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Abstract 

Background:  Single-cell sequencing approaches allow gene expression to be measured at the single-cell level, pro-
viding opportunities and challenges to study the aetiology of complex diseases, including cancer.

Methods:  Based on single-cell gene and lncRNA expression levels, we proposed a computational framework for cell 
type identification that fully considers cell dropout characteristics. First, we defined the dropout features of the cells 
and identified the dropout clusters. Second, we constructed a differential co-expression network and identified dif-
ferential modules. Finally, we identified cell types based on the differential modules.

Results:  The method was applied to single-cell melanoma data, and eight cell types were identified. Enrichment 
analysis of the candidate cell marker genes for the two key cell types showed that both key cell types were closely 
related to the physiological activities of the major histocompatibility complex (MHC); one key cell type was associated 
with mitosis-related activities, and the other with pathways related to ten diseases.

Conclusions:  Through identification and analysis of key melanoma-related cell types, we explored the molecular 
mechanism of melanoma, providing insight into melanoma research. Moreover, the candidate cell markers for the 
two key cell types are potential therapeutic targets for melanoma.
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Background
Melanoma is a malignant tumor that develops from 
melanocytes and is considered a multifactorial disease 
caused by the interaction between genetic susceptibil-
ity factors and environmental exposure [1, 2]. Although 
the incidence of many cancers is declining, the incidence 
of melanoma is increasing [3, 4]. The prognosis of mela-
noma is proportionate to the depth of the tumor, which 
increases with time; thus, melanoma must be identified, 
detected, and treated in a timely manner [1]. Schomberg 

et  al. [5] used RNA sequencing (RNA-seq) to profile 
luteolin-induced differentially expressed genes (DEGs) 
in 4 melanoma cell lines and found that luteolin-medi-
ated growth inhibition may be mediated in melanoma 
cells through simultaneous action on multiple pathways. 
Mahata [6] proposed a clustering method to explore the 
subtypes of melanoma and breast cancer. Klinke et al. [7] 
developed an unsupervised feature extraction and selec-
tion strategy to capture functional plasticity separately 
tailored to breast cancer and melanoma.

The limitations of bulk RNA-seq data are that the 
molecular expression in a single cell is masked, and 
the cell heterogeneity in a sample is ignored. With 
the development of single-cell RNA sequencing 
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(scRNA-seq) technology, scRNA-seq data analysis 
has been widely used in the study of different bio-
logical tissues, revealing the meanings of differential 
gene expression between cells [8–10] and researchers 
have begun to decipher the functional states of cancer 
cells at the single-cell level [11–14]. Various methods 
related to the life sciences have been applied in cancer 
research and have led to discoveries in cancer evolu-
tion, metastasis, treatment resistance and the tumor 
microenvironment [15, 16].

Compared with next generation RNA-seq data, there 
are more noise data and more dropouts in scRNA-
seq data. There are several reasons for the dropout 
phenomenon [17]. Firstly, transcripts do not exist, 
so zero is an accurate representation of the state of a 
cell; secondly, the depth of sequencing is low, despite 
the existence of transcripts, it has not been reported. 
Thirdly, as part of library preparation, transcripts 
were not captured or failed to amplify. Some meth-
ods were proposed for imputing zeros. Lin et  al. 
[18] introduced the Clustering through Imputation 
and Dimensionality Reduction(CIDR), which used a 
novel but very simple implicit imputation approach 
in a principled way in order to mitigate the impact of 
dropout values in scRNA-seq data. van Dijk et al. [19] 
developed the Markov affinity-based graph imputa-
tion of cells(MAGIC), to share information between 
similar cells through data diffusion to denoise the cell 
count matrix and fill in missing transcripts. Li et  al. 
[20] introduced the scImpute to impute the drop-
out values in scRNA-seq data. Instead of eliminating 
the influence of dropout values to improve clustering 
accuracy, we attempted to amplify the influence of 
dropout values to explore the molecular mechanisms 
of melanoma.

In this study, we fully considered the characteristics 
of scRNA-seq data and identified a variety of cell types 
in melanoma cancer cells and a series of candidate cell 
markers for various cell types based on scRNA-seq 
gene and lncRNA expression data. Furthermore, by 
evaluation of each cell type, we identified and analyzed 
the key cell types associated with melanoma and then 
revealed the pathogenesis of melanoma, providing new 
insight into its diagnosis and prognosis.

Methods
In this paper, considering the characteristics of scRNA-
seq data, we proposed a framework for cell type identi-
fication (Fig. 1). The framework consists of three parts: 
identification of dropout clusters, construction of the 
differential co-expression network, and identification of 
cell types and candidate cell markers.

Molecular expression datasets
The expression profiles used in this experiment were 
extracted from the EXP0072 dataset in CancerSEA 
(http://​biocc.​hrbmu.​edu.​cn/​Cance​rSEA/​goDow​nload) 
[21], which was collated from the expression files 
from the GEO dataset GSE81383 [22]. scRNA-seq was 
applied to profile the transcriptomes of 307 single cells 
cultured from three biopsies of three different patients, 
who had BRAF/NRAS wild type, BRAF mutant/NRAS 
wild type and BRAF wild/NRAS mutant type meta-
static melanoma. The expression profiles contain the 
expression values for 18,938 protein-coding genes and 
15,626 lncRNAs.

Known melanoma‑related biomolecules
To analyze the correlation between each cell type pair, 
we collated known melanoma-related biomolecules 
from multiple public databases and published research 
results.

