under Roc Curve (AUC) and Area Under Precision-Recall Curve (AUPR) values of 0.9788 and 0.9373, respectively, under 
fivefold-cross-validation experiments. It outperformed than some other previous methods such as DCSMDA and 
TPGLDA. Furthermore, it demonstrated the ability to derive new associations between miRNAs and diseases among 8, 
19 and 14 new associations out of top 40 predicted associations in case studies of Prostatic Neoplasms, Heart Failure, 
and Glioma diseases, respectively. All of these new predicted associations have been confirmed by recent literatures. 
Besides, it could discover new associations for new diseases (or miRNAs) without any known associations as demon-
strated in the case study of Open-angle glaucoma disease.

Conclusion:  With the reliable performance to infer new associations between miRNAs and diseases as well as to 
discover new associations for new diseases (or miRNAs) without any known associations, our proposed method can 
be considered as a powerful tool to infer miRNA-disease associations.

Keywords:  Infer miRNA-disease associations, miRNA-disease-lncRNA tripartite graph, Collaborative filtering 
algorithm, Resource allocation algorithm, Recommender systems
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Background
MicroRNA (miRNA) is a small RNA, about 22–26 nucle-
otides, which belongs to the noncoding RNA class [1]. 
Recent researches have shown that miRNAs are involved 
in many crucial biological processes like cell differen-
tiation, proliferation, signal transduction, viral infection, 
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and so on [2]. Identifying miRNA-disease associations 
could not only help us understand disease mechanism 
at miRNA level but also facilitate us in detecting disease 
biomarkers and discovering drugs for disease diagnosis, 
treatment, prognosis, and prevention. It has been con-
firmed that the dysregulations of the miRNAs are asso-
ciated with the development and progression of various 
complex human diseases [3–6]. Until now, there are only 
a few known miRNA-disease associations in compari-
son with the number of newly discovered miRNAs. It is 
also tremendously expensive and time-consuming to do 
biological experiments to verify miRNA-disease asso-
ciations. Therefore, expanding effective and outstanding 
computational methods to predict potential miRNA-
disease associations is urgently needed and is attracting 
many computer scientists in recent years [7].

Recently, various computational methods to fore-
cast possible miRNA-disease associations have been 
developed. For example, Liu et al. [8] proposed PBMDA 
prediction model which integrated known human 
miRNA-disease associations, miRNA functional similar-
ity, disease semantic similarity and Gaussian interaction 
profile kernel similarity for miRNAs and diseases. They 
constructed a heterogeneous graph and further adopted 
depth-first search algorithm to figure out probable 
miRNA-disease associations. Chen et al. [9] presented a 
model called Graphlet Interaction for miRNA-Disease 
Association prediction (GIMDA) to predict miRNA-dis-
ease associations by measuring the graphlet interaction 
among miRNAs and among diseases. Graphlet is a type 
of subgraph with a few connections in a large network. 
GIMDA achieved a decisive performance but it was sig-
nificantly time-consuming. Liang et  al. [10] proposed a 
miRNA-disease association prediction method based 
on adaptive multi-view multi-label learning (AMVML). 
It learned a new affinity graph for miRNAs and diseases 
from multiple data sources. However, the integration of 
unreliable similarity matrices might weaken its overall 
prediction accuracy. The above mentioned methods for 
predicting miRNA-disease associations strongly relied 
on known human miRNA-disease associations. Most of 
existing methods need to use the similarity matrices such 
as the disease semantic similarity matrix and miRNA 
functional similarity matrix but they are not directly 
related to the miRNA-disease associations [11]. Besides, 
they have to deal with the problem of sparse similarity 
matrices which affected the prediction accuracies [12]. 
One other problem is that the miRNA-target interactions 
usually have a high rate of false-positive and false-nega-
tive [9, 13].

In fact, diseases are caused by the disturbance of a 
complex of interacting multiple biomolecules rather than 
the abnormity of a single biomolecule. The functionally 

dependent molecular components in human cells form 
a complex biological network, in which lncRNAs and 
proteins are important parts of human tissues and cells. 
It is the reason that some computational methods have 
recently based on multiple types of known associations 
or interactions among multiple objects to predict poten-
tial miRNA-disease associations. For example, Zhao 
et al. [7] developed a computational method based on a 
distance correlation set to predict miRNA-disease asso-
ciations (DCSMDA) by integrating known lncRNA-dis-
ease associations, known miRNA-lncRNA associations, 
disease semantic similarity, and various lncRNA and 
disease similarity measures. DCSMDA did not require 
known miRNA-disease associations but it required the 
calculation of various similarity matrices and its perfor-
mance depended on the pre-given threshold parameter. 
Mørk et  al. [14] relied on known miRNA–protein asso-
ciations and known protein–disease associations to infer 
miRNA–disease associations. Marissa Sumathipala and 
Weiss [15] integrated miRNA-gene, protein–protein, 
and gene-disease network information into a multi-level 
complex network to predict and prioritize biologically 
relevant miRNAs for diseases. Ji et  al. [16] constructed 
a heterogeneous information network by integrating the 
known associations among lncRNAs, drugs, proteins, 
diseases, and miRNAs. They further employed the net-
work embedding method which learned graph repre-
sentations with global structural information to predict 
miRNA-disease associations. In general, the compu-
tational methods for predicting miRNA-disease asso-
ciations based on multiple types of known associations 
among multiple objects are usually helpful for improv-
ing prediction accuracy. However, the number of known 
associations among biological objects is very limited 
in comparison with the number of objects in each type. 
Therefore, once again, these models have to be consid-
ered with the sparsity data problem.