From the OMIM catalogue (https://​omim.​org/) [23], 
the COSMIC database (https://​cancer.​sanger.​ac.​uk/​
cosmic) [24] and a published study by Bailey et al. [25], 
we obtained 539, 63 and 24 known melanoma-related 
genes, respectively. A total of 580 known melanoma-
related genes were obtained.

From the Lnc2Cancer 2.0 (http://​www.​bio-​bigda​ta.​
net/​lnc2c​ancer/) [26], LncRNADisease v2.0 (http://​
www.​rnanut.​net/​lncrn​adise​ase/) [27] and NONCODE 
v5.0 (http://​www.​nonco​de.​org/) [28] data-bases, we 
obtained 24, 2,712 and 14 known melanoma-related 
lncRNAs, respectively. A total of 2,719 known mela-
noma-related lncRNAs were obtained.

In addition, we obtained a cell marker entity associ-
ated with melanoma from the CellMarker (http://​biocc.​
hrbmu.​edu.​cn/​CellM​arker/) [29] database. This entry 
comprises data from cancer cells in peripheral blood 
and contains four cell marker genes, MITF, MLANA, 
PMEL and TYR​. Schelker et  al. [30] used scRNA-seq 
data to identify nine main cell types, and the four above 
mentioned genes (MITF, MLANA, PMEL and TYR​) 
were used as cell markers for melanoma cell types.

Data preprocessing
We used the EXP0072 dataset in CancerSEA [24], 
which contains the expression profiles of 18,938 pro-
tein-coding genes and 15,626 lncRNAs from 307 mela-
noma cancer cells.

First, we filtered the genes and lncRNAs with expres-
sion values of greater than 0 in fewer than 3 cells or 
average normalized expression values of less than 10–5, 
fitted the normal distribution to the genes (or lncR-
NAs) and cells, and removed cells in which significantly 
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few genes were detected (FDR < 0.05). The resulting 
expression profile consisted of 307 cells, 15,488 genes 
and 8,524 lncRNAs.

Next, feature selection was performed for the genes 
and lncRNAs with non-log-transformed expression 
data using the M3Drop method in the M3Drop package 
[31].

Feature selection
Cell clustering is dependent on the selection of genes, 
and traditional methods generally use the most vari-
able genes as features. An important characteristic of 
scRNA-seq data is the high dropout rate, which usu-
ally accounts for more than half of the values in the 

Fig. 1  Schematic illustration of the scRNA-seq data-based cell type identification framework. (I) Identification of dropout clusters. First, the dropout 
information was extracted from the gene expression profile, and the dropout feature matrix was constructed. Then, the dropout distances between 
cells were calculated, and DBSCAN was performed to identify dropout clusters of cells. (II) Construction of the differential co-expression network. 
We performed differential analysis of the dropout rates and molecule expression levels and constructed a differential co-expression network based 
on the correlations between differential molecules. (III) Identification of cell types and candidate cell markers. We performed MCL on the differential 
co-expression network to identify differential modules. We then used these differential modules as new features to identify the cell types and 
further identified candidate cell markers for each cell type
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expression matrix, and M3Drop [31] selects genes 
based on the dropout property.

M3Drop is based on the Michaelis–Menten equation, 
which is used to represent enzymatic reactions to fit 
the relationship between the average expression value 
and the dropout rate, as shown in (1):

where S is the average expression level of the gene in all 
cells, K is the Michaelis constant, and Pdropout is the ratio 
of the dropout value of the gene to the expression of the 
gene in all cells, i.e., the dropout rate of the gene.

The parameter K in the Michaelis–Menten equation 
was used to calculate the specific Kj for gene j, and the 
global KM of all genes was fitted by the z-test. Then, the 
significant genes were selected as the result of feature 
selection by multiple testing corrections. The equation 
for calculating Kj is shown as (2):

where Pj, Sj and Kj are the corresponding Pdropout, S and K 
values for gene j in (1).

Identification of dropout clusters.
To fully explore the dropout information in the sin-

gle-cell expression data, we fuzzed specific gene expres-
sion values and highlighted dropout values. According 
to whether the gene expression in the cell was a drop-
out value, we binarized the gene expression data. In 
detail, all expression values greater than 0 in the gene 
expression profile were recorded as 1; otherwise, as 0. 
The matrix generated by binarizing the gene expression 
values was called the dropout feature matrix.

Next, we defined the dropout distance between cells 
based on the dropout features. There are a large num-
ber of zeros in scRNA-seq data, so we applied Manhat-
tan distance to measure the distance between cells to 
avoid bias. Firstly, we calculated the Manhattan dis-
tance between each cell pair and then used the z-score 
to normalize the Manhattan distance to obtain the 
dropout distance between the cells.

Then, based on the dropout distance between the 
cells, we clustered cells with density-based spatial 
application of applications with noise (DBSCAN) [32], 
which can identify clusters with various shapes and 
sizes and effectively identify noise in cells. Before clus-
tering, we visualized the data distribution and found 
it was based on the density distribution, and then 
compared to some other clustering algorithms(for 
example, SC3 and pcaReduce), DBSCAN is sensitive 
to noisy data while SC3 and pcaReduce often mistake 
noise for true structure, which means DBSCAN is 

(1)Pdropout = 1− S/(K + S)

(2)Kj = (Pj ∗ Sj)/(1− Pj)

more appropriate for our dataset[17]. We then defined 
dropout clusters as cell clusters obtained by cluster 
analysis based on the dropout distance.

Two hyperparameters should be determined in 
DBSCAN, one is the field radius eps that defines the 
field range, and the other is the minimum field point 
MinPts required for the sample to be defined as the core 
point. The parameter selection method is as follows:

Step 1 initialize MinPts as Mi and calculate the Mi 
distance range R for all samples. Given R and step size, 
say 0.001, calculate eps and the number of clusters k, 
and retain the eps that maximizes the silhouette coef-
ficient [33] and set it as ei.

Step 2 assign ei to eps and calculated the maximized 
the silhouette coefficient[33] of MinPts, marked as Mi.

Step 3 update Mi and repeat Step 1 and Step 2. The 
parameters that maximized the silhouette coeffi-
cient[33] are set to be the input of DBSCAN.

Construction of the differential co‑expression network
To analyze the differences among dropout clusters, for 
each dropout cluster, we divided all the cells into two 
groups—cells belonging to the cluster and the remain-
ing cells—and performed differential analysis of genes 
and lncRNAs from two aspects: the dropout rate and 
molecule expression value.

Differential dropout analysis. We calculated the drop-
out rate for all gene/lncRNA expression values for each 
cell group. The genes and lncRNAs with a difference 
in the dropout rate of greater than 50% between the 
two groups of cells were defined as differentially drop-
out genes (DDGs) and differentially dropout lncRNAs 
(DDLRs).

Differential expression analysis. We calculated the 
fold changes in the gene/lncRNA expression values 
between the two groups of cells and selected genes 
and lncRNAs with a fold change of greater than two 
(|logFC|> 1, p value < 0.05). Then, we defined these 
genes and lncRNAs as differentially expressed genes 
(DEGs) and differentially expressed lncRNAs (DELRs).

Herein, we refer to DDGs and DEGs as differential 
genes, to DDLRs and DELRs as differential lncRNAs, 
and to the collective set of differential genes and differ-
ential lncRNAs as differential molecules.

Then, we calculated the Spearman correlation coeffi-
cient (SCC) between each pair of differential molecules 
and selected strong correlations with |SCC|> 0.4 and p 
value < 0.05. The differential molecules with strong cor-
relations constituted the differential co-expression net-
work. The absolute values of the Spearman correlation 
coefficients were used as the edge weights.
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Identification of cell types and candidate cell markers
We used the Markov clustering algorithm (MCL) [34] to 
cluster the differential co-expression network and iden-
tify molecule modules, which we call differential modules 
herein. MCL is a graph-based, rapidly scalable unsuper-
vised clustering algorithm, and it simulates a random 
flow to discover the communities in the network. Then, 
we calculated the average expression value of every dif-
ferential module as a new feature of the cells. Herein, we 
call this value the differential module feature of cells.

According to the differential module features, we cal-
culated the Manhattan distance between cell pairs and 
normalized it by the z-score. Then, we applied DBSCAN 
to cluster the cells, and each cluster was considered a cell 
type.

For each cell type, we calculated the fold change in the 
expression level of each gene and lncRNA between cells 
in that cell type and the remaining cells and selected 
genes and lncRNAs with a significant difference of at 
least a fourfold change (|logFC|> 2, p value < 0.05) as the 
candidate cell marker genes and candidate cell marker 
lncRNAs for that cell type. Herein, the candidate cell 

marker genes and lncRNAs are collectively referred to as 
candidate cell markers for a cell type.

Results
Feature selection
The results of data preprocessing are shown in Fig. 2(A) 
and (B). Finally, 3,454 genes and 966 lncRNAs were 
selected for further analysis. We also performed log 
transformation on the expression data with a base of 2 
and an offset of 1.

Identification of dropout clusters and differential 
molecules
The dropout distances between every pair of cells were 
calculated according to the dropout feature matrix, and 
the cells were analyzed with DBSCAN [32]. Four cell 
dropout clusters that individually contained 27, 8, 51 and 
45 cells. The result of the dropout clusters was a transi-
tion to get the final cell types.

Furthermore, differential dropout analysis and dif-
ferential expression analysis were performed on dif-
ferent dropout clusters, and the number of differential 

Fig. 2  Results of feature selection using M3Drop. The solid blue lines indicate the Michaelis–Menten curves fit to all genes or lncRNAs, and the 
orange dots indicate the significant genes or lncRNAs with an FDR of < 0.01 in the hypothesis test. A Results of feature selection for genes. B Results 
of feature selection for lncRNAs

Table 1  Number of differential molecules in the dropout clusters, including the number of differential expressed genes/lncRNAs in 
each dropout cluster and the number of differential molecules in all dropout clusters

Dropout cluster 1 2 3 4 Sum

Differential expressed genes DEGs 805 6 1185 1067 1940

DDGs 17 46 80 143 263

Differential expressed lncRNAs DELRs 5 2 119 146 207

DDLRs 0 4 7 7 16
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molecules identified is shown in Table  1. Since some 
DEGS, DDGs, DELRs and DDLRs may belong to multiple 
clusters, Sum represents the total number of four clus-
ters’ molecules. More differential expressed genes than 
differential expressed lncRNAs were identified, and the 
differences in the expression levels were generally greater 
than the differences in the dropout rates. Differential 
analysis of all dropout clusters identified 1950 differen-
tial expressed genes and 209 differential expressed lncR-
NAs. The number 1950 means the total number of DEGs 
and DELRs after deduplication. Similarly, the number 
209 means the total number of DDGs and DDLRs after 
deduplication.