In recent years, a variety of recommender systems 
have been developed to increase the association predic-
tion reliability based on collaborative filtering methods. 
These methods rely on prior actions to predict user-item 
relationships to solve the problem of scarce known asso-
ciations among different objects [17, 18]. Up to date, rec-
ommender algorithms have been appended into some 
computational models of prediction to identify different 
potential disease related biological objects. For example, 
Yu et  al. [19] proposed a collaborative filtering model 
for lncRNA-disease association prediction based on 
the Naïve Bayesian classifier. Shen et  al. [2] predicted 
miRNA-disease association with Collaborative Matrix 
Factorization model which caused bias to miRNAs with 
more known associated diseases. Li et al. [11] presented a 
collaborative filtering-based miRNA-disease association 
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prediction model (CFMDA) to predict miRNA-disease 
association. CFMDA was straight and robust by con-
sidering a minimal amount of related information and 
no tunable parameters were defined. However, CFM-
DA’s association prediction performance was subjective 
because it only relies on miRNA-disease associations to 
execute predictions.

To solve the sparsity data problem and to take advan-
tages of the integration of multiple types of known asso-
ciations among multiple objects in improving prediction 
accuracy, in this paper, we proposed a new method to 
infer miRNA-disease associations using collaborative 
filtering and resource allocation algorithms on a tripar-
tite graph. Our method is inspired by combining the 
collaborative filtering algorithm in CFNBC model intro-
duced by Yu et  al. [19] to solve the problem of imbal-
anced data and the method for association prediction 
established multiple types of known associations among 
multiple objects presented in TPGLDA model which 
introduced by Ding et  al.[20] and the model in our for-
mer study [21]. Firstly, we constructed a tripartite graph 
which based on the known miRNA-disease associations, 
the known lncRNA-disease associations, and the known 
miRNA-lncRNA interactions. Secondly, we used a col-
laborative filtering algorithm to recommend miRNAs for 
lncRNAs and diseases, respectively. Next, we employed 
a resource allocation algorithm to infer miRNA-disease 
associations. Finally, we ranked all candidate miRNAs for 
each disease in descending order to suggest associations 
between miRNAs and diseases for further giving the evi-
dence in the future. Our method achieved a trustworthy 
prediction performance under fivefold-cross-validation 
experiments with an Area Under Roc Curve (AUC) aver-
aged value of 0.9788 and an Area Under Precision-Recall 
Curve (AUPR) averaged value of 0.9373. It is outper-
formance in comparison to several previous methods 
such as the DCSMDA [7] and the TPGLDA [20].

Methods
Materials
In this paper, we used datasets which came from the 
study of Zhao et  al. [7]. We downloaded and used the 
Additional files  1, 2, 3, 4, and 5 from this study.  These 
datasets contain 190 diseases, 111 lncRNAs and 264 
miRNAs as described as follows:

Known lncRNA‑miRNA associations
The known lncRNA-miRNA associations were col-
lected from the starBasev2.0 [22] in February, 2017 and 
provided the most comprehensive experimentally con-
firmed lncRNA-miRNA interactions based on large-scale 
CLIP-Seq data. After eliminating duplicate values and 

erroneous data and also removing lncRNAs not included 
in DS2 dataset, we obtained the DS1 dataset which con-
tains 1880 known lncRNA-miRNA associations.

Known lncRNA‑disease associations
The known lncRNA-disease associations were collected 
from 8842 known disease-lncRNA associations in the 
MNDR database [23] and 2934 known disease-lncRNA 
associations in the LncRNADisease database [24]. After 
eliminating diseases without any MeSH descriptors 
because the disease names came from two different data-
bases, merging the diseases with the same MeSH descrip-
tors and removing the lncRNAs which were not included 
in the lncRNA-miRNA dataset (DS1), 936 known asso-
ciations between diseases and lncRNAs (DS2) remained.

Known disease‑miRNA associations
The known human miRNA-disease associations were 
downloaded from the HMDD V2.0 database [25]. This 
dataset (DS3) contains 3252 quality miRNA-disease asso-
ciations after we eliminated the duplicate associations 
and miRNA-disease associations involving with other 
diseases or lncRNAs which were not contained in the 
DS1 or DS2 datasets.

Method overview
In this paper, we proposed a new method to infer 
miRNA-disease associations. The flowchart of the pro-
posed method is illustrated in Fig. 1. Generally, our pro-
posed method contains four main stages. At the first 
stage, we constructed a tripartite graph G0 based on 
known miRNA-disease associations, known lncRNA-
disease associations, and known miRNA-lncRNA inter-
actions. The tripartite graph G0 is represented by three 
adjacency matrices: A0

MD, A0
ML and A0

DL where A0
MD 

is the adjacency matrix between miRNAs and diseases, 
A0

ML is the adjacency matrix between miRNAs and lncR-
NAs, A0

DL is the adjacency matrix between diseases and 
lncRNAs. During the second stage, to solve the imbal-
ance data problem, we employed a collaborative filtering 
algorithm on the tripartite graph G0 to obtain a tripartite 
graph Gu. The tripartite graph Gu is represented by three 
adjacency matrices: Au

MD, Au
ML and A0

DL where Au
MD, 

Au
ML are the adjacency matrices obtained by updat-

ing A0
MD and A0

ML after using collaborative filtering 
algorithm. The tripartite graph Gu is used in a resource 
allocation algorithm at the third stage to calculate final 
resource score (Rscore_final) of miRNA candidates for 
each disease. At the final stage, we ranked all miRNA 
candidates’ Rscore_final for each disease in descending 
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Fig. 1  The flowchart of the proposed method
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order so that the candidate with greater Rscore_final will 
have higher possibility to be verified in the future.

Construction of a tripartite graph G0

Inspired by previous studies [19, 20] to infer lncRNA-
disease associations by using a tripartite graph, in this 
paper, we firstly construct a miRNA-disease-lncRNA 
tripartite graph G0 as follows:

Construction of known miRNA‑disease association graph
Let M = {mk; k = 1,…,nm} denotes the set of miRNAs, 
D = {dj; j = 1,…, nd} denotes the set of diseases where 
nm, nd represent the number of miRNAs and diseases, 
respectively. We build a MD0 graph based on the 
known miRNA-disease associations. The MD0 graph 
is represented by a matrix A0

MD which is the adjacency 
matrix of known miRNA-disease associations. The 
entity A0

MD(mk, dj) is the element in kth row and jth 
column of A0

MD, and A0
MD(mk, dj) = 1 if miRNA mk is 

associated with disease dj, otherwise, A0
MD(mk, dj) = 0.

Construction of known miRNA‑lncRNA interaction graph
In the same way, let M = {mk; k = 1,…,nm} denotes the 
set of miRNAs, L = {li; i = 1,…, nl} denotes the set of 
lncRNAs where nm, nl represent number of miRNAs 
and lncRNAs, respectively. We can obtain ML0 graph 
and A0

ML matrix. ML0 graph is built on known miRNA-
lncRNA interactions. A0

ML is the adjacency matrix 
of known miRNA-lncRNA interactions. The entity 
A0

ML(mk, li) is the element in kth row and ith column of 
A0

ML, and A0
ML(mk, li) = 1 if miRNA mk interacts with 

lncRNA li, otherwise, A0
ML(mk, li) = 0.

Construction of known disease‑lncRNA association graph
Similarly, let D = {dj; j = 1,…, nd} denotes the set of dis-
eases, L = {li; i = 1,…,nl} denotes the set of lncRNAs, 
where nd, nl represent number of diseases and lncR-
NAs, respectively. We can obtain DL0 graph and A0

DL 
matrix where DL0 graph is built on known disease-
lncRNA associations and A0

DL is the adjacency matrix 
of known disease-lncRNA associations. The entity 
A0

DL(dj, li) is the element in jth row and ith column of 
A0

DL, and A0
DL(dj, li) = 1 if disease dj is associated with 

lncRNA li, otherwise, A0
DL(dj, li) = 0.

Construction of a tripartite graph G0

From the integration of the three MD0, ML0, DL0 
graphs, we obtain a tripartite graph G0. The tripartite 
graph G0 is represented by three adjacency matrices: 
A0

MD, A0
ML and A0

DL as mentioned before.

Construction of a tripartite graph Gu

In the tripartite graph G0, the number of known asso-
ciations between miRNAs and diseases as well as 
between miRNAs and lncRNAs are small. So that, for 
any given lncRNA node li and disease node dj, it is 
clear that the number of miRNA nodes which associ-
ated with both li and dj will be very small. To improve 
it, in our method, we use a collaborative filtering 
algorithm for recommending suitable miRNA nodes 
to corresponding lncRNA nodes and disease nodes, 
respectively. By considering that a recommender sys-
tem may involve various input data including users 
and items [18], in our proposed method, we take lncR-
NAs and diseases as users, while miRNAs as items. For 
the two adjacency matrices A0

ML and A0
MD obtained 

above, it is easy for us to construct another adjacency 
matrix A0

MLD = [A0
ML, A0

MD] by splicing A0
ML and A0

MD 
together because the number of rows in both A0

ML and 
A0

MD are same. It is clear that the row vector of A0
MLD 

consists of the row vectors in A0
ML and A0

MD while the 
column vectors in A0

MLD is the same as the column vec-
tors in A0

ML or A0
MD.