Analysis of the differential co‑expression network
For the 2159 differential expressed molecules (1950 dif-
ferential expressed genes and 209 expressed differential 
lncRNAs) obtained from the differential analysis, the 
Spearman correlation coefficient between each pair of 
differential molecules was calculated with cut-off crite-
ria of |SCC|> 0.4 and p value < 0.05. We obtained 48,940 
strong correlations among differential expressed mol-
ecules, specifically, 17,908 positive correlations and 
31,032 negative correlations. The resulting differential 
co-expression network was an undirected and weighted 
network consisting of 892 nodes and 48,940 edges.

The differential co-expression network was a scale-free 
network with a power law node degree distribution. The 
protein-coding gene HLA-DRA was a hub node in the 
network, with a degree of 484. GeneCards [35] shows that 
HLA-DRA is a protein-coding gene whose main function 
is to bind to peptides produced by antigens in the endo-
cytosis of antigen-presenting cells (APCs) and display 
them on the cell surface for recognition by CD4+ T cells.

The edge weights in the differential co-expression net-
work were calculated as the absolute values of the Spear-
man correlation coefficients. Among the connected 
nodes, the protein-coding gene PHACTR1 had the 
strongest correlation with the lncRNA AL008729.2, with 
the Spearman correlation coefficient of 0.96.

Identification of differential modules and cell types
The differential molecules in the differential co-expres-
sion network were further divided by MCL with the infla-
tion parameter set at 2.5. Twenty differential modules 
were identified. For each identified differential module, 
we extracted the sub-network from the differential co-
expression network (Fig. 3).

Then, we calculated the differential module features of 
cells and used DBSCAN to identify cell types. A total of 
eight cell types were identified and are denoted by the let-
ters A–H. The number of cells of each cell type is shown 
in Table 2. Cell type B contained significantly more cells 

Fig. 3  Structure of subnetworks of differential modules. Each connected network is a differential module, except for the module marked by *, 
which includes a separate node

Table 2  Number of cells in each cell type

Cell type A B C D E F G H

Number of cells 10 121 8 7 11 22 22 6
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than the other seven cell types, each of which contained a 
relatively small number of cells. In addition, 100 cells did 
not belong to any cell type; we then combined all of these 
cells into a distinct cell type named cell type 0.

Analysis of cell similarity in cell types
The Spearman correlation coefficient between each pair 
of cells in the same cell type was calculated according to 
the expression values of genes and lncRNAs to indicate 
the similarity of the expression patterns between the two 
cells. The boxplot of the similarity between cells in each 
cell type is shown in Fig. 4.

These results showed that the expression patterns of 
any two cells in the same cell type were positively corre-
lated with significant p values. Figure 4 indicates that the 
average similarity of cells in all cell types except cell type 
B was significantly higher than that in cell type 0. In par-
ticular, in cell types A, C, D, and E, the lowest correlation 
coefficient between two cells was greater than 0.4, and 
the correlation coefficients between all cells in cell types 
G and H were greater than 0.3. In addition, in cell type 0, 

the correlation coefficients between cells had a large span 
and a low average value, consistent with the experimental 
results indicating that the cells did not belong to the same 
cell type.

Differential analysis between cell types
Furthermore, the R package Limma [36] was used to cal-
culate the fold changes in expression levels, and the sig-
nificantly differential genes and lncRNAs with at least 
a fourfold change in expression were selected as candi-
date cell markers. The number of candidate cell markers 
obtained are shown in Table 3. More than 200 candidate 
cell markers were identified for cell types A, E, G, and H, 
indicating significant differences between cells in these 
cell types and other cell types.

We analyzed regulation directions of the candidate cell 
markers for each cell type. In cell types A, C, and D, all 
candidate cell markers were upregulated (logFC > 0). In 
cell type E, 3 candidate cell marker genes were down-
regulated (logFC < 0), and the remaining candidate 
cell markers were upregulated. In cell type F, only one 

Fig. 4  Similarity of molecular expression patterns in each cell type. The Spearman correlation coefficients for the gene and lncRNA expression 
levels in all cells in each cell type were calculated, and all correlation coefficients were significant

Table 3  Number of candidate cell markers for each cell type, including candidate cell marker genes and candidate cell marker 
lncRNAs

Cell type 0 A B C D E F G H

Number of candidate cell marker genes 0 213 79 20 96 207 92 216 224

Number of candidate cell marker lncRNAs 0 23 5 7 15 37 0 6 38

Number of candidate cell markers 0 236 84 27 111 244 92 222 262
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candidate cell marker gene was upregulated, and the rest 
were downregulated. Candidate cell markers in other cell 
types were upregulated and downregulated in different 
patterns.

In addition, in cell type 0, no significant similarity was 
observed among the expression patterns of the cells, and 
no candidate cell markers were found, which verified the 
reliability of the results for the eight identified cell types.

Prediction of candidate cell markers in melanoma
To verify the relationships between the cell types and 
melanoma, we collated 580 known melanoma-related 

genes and 2719 known melanoma-related lncRNAs 
from multiple databases and published research results 
and compared them with candidate cell markers in each 
cell type (see the Materials and Methods for details). 
The results are shown in Fig. 5.