On the basis of A0
MLD and tripartite graph G0, we can 

obtain a co-occurrence matrix Rm x m, in which, the entity 
R(mk, mr) indicates the element in kth row and rth column 
of Rm x m where R(mk, mr) = 1 if and only if the miRNA mk 
and miRNA mr have at least one common neighboring 
node in G0, otherwise R(mk, mr) = 0. The common neigh-
boring node can be an lncRNA or a disease in G0. So, a 
similarity matrix Rnor can be calculated by normalizing 
Rm x m as the following equation:

where k, r are the number of miRNAs. |N (mk)| indi-
cates the number of known lncRNAs and diseases associ-
ated to mk in G0, which means the number of elements 
with value equaling to 1 in kth row of A0

MLD. |N (mr)| 
indicates the number of known lncRNAs and diseases 
associated to mr in G0, which means the number of ele-
ments with value equaling to 1 in rth row of A0

MLD. 
∣N(mk) ∩ N(mr)∣ indicates the number of known lncR-
NAs and diseases associated with both miRNA mk and 
miRNA mr simultaneously in G0.

Based on the similarity matrix Rnor and the adjacency 
matrix A0

MLD, we calculate a new recommender matrix 
Au

MLD as follows:

(1)Rnor(mk ,mr) =
∣

∣N (mk)
⋂

N (mr)
∣

∣

√
|N (mk)| ∗ |N (mr)|

(2)Au
MLD = Rnor ∗ A0

MLD
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Specifically, for a particular lncRNA li or disease dj in 
G0, if there is a miRNA mk satifying A0

MLD(mk, li) = 1 or 
A0

MLD(mk, dj) = 1 in A0
MLD, then we firstly calculate the 

sum of the values of all elements in the ith or jth col-
umn in Au

MLD, respectively. Therefore, we will have its 
averaged value P. Next, if the ith or jth column of Au

MLD 
contains a miRNA mθ which satisfies Au

MLD(mθ, li) > P 
or Au

MLD(mθ, dj) > P then we recommend miRNA mθ for 
lncRNA li or disease dj, respectively. Also, we will add 
new edge between mθ and li or mθ and dj into the tripar-
tite graph G0.

Finally, we obtain a tripartite graph Gu. The tripartite 
graph Gu contains three graphs: MDupdate, MLupdate and 
DL0 and can be represented by three adjacency matrices: 
Au

MD, Au
ML and A0

DL. MDupdate is the updated graph of 
MD0 after adding new edge between recommended miR-
NAs and diseases. MLupdate is the updated graph of ML0 
after adding new edge between recommended miRNAs 
and lncRNAs. Au

MD is the adjacency matrix which repre-
sents MDupdate graph. It contains 10,310 known and rec-
ommended associations and 39,850 unknown remained 
associations. Au

ML is the adjacency matrix which repre-
sents MLupdate graph.

Employing resource allocation process on the tripartite 
graph Gu to infer miRNA‑disease associations
To infer miRNA-disease association, we employ the 
resource allocation algorithm on the tripartite graph Gu 
as described in the following steps:

Step 1: Calculating resource allocation between miR-
NAs and diseases

For a specific miRNA mk, we define the initial resources 
located on disease dj as:

where nd is the number of diseases.
Then we calculate the resource moved back from D to 

M by using a weight matrix W = {wkt}nm x nm to indicate 
the resource allocation process between miRNAs and 
diseases as follows:

where wkt is the contribution resource moved from 
tth node to kth node in M, and it can be understood as 
the similarity between miRNA mk and miRNA mt in 
MDupdate graph. degAu

MD(mk) is the degree of miRNA 
mk in MDupdate graph and it represents the number of 

(3)fd(mk) = Au
MD

(

mk , dj
)

, j = 1, 2, . . . , nd

(4)

wkt =
1

degAu
MD(mk)

∗
nd
∑

j=1

Au
MD

(

mk , dj
)

∗ Au
MD

(

mt , dj
)

degAu
MD

(

dj
)

associated diseases for miRNA mk. Similarly, degAu
MD

(

dj
)

 
is the degree of disease dj in MDupdate graph and it rep-
resents the number of associated miRNAs for disease dj.