Figure  5(A) indicates that except for cell type C, 
which had only 20 candidate cell marker genes, all cell 
types had known melanoma-related genes among the 
candidate cell marker genes. The candidate cell mark-
ers for cell types H and G included 29 and 28 known 
melanoma-related genes, respectively. In addition, 
in cell types B, G, and H, known melanoma-related 

Fig. 5  Relationships between candidate cell markers for each cell type and known melanoma-related biomolecules. A Relationships between 
candidate cell marker genes and known melanoma-related genes, including the numbers and percentages of known melanoma-related genes. B 
Relationships between candidate cell marker lncRNAs and known melanoma-related lncRNAs, including the numbers and percentages of known 
melanoma-related lncRNAs
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genes accounted for more than 10% of all candidate cell 
marker genes.

Figure  5(B) indicates that 9, 8, and 5 candidate cell 
marker lncRNAs in cell types E, H, and A, respectively, 
were known melanoma-related lncRNAs and that known 
melanoma-related lncRNAs accounted for the largest 
percentage of candidate cell marker lncRNAs in cell type 
G (33.33%).

The above analysis of the correlations between eight 
cell types and melanoma indicated that candidate cell 
markers in cell types A, B, E, G, and H, especially cell 
types G and H, were strongly related to melanoma.

Analysis of known melanoma cell markers
Four known melanoma cell marker genes, MITF, 
MLANA, PMEL and TYR​, were obtained from Cell-
Marker [29]. Then, we investigated whether these four 
known melanoma cell markers appeared among the can-
didate cell markers for each cell type.

All four known melanoma cell markers were candidate 
cell marker genes for cell type H, and MLANA, PMEL, 
and TYR​ were candidate cell marker genes for cell type 
G. In addition, the protein-coding gene PMEL was a can-
didate cell marker gene for five cell types (all cell types 
except C, D, and F). PMEL plays a central role in the bio-
genesis of melanosomes and participates in the matu-
ration of melanosomes from stage I to stage II [37, 38]. 
According to GeneCards, PMEL is associated with the 
incidence of various melanomas, such as skin melanoma, 
gallbladder melanoma, and melanoma in congenital mel-
anocytic nevus.

PMEL, also known as premelanosome protein gene, 
participates in the maturation process of melanosomes 
from phase I to phase II, and plays a central role in mel-
anogenesis [37, 38]. MITF plays a role in multiple activity 
levels that determine the fate of melanoma cells. Mela-
noma cells that highly express MITF can differentiate or 

proliferate. Stem cell-like or invasive potential can cause 
low MITF activity. And long-term MITF inhibition will 
drive cell senescence [39]. MITF up- or down-regulation 
modulates MLANA expression in parallel directions at 
both mRNA and protein levels. As a target gene for mel-
anocyte restriction, MLANA may provide an opportunity 
to study whether their melanocyte restriction expres-
sion is produced by the unique activity of the MITF mel-
anocyte isotype, or whether other transcription factors 
may contribute (together with MITF) give melanocyte-
specific expression [40]. TYR​, TYRP1 and downstream 
enzymes metabolize tyrosine to melanin [41].

These results showed that the candidate cell markers 
for cell types G and H were closely related to the known 
melanoma cell markers and that other unknown candi-
date cell markers in these two cell types could be poten-
tial driver biomolecules for melanoma.

Enrichment analysis of key cell types
The previous analysis of the eight cell types indicated that 
cell types G and H were highly correlated with melanoma 
and that the cells belonging to these cell types had similar 
expression patterns and were significantly different from 
the cells not belonging to these cell types. We defined 
these two cell types as the key cell types associated with 
melanoma and further used the R package clusterPro-
filer [42] to perform Gene Ontology (GO) functional 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses of their candidate cell 
marker genes to explore the pathogenesis of melanoma.

We performed GO functional enrichment analysis, 
including analysis of biological process (BP), molecular 
function (MF) and cellular component (CC) terms, and 
focused on GO terms with an adjusted p-value (p.adjust) 
of < 0.01. We obtained 113 and 95 GO terms related to 
cell types G and H, respectively; the top three GO terms 
in the BP, MF and CC aspects are shown in Tables 4 and 

Table 4  Gene Ontology (GO) functional enrichment analysis of candidate cell marker genes for cell type G. The top 3 GO terms in the 
biological process (BP), molecular function (MF) and cellular component (CC) aspects are listed (p.adjust < 0.01)

Aspect GO ID Descriptions p.adjust Count

GO:0140014 Mitotic nuclear division 7.11E−06 17

BP GO:0048285 Organelle fission 2.83E−05 20

GO:0000280 Nuclear division 2.83E−05 19

GO:0023026 MHC class II protein complex binding 0.001115 4

MF GO:0023023 MHC protein complex binding 0.005092 4

GO:0050786 RAGE receptor binding 0.006432 3

GO:0042613 MHC class II protein complex 1.47E−05 6

CC GO:0000793 Condensed chromosome 2.83E−05 14

GO:0098687 Chromosomal region 3.37E−05 17
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5. Comparison of the results revealed that cell type G was 
related to the mitotic process of cells, while cell type H 
was more strongly related to activities of the major histo-
compatibility complex (MHC).

In addition, some enriched GO terms in the two key 
cell types were associated with melanin and melano-
somes (p.adjust < 0.05), as shown in Table  6, support-
ing the reliability of the identification of the two key cell 
types.

KEGG pathway enrichment analysis of candidate cell 
marker genes in the two cell types are shown in Fig. 6(A) 
and (B). A total of 12 and 18 significantly enriched path-
ways (p.adjust < 0.01) were related to cell types G and H, 
respectively.

The two cell types shared 10 enrichment pathways, 
many of which were related to immune response pro-
cesses, such as antigen processing and presentation, allo-
graft rejection, and autoimmune thyroid disease. Cell 
type G was related to DNA replication and mismatch 
repair pathways. Cell type H was related to melanogen-
esis and ten diseases, namely, graft-versus-host disease, 

rheumatoid arthritis, type I diabetes mellitus, asthma, 
leishmaniosis, viral myocarditis, autoimmune thyroid 
disease, hypertrophic cardiomyopathy, malaria, and 
dilated cardiomyopathy.

The functional and pathway enrichment analysis indi-
cated that the two key cell types were strongly related to 
the biological activities of melanin and melanosomes. In 
addition, candidate cell marker genes for cell type G were 
significantly enriched in mitosis-related biological activi-
ties, and cell type H was associated with the occurrence 
of ten diseases.

Discussion
scRNA-seq technology allows researchers to study bio-
molecules at the single-cell level so that the molecular 
mechanisms of some complex diseases, such as cancer, 
can be studied and analyzed at a single-cell resolution.

In this paper, considering the characteristics of the 
scRNA-seq data, we proposed a framework for cell type 
identification and applied it to a single-cell melanoma 
dataset. Two key cell types related to melanoma were 

Table 5  Gene Ontology (GO) functional enrichment analysis of candidate cell marker genes for cell type H. The top 3 GO terms in the 
biological process (BP), molecular function (MF) and cellular component (CC) aspects are listed (p.adjust < 0.01)

Aspect GO ID Descriptions p.adjust Count

GO:0140014 Mitotic nuclear division 7.59E−06 17

BP GO:0019886 Antigen processing and presentation of exogenous peptide 
antigen via MHC class II

7.83E−06 11

GO:0002495 Antigen processing and presentation of peptide antigen via 
MHC class II

8.00E−06 11

GO:0023026 MHC class II protein complex binding 0.000107 5

MF GO:0023023 MHC protein complex binding 0.000724 5

GO:0042605 Peptide antigen binding 0.001458 5

GO:0042613 MHC class II protein complex 6.05E−07 7

CC GO:0042611 MHC protein complex 7.81E−06 7

GO:0030669 Clathrin-coated endocytic vesicle membrane 1.06E−05 8

Table 6  The GO terms related to melanin and melanosomes in the GO enrichment (p.adjust < 0.05). "–" means that this term did not 
appear in the enrichment results for this cell type

Aspects GO ID Descriptions p.adjust in cell type G p.adjust in 
cell type H

BP GO:0042438 Melanin biosynthetic process 2.83E−05 0.000325

BP GO:0006582 Melanin metabolic process 2.83E−05 0.000404

CC GO:0033162 Melanosome membrane 4.27E−05 0.001092

CC GO:0042470 Melanosome 0.000143 0.001458

BP GO:0030318 Melanocyte differentiation 0.005577 0.049285

BP GO:0032402 Melanosome transport 0.03374 –

BP GO:0032401 Establishment of melanosome localization 0.03712 –

BP GO:0032400 Melanosome localization 0.044045 –

BP GO:0032438 Melanosome organization 0.044045 0.047491
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identified, and the molecular mechanisms of melanoma 
were analyzed at the single-cell level.

First, making full use of the dropout information in 
the gene expression data, we identified four different 
dropout clusters and found that the expression levels 
of the protein-coding gene REXO2 differed significantly 
among the four dropout clusters.

Then, MCL was performed on the differential co-
expression network, and 20 differential modules were 
identified. Then, eight cell types were identified by 
using the differential modules as new cell features. 
Our analysis identified strong correlations among 
cells in each cell type, with similar expression pat-
terns, and revealed significant differences among cells 
of different cell types. In addition, we found that each 

cell type showed a different extent of association with 
melanoma.

Finally, we defined cell types G and H as the key cell 
types associated with melanoma and found that both of 
these key cell types were related to melanosomes and 
melanin and were highly correlated with the biological 
activities of MHC molecules. In addition, cell type G was 
related to cell mitosis, and cell type H was related to ten 
diseases.

In summary, by identifying cell types of melanoma 
cancer cells and further analyzing all cell types, we dis-
tinguished two key cell types that are highly related to 
melanoma, providing a key insight for the future direc-
tion of melanoma research. In addition, candidate cell 
markers for the two key cell types can be focused on as 

Fig. 6  KEGG pathway enrichment analysis of candidate cell marker genes for the two key cell types (p.adjust < 0.01). A Cell type G. B Cell type H
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potential therapeutic targets for melanoma. Furthermore, 
the computational framework proposed in this paper 
is not limited to melanoma and can be extended to the 
pathological study of other cancers or complex diseases.

Conclusion
We proposed a computational framework for cell type 
identification that fully considers cell dropout character-
istics. This method was applied to single-cell RNA-seq 
data of melanoma, and eight cell types were identified. 
Enrichment analysis of the candidate cell marker genes 
for the two key cell types showed that both key cell 
types were closely related to the physiological activities 
of the MHC. Through identification and analysis of key 
melanoma-related cell types, we explored the molecular 
mechanism of melanoma, providing insight into mela-
noma research. Moreover, the candidate cell markers for 
the two key cell types are potential therapeutic targets for 
melanoma.