With respect to previous study [20], we also modify the 
resource allocation algorithm by considering the level of 
consistency between the contribution of resource trans-
ferred in both directions. It shows the impact of co-selec-
tion (mk, mt) between the contribution of resource from 
mk to mt and the contribution of resource from mt to mk. 
A consistence-based resource allocation to represent a 
final miRNA-disease weight matrix W’ = {w’kt} can be 
defined as in the following equation:

From the combination of the final miRNA-disease 
weight matrix W’ and the adjacency matrix Au

MD, we 
define a final resource Rscore_ondisease_1 located on D 
as follows:

Step 2: Calculating resource allocation between dis-
eases and lncRNAs

In regard to resource allocation between genes and dis-
eases in TPGLDA [20], the same initial resources located 
on M nodes are allocated from nodes in M to nodes in 
D and then moved back, and the final resource matrix 
Rscore_ondisease_2 located on D nodes are issued by:

where degA0
DL(li) =

∑nd
j=1A

0
DL(dj, li) is the number of 

related diseases for lncRNA li or the degree of lncRNA li 
in DL0 graph. degA0

DL

(

dj
)

=
∑nl

i=1A
0
DL(dj , li) is the number 

of related lncRNAs for disease dj or the degree of disease 
dj in DL0 graph.

Step 3: Calculating the final resource score Rscore_final 
to infer the potential disease-related miRNAs

We calculate the final resource score Rscore_final 
which is used to measure latent disease-related miRNAs 
as follows:

where γ is a tunable parameter with value in [0, 1]. Our 
model achieves the best prediction performance when 
γ = 0.9.

(5)W
′
kt = Wkt +

Wtk
∑nm

s=1Wsk

(6)Rscore_ondisease_1 = W ′ ∗ Au
MD

(7)

Rscore_ondisease_2 =
nl
∑

s=1

A0
DL

(

dj , ls
)

degA0
DL(li)

∗
nd
∑

k=1

Au
MD

(

mk , dj
)

degA0
DL

(

dj
)

(8)
Rscore_final = γ ∗ Rscore_ondisease_1+ (1− γ )

∗ Rscore_ondisease_2
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Ranking all candidate miRNAs’ Rscores for each disease 
in descending order
Finally, we sort all candidate miRNAs’ Rscore_final for 
each disease in descending order so that a higher score 
candidate will have more chances to be verified in the 
future.

Results
Performance measures
To evaluate our method performance in inferring 
miRNA-disease associations, we performed the fivefold-
cross-validation experiments and evaluated the Area 
under roc curve (AUC) and the Area under precision-
recall curve (AUPR) as described in following sections:

Evaluating the AUC under 5‑fold‑cross validation
After applying a collaborative filtering algorithm on tri-
patite graph G0, we obtained a tripartite graph Gu which 
contained three subgraphs: MDupdated graph, MLupdated 
graph and DL0 graph. By employing the resource alloca-
tion algorithm on the tripartite graph Gu, we predicted 
potential miRNA-disease associations. To evaluate our 
model performance in AUC term [26], we compared the 
inferred miRNA-disease associations resulted in Rscore_
final matrix with the adjacency matrix Au

MD of MDupdated 
graph. In MDupdated graph, we considered 10,310 asso-
ciations of known and recommended associations as 
positive samples and the 39,850 remained unknown asso-
ciations as negative samples. Then we randomly divided 
all positive and negative samples into 5 equal parts to 
perform fivefold-cross-validation. Next, in each running 
time, we used 4 parts of positive and negative samples 
for training and the remain part for testing. Our model is 
trained to recalculate Rscore_final in each running time. 
Basically, we computed the false positive rate (FPR) and 
true positive rate (TPR) with different γ values where 
FPR indicates the proportion of the real negative samples 
in predicted positive samples to all negative samples and 
TPR indicates the proportion of the real positive samples 
in all predicted positive samples. The FPR and TPR are 
calculated by the following equations:

where TP (true positive) means that a positive sample 
is correctly predicted as positive sample; FN (false nega-
tive) means that a positive sample is incorrectly pre-
dicted as negative sample; FP (false positive) indicates 
that a negative sample incorrectly predicted as positive 

(9)FPR =
FP

FP + TN

(10)TPR =
TP

TP + FN

sample; TN (true negative) indicates that a negative sam-
ple is correctly predicted as negative sample. We use TPR 
as vertical axis and FPR as horizontal axis to draw the 
receiver operating characteristic (ROC) curve [32], and 
the AUC value of our model achieves 0.9788 with γ = 0.9 
after we perform the experiment for 10 times under five-
fold-cross-validation. Figure 2 illustrates AUC curve with 
γ = 0.9 in one experimental running time.

Evaluate AUPR under 5‑fold‑cross validation
As previously mentioned, the data to evaluate our model 
performance is not balanced. Therefore, we also draw 
precision-recall curve and calculate the AUPR curve 
to evaluate prediction performance [27]. The Precision 
reflects the percentage of the accurately predicted posi-
tive samples in all predicted positive samples, and the 
Recall reflects the percentage of the accurately predicted 
positive samples in all real positive samples. We calculate 
Precision and Recall as follows:

After we perform the experiment under fivefold-
cross-validation for 10 times, our model achieves the 
best AUPR value 0.9373 with γ = 0.9. Figure 3 illustrates 
AUPR curve with γ = 0.9 one experimental running time.