Abbreviations
RNA-seq: RNA sequencing; DEGs: Differentially expressed genes; scRNA-seq: 
Single-cell RNA sequencing; CIDR: Clustering through imputation and dimen-
sionality reduction; MAGIC: Markov affinity-based graph imputation of cells; 
DBSCAN: Density-based spatial application of applications with noise; DDGs: 
Differentially dropout genes; DDLRs: Differentially dropout lncRNAs; DELRs: 
Differentially expressed lncRNAs; SCC: Spearman correlation coefficient; MCL: 
Markov clustering algorithm; GO: Gene ontology; KEGG: Kyoto encyclopedia 
of genes and genomes; BP: Biological process; MF: Molecular function; CC: 
Cellular component; MHC: Major histocompatibility complex.

Acknowledgements
We thank Yuhan Yang and Longting Du for helping to modify the article.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 14 Sup-
plement 5 2021: Explainable AI methods in biomedical data science (medical 
genomics). The full contents of the supplement are available at http://​bmcme​
dgeno​mics.​biome​dcent​ral.​com/​artic​les/​suppl​ements/​volume-​14-​suppl​
ement-5.

Authors’ contributions
QYH and YY conceived and developed the framework for cell type identifica-
tion and wrote this manuscript. LMW and GMQ provided important feedback 
in the framework process and edited the manuscript. FFL and YYM revised and 
improved the analysis process and edited the manuscript. All authors have 
made significant contributions to the completion and writing of this report. 
All authors read and approved the final manuscript.

Funding
This study was supported by the Natural Science Foundation of Shaanxi 
Province [No. 2017JM6038] and the National Key Research and Development 
Program of China [2018YFC0116500]. The publication cost for this article was 
funded by the National Key Research and Development Program of China 
[2018YFC0116500]. The funders did not play any role in the design of the 
study, the collection, analysis, and interpretation of data, or in writing of the 
manuscript.

Availability of data and materials
The data underlying this article are available in CancerSEA at http://​biocc.​
hrbmu.​edu.​cn/​Cance​rSEA/​goDow​nload, and can be accessed with EXP0072.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 11 September 2021   Accepted: 14 October 2021
Published: 17 November 2021

References
	1.	 Situm M, Buljan M, Kolic M, Vucic M. Melanoma - clinical, dermatoscopi-

cal, and histopathological morphological characteristics. Acta Dermato-
vener Cr. 2014;22(1):1–12.

	2.	 Rastrelli M, Tropea S, Rossi CR, Alaibac M. Melanoma: epidemiol-
ogy, risk factors, pathogenesis, diagnosis and classification. In Vivo. 
2014;28(6):1005–11.

	3.	 Barbaric J, Znaor A. Incidence and mortality trends of melanoma in 
Croatia. Croat Med J. 2012;53(2):135–40.

	4.	 MacKie RM, Hauschild A, Eggermont AMM. Epidemiology of invasive 
cutaneous melanoma. Ann Oncol. 2009;20:1–7.

	5.	 Schomberg J, Wang Z, Farhat A, Guo KL, Xie J, Zhou Z, et al. Luteolin 
inhibits melanoma growth in vitro and in vivo via regulating ECM and 
oncogenic pathways but not ROS. Biochem Pharmacol. 2020;177:114025.

	6.	 Mahata P. Exploratory consensus of hierarchical clusterings for melanoma 
and breast cancer. IEEE Acm T Comput Bi. 2010;7(1):138–52.

	7.	 Klinke DJ, Torang A. An unsupervised strategy for identifying epithelial-
mesenchymal transition state metrics in breast cancer and melanoma. 
Iscience. 2020;23(5):101080.

	8.	 Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL. Comparison of 
methods to detect differentially expressed genes between single-cell 
populations. Brief Bioinform. 2017;18(5):735–43.

	9.	 Liu KF, Ye JP, Yang Y, Shen L, Jiang H. A unified model for joint normaliza-
tion and differential gene expression detection in RNA-Seq data. IEEE 
Acm T Comput Bi. 2019;16(2):442–54.

	10.	 Dong M, Thennavan A, Urrutia E, Li Y, Perou CM, Zou F, et al. SCDC: bulk 
gene expression deconvolution by multiple single-cell RNA sequencing 
references. Brief Bioinform. 2020;34:1969.

	11.	 Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, 
et al. Comparative analysis of single-cell RNA sequencing methods. Mol 
Cell. 2017;65(4):631-43.e4.

	12.	 Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The 
technology and biology of single-cell RNA sequencing. Mol Cell. 
2015;58(4):610–20.

	13.	 Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lonnerberg P, et al. Charac-
terization of the single-cell transcriptional landscape by highly multiplex 
RNA-seq. Genome Res. 2011;21(7):1160–7.

	14.	 Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-
Seq whole-transcriptome analysis of a single cell. Nat Methods. 
2009;6(5):377–82.

	15.	 Ren X, Kang B, Zhang Z. Understanding tumor ecosystems by single-cell 
sequencing: promises and limitations. Genome Biol. 2018;19(1):211.

	16.	 Zhang J, Guan M, Wang Q, Zhang J, Zhou T, Sun X. Single-cell transcrip-
tome-based multilayer network biomarker for predicting prognosis and 
therapeutic response of gliomas. Brief Bioinform. 2020;21(3):1080–97.

	17.	 Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised cluster-
ing of single-cell RNA-seq data (vol 20, pg 273, 2019). Nat Rev Genet. 
2019;20(5):310.