(11)Precision =
TP

TP + FP

(12)Recall =
TP

TP + FN

Fig. 2  AUC curve with γ = 0.9 in one experimental running time
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Performance comparison with other related models
To demonstrate the outperformance of our model, we 
compare our model performance with the performance 
of DCSMDA method proposed by Zhao et  al. [7]. We 
also implements predicting miRNA-disease associations 
by applying the resource allocation process introduced 
in [20] without applying collaborative filtering algorithm. 
The performances of these methods are shown in the 
Table 1.

As can be seen, our proposed method achieves bet-
ter performance in comparison with DCSMDA and the 
method of applying TPGLDA in prediction of miRNA-
disease associations for both AUC and AUPR values. 
Because of the sparsity data problem, AUC value usually 
achieves high score. However, in our proposed method, 
by using collaborative filtering algorithm to improve 
the density of miRNA-disease associations so that the 
updated adjacency matrix Au

MD becomes more bal-
anced which implies that the AUPR value (0.9373) could 
significantly be improved in comparison to AUPR value 
(0.7421) in case of applying TPGLDA model to predict 
miRNA-disease associations without using collaborative 

filtering algorithm. It demonstrates that our model 
achieves a more reliable performance than other previous 
methods.

Case studies
In addition to fivefold-cross-validation experiments, we 
also employed some case studies on our proposed model 
by sorting all candidate miRNAs for each disease. These 
predictions are utilized for further validation. In consist-
ence with the previous study [20], all known and recom-
mended miRNA-disease associations are considered as 
training samples, then the Rscore_final for each potential 
miRNA-disease association is calculated in sequence. 
Higher Rscore_final value indicates greater potential 
miRNA-disease association. In more detail, case stud-
ies on Prostatic Neoplasms, Heart Failure, Glioma and 
Open-angle Glaucoma are constructed to show the abil-
ity of our model in order to identify new disease-associ-
ated miRNAs.

Prostatic neoplasms, also known as Prostate Cancer, 
is the second-most prevalent type of cancers and the 
fifth-leading cause of cancer-related death in men [28]. 
miRNAs have been shown to play an important role in 
predicting prognosis of Prostate Cancer. Up to now, a 
variety of miRNAs have been reported to be associated 
with Prostatic Neoplasms /Prostate Cancer. For example, 
a target gene of miR-653-5p represses the proliferation 
and invasion of prostate cancer cells [29]. The dual action 
of miR-125b as a Tumor Suppressor and OncomiR-22 
promotes Prostate Cancer tumorigenesis [30]. As shown 
in Table 2, there are 8 new miRNA-disease associations 
out of top predicted 40 miRNAs by applying our pro-
posed method. All of new 8 miRNA-disease associations 
were confirmed by recent literatures.

Heart failure (HF), also known as congestive heart fail-
ure (CHF) and congestive cardiac failure (CCF), is when 
the heart is unable to pump sufficiently to maintain blood 
flow  to meet the body’s needs. It is a widely prevalent 
syndrome imposing a significant burden of morbidity 
and mortality world-wide [31]. Unravelling the functional 
relevance of miRNAs within pathogenic pathways is a 
major challenge in cardiovascular research. Recently, a 
numerous miRNAs have been reported to be associated 
with heart failure. For instance, plasma miR-126 levels 
are up-regulated in HF patients [32]. MicroRNA-34 fam-
ily members (miR-34a, -34b, and -34c) are up-regulated 
in the heart in response to stress [33]. Local microRNA-
133a downregulation is associated with hypertrophy 
in the dyssynchronous heart [34]. Table  3 shows top 40 
predicted heart failure  related miRNAs by applying our 
proposed method. As can be seen, it contains 19 new 
miRNAs associated with Heart failure. All of these pre-
dicted associations were confirmed by literatures.

Fig. 3  AUPR curve with γ = 0.9 in one experimental running time

Table 1  Performance comparison with other related models

Method AUC value AUPR value

TPGLDA 0.9703 0.7421

DCSMDA 0.8155 –

Our model 0.9788 0.9373
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Table 2  Top 40 predicted miRNAs for Prostatic Neoplasms

miRNA Rank Known 
before

Evidence (PMID) miRNA Rank Known 
before

Evidence (PMID)

hsa-mir-20a 1 1 20944140 hsa-mir-10b 21 0 28320379

hsa-mir-34a 2 1 25032850 hsa-mir-31 22 1 23233736

hsa-mir-146a 3 1 27222754 hsa-mir-34c 23 1 28320379

hsa-mir-17 4 1 30001402 hsa-mir-224 24 1 30542718

hsa-mir-125b 5 1 28320379 hsa-mir-9 25 0 28320379

hsa-mir-21 6 1 27699004 hsa-mir-19a 26 0 29138858

hsa-mir-92a 7 1 28320379 hsa-mir-486 27 1 27877055

hsa-mir-155 8 0 28320379 hsa-mir-146b 28 1 32368293

hsa-mir-145 9 1 28320379 hsa-mir-183 29 1 23538390

hsa-mir-182 10 1 28320379 hsa-mir-124 30 1 28320379

hsa-mir-200c 11 1 31157262 hsa-mir-148a 31 1 28320379

hsa-mir-27a 12 1 31258791 hsa-mir-181a 32 0 32197476

hsa-mir-218 13 1 28030804 hsa-mir-30c 33 1 28320379

hsa-mir-200b 14 1 28320379 hsa-mir-221 34 1 24892674

hsa-mir-18a 15 0 28320379 hsa-mir-16 35 1 28320379

hsa-mir-126 16 1 29805636 hsa-let-7d 36 1 31468250

hsa-mir-101 17 1 21430074 hsa-let-7b 37 1 27157642

hsa-mir-143 18 1 30933831 hsa-let-7c 38 1 28320379

hsa-mir-25 19 1 28320379 hsa-mir-210 39 0 27824162

hsa-let-7a 20 1 28320379 hsa-mir-196a 40 0 28982366

Table 3  Top 40 predicted miRNAs for Heart failure

miRNA Rank Known 
before

Evidence (PMID) miRNA Rank Known 
before

Evidence (PMID)

hsa-mir-20a 1 0 27173194 hsa-mir-101 21 0 17712037

hsa-mir-125b 2 0 23736534 hsa-let-7a 22 0 23736534

hsa-mir-21 3 1 30783473 hsa-mir-18a 23 1 28293796

hsa-mir-34a 4 0 28660188 hsa-mir-224 24 0 23736534

hsa-mir-146a 5 0 30355233 hsa-mir-9 25 0 23736534

hsa-mir-155 6 1 30783473 hsa-mir-19a 26 1 20118173

hsa-mir-17 7 1 27058529 hsa-mir-486 27 0 26485305

hsa-mir-182 8 1 25013816 hsa-mir-124 28 0 23736534

hsa-mir-92a 9 1 23736534 hsa-mir-146b 29 0 20118173

hsa-mir-126 10 1 29062343 hsa-mir-148a 30 1 23736534

hsa-mir-145 11 1 30783473 hsa-mir-183 31 0 27544699

hsa-mir-34c 12 1 30988323 hsa-mir-181a 32 1 30783473

hsa-mir-200c 13 1 23736534 hsa-mir-30c 33 1 30783473

hsa-mir-27a 14 1 22136461 hsa-let-7d 34 0 20118173

hsa-mir-218 15 1 20118173 hsa-mir-16 35 1 20118173

hsa-mir-25 16 0 30783473 hsa-mir-221 36 0 30009269

hsa-mir-200b 17 0 23864135 hsa-let-7b 37 0 20118173

hsa-mir-10b 18 1 30783473 hsa-let-7c 38 0 23736534

hsa-mir-31 19 0 20118173 hsa-mir-210 39 1 31249,644

hsa-mir-143 20 0 30783473 hsa-mir-191 40 0 20118173



Page 10 of 12Nguyen et al. BMC Med Genomics          (2021) 14:225 

Glioma is the most common central nervous system 
tumor and associated with poor prognosis. Identifying 
effective diagnostic biomarkers for glioma is particu-
larly important in order to guide optimizing treatment 
[35]. Many studies have shown that some miRNAs are 
correlated with the diagnosis and prognosis of glio-
mas. For example, MiR-34a  acts as  tumor-suppressor 
by targeting many oncogenes related to proliferation, 
apoptosis, and invasion of  gliomas [36]. MicroRNA 
(miR) 125b regulates cell growth and invasion in pedi-
atric low grade glioma [37]. MicroRNA-21 promotes 
migration and invasion of glioma cells via activation 
of Sox2 and β-catenin signaling [38]. Therefore, in this 
study, we chose glioma as a case study to demonstrate 
our model’s ability in prediction associations between 
miRNAs and diseases. Table 4 lists top 40 glioma asso-
ciated miRNAs inferred by our model. As illustrated, 
there are 14 new miRNAs associated with glioma, 
which are uncovered by applying our proposed method 
and all of them have been validated by literatures.

Glaucoma is the second leading cause of blindness 
in the United States of America [39]. The most com-
mon types of open-angle glaucoma (OAG) are pri-
mary open-angle glaucoma (POAG) and exfoliation 
glaucoma (XFG) [40]. Recent studies have shown that 
miRNAs may play a role in pathways implicated in 

Table 4  Top 40 predicted miRNAs for Glioma

miRNA Rank Known 
before

Evidence (PMID) miRNA Rank Known 
before

Evidence (PMID)

hsa-mir-20a 1 1 27123147 hsa-mir-34c 21 0 24179539

hsa-mir-17 2 1 30524906 hsa-mir-25 22 0 27123147

hsa-mir-125b 3 1 30131528 hsa-let-7a 23 0 24092860

hsa-mir-21 4 1 22468222 hsa-mir-224 24 1 31046428

hsa-mir-34a 5 1 30836600 hsa-mir-19a 25 0 29340016

hsa-mir-146a 6 0 22468222 hsa-mir-9 26 1 22468222

hsa-mir-92a 7 0 27801803 hsa-mir-486 27 0 32094299

hsa-mir-155 8 0 24376632 hsa-mir-181a 28 1 18710654

hsa-mir-182 9 1 20472885 hsa-mir-146b 29 1 30018734

hsa-mir-145 10 1 23814265 hsa-mir-124 30 1 22468222

hsa-mir-18a 11 1 28123848 hsa-mir-148a 31 0 28445981

hsa-mir-200c 12 0 30034253 hsa-mir-183 32 1 23263745

hsa-mir-27a 13 1 25628931 hsa-mir-16 33 1 28628119

hsa-mir-218 14 1 28431179 hsa-mir-221 34 1 31180529

hsa-mir-126 15 0 29633591 hsa-mir-30c 35 0 29495977

hsa-mir-200b 16 1 30034253 hsa-let-7d 36 0 31868319

hsa-mir-143 17 1 24980823 hsa-mir-93 37 1 27185265

hsa-mir-10b 18 1 28431179 hsa-mir-196a 38 1 24463357

hsa-mir-31 19 1 29521593 hsa-mir-214 39 1 29234674

hsa-mir-101 20 0 21321380 hsa-mir-181b 40 1 18710654

Table 5  Top 20 miRNAs for GlaucomaOpen-Angle

miRNA Rank Known before Evidence 
(PMID/
reference)

hsa-mir-20a 1 0 Unknown

hsa-mir-125b 2 0 29401312

hsa-mir-21 3 0 29401312

hsa-mir-34a 4 0 Reference [42]

hsa-mir-146a 5 0 Unknown

hsa-mir-155 6 0 29401312

hsa-mir-126 7 0 31153869

hsa-mir-25 8 0 Unknown

hsa-mir-34c 9 0 Unknown

hsa-mir-145 10 0 28424493

hsa-mir-182 11 0 27537254

hsa-mir-17 12 0 32178636

hsa-mir-200c 13 0 30025119

hsa-mir-27a 14 0 32178636

hsa-mir-218 15 0 Unknown

hsa-mir-92a 16 0 Unknown

hsa-mir-143 17 0 30025119

hsa-mir-10b 18 0 Unknown

hsa-mir-31 19 0 Unknown

hsa-mir-101 20 0 Unknown
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glaucoma and act as biomarkers for disease pathogen-
esis [41]. In this paper, open-angle glaucoma is consid-
ered as an isolated disease because it is not associated 
with any miRNAs in the used datasets. However, our 
proposed method can be used to discover new asso-
ciations for new diseases (or miRNAs) without any 
known associations before. As illustrated in Table  5, 
by applying our proposed method, 11 out of top 20 
predicted open-angle glaucoma-related miRNAs have 
been confirmed by recent literatures.

Discussions
Although our proposed method achieved a reliable per-
formance, it still exists some limitations which require 
further research. Firstly, our method still focuses on 
unweighted tripartite graph, so it may be improved 
by weighting the known lncRNA-disease associa-
tions, known miRNA-disease associations, and verified 
lncRNA-miRNA interactions. Secondly, enhancing the 
algorithm of appropriating resources can integrate the 
updated lncRNA-miRNA interactions into resource 
allocation process. Finally, the latest useful datasets 
should be collected to update our dataset library (Addi-
tional files 1, 2, 3, 4, 5).

Conclusion
In this paper, we proposed a new method to infer 
miRNA-disease associations using collaborative fil-
tering and resource allocation on a miRNA-disease-
lncRNA tripartite graph. By applying our proposed 
method, we can improve prediction accuracy, solve the 
sparsity data problem, and have not to use subjective 
and not directly related to association prediction infor-
mation. The experimental results show that our method 
achieves a reliable performance with AUC and AUPR 
values 0.9788 and 0.9373, respectively, which is more 
impressive than several mentioned previously methods. 
It demonstrates the ability to infer new associations 
between miRNAs and diseases as indicated in case 
studies of Prostatic Neoplasms, Heart Failure, and Gli-
oma diseases. Besides, it can discover new associations 
for new diseases (or miRNAs) without any known asso-
ciations as indicated in the case study of Open-angle 
glaucoma disease. It suggests that our method can be 
considered as a powerful tool to predict miRNA-dis-
ease associations.
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