	18.	 Lin PJ, Troup M, Ho JWK. CIDR: Ultrafast and accurate clustering through 
imputation for single-cell RNA-seq data. Genome Biology. 2017;18.

	19.	 van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, et al. Recover-
ing gene interactions from single-cell data using data diffusion. Cell. 
2018;174(3):716.

http://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-14-supplement-5
http://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-14-supplement-5
http://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-14-supplement-5
http://biocc.hrbmu.edu.cn/CancerSEA/goDownload
http://biocc.hrbmu.edu.cn/CancerSEA/goDownload


Page 13 of 13Huo et al. BMC Medical Genomics  2021, 14(Suppl 5):263	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	20.	 Li WV, Li JYJ. An accurate and robust imputation method scImpute for 
single-cell RNA-seq data. Nat Commun. 2018;9.

	21.	 Yuan HT, Yan M, Zhang GX, Liu W, Deng CY, Liao GM, et al. CancerSEA: a 
cancer single-cell state atlas. Nucleic Acids Res. 2019;47(D1):D900–8.

	22.	 Gerber T, Willscher E, Loeffler-Wirth H, Hopp L, Schadendorf D, Schartl M, 
et al. Mapping heterogeneity in patient-derived melanoma cultures by 
single-cell RNA-seq. Oncotarget. 2017;8(1):846–62.

	23.	 Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online 
Mendelian Inheritance in Man (OMIM), a knowledgebase of human 
genes and genetic disorders. Nucleic Acids Res. 2005;33(Database 
issue):D514–7.

	24.	 Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The 
COSMIC Cancer Gene Census: describing genetic dysfunction across all 
human cancers. Nat Rev Cancer. 2018;18(11):696–705.

	25.	 Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasin-
ghe A, et al. Comprehensive characterization of cancer driver genes and 
mutations. Cell. 2018;174(4):1034–5.

	26.	 Gao Y, Wang P, Wang Y, Ma X, Zhi H, Zhou D, et al. Lnc2Cancer v2.0: 
updated database of experimentally supported long non-coding RNAs in 
human cancers. Nucleic Acids Res. 2019;47(D1):D1028-D33.

	27.	 Bao Z, Yang Z, Huang Z, Zhou Y, Cui Q, Dong D. LncRNADisease 2.0: an 
updated database of long non-coding RNA-associated diseases. Nucleic 
Acids Res. 2019;47(D1):D1034-D7.

	28.	 Fang S, Zhang L, Guo J, Niu Y, Wu Y, Li H, et al. NONCODEV5: a compre-
hensive annotation database for long non-coding RNAs. Nucleic Acids 
Res. 2018;46(D1):D308–14.

	29.	 Zhang XX, Lan YJ, Xu JY, Quan F, Zhao EJ, Deng CY, et al. Cell Marker: a 
manually curated resource of cell markers in human and mouse. Nucleic 
Acids Res. 2019;47(D1):D721–8.

	30.	 Schelker M, Feau S, Du JY, Ranu N, Klipp E, MacBeath G, et al. Estimation of 
immune cell content in tumour tissue using single-cell RNA-seq data. Nat 
Commun. 2017;8(1):2032.

	31.	 Andrews TS, Hemberg M. M3Drop: dropout-based feature selection for 
scRNASeq. Bioinformatics. 2019;35(16):2865–7.

	32.	 Ester M, Kriegel H-P, Sander J, Xu X. A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise. Proceedings of 

the Second International Conference on Knowledge Discovery and Data 
Mining (KDD-96); Portland, Oregon, USA. Menlo Park, California: AAAI 
Press; 1996. p. 226–31.

	33.	 Zhou HB. Gao JTJAMR. Automatic Method for Determining Cluster Num-
ber Based on Silhouette Coefficient. 2014;951:227–30.

	34.	 van Dongen S, Abreu-Goodger C. Using MCL to extract clusters from 
networks. Methods Mol Biol. 2012;804:281–95.

	35.	 Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, 
et al. The GeneCards Suite: From Gene Data Mining to Disease Genome 
Sequence Analyses. Current Protocols in Bioinformatics. 2016;54:1 30 1–1 
3.

	36.	 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers dif-
ferential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43(7):e47.

	37.	 van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, et al. The 
tetraspanin CD63 regulates ESCRT-independent and -dependent endo-
somal sorting during melanogenesis. Dev Cell. 2011;21(4):708–21.

	38.	 Berson JF, Harper DC, Tenza D, Raposo G, Marks MS. Pmel17 initiates 
premelanosome morphogenesis within multivesicular bodies. Mol Biol 
Cell. 2001;12(11):3451–64.

	39.	 Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expres-
sion and activity. Cell Mol Life Sci. 2015;72(7):1249–60.

	40.	 Du J, Miller AJ, Widlund HR, Horstmann MA, Ramaswamy S, Fisher DE. 
MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated 
by MITF in melanocytes and melanoma. Am J Pathol. 2003;163(1):333–43.

	41.	 Law MH, Macgregor S, Hayward NK. Melanoma genetics: recent 
findings take us beyond well-traveled pathways. J Invest Dermatol. 
2012;132(7):1763–74.

	42.	 Yu GC, Wang LG, Han YY, He QY. clusterProfiler: an R Package for Compar-
ing Biological Themes Among Gene Clusters. OMICS. 2012;16(5):284–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Cell type identification from single-cell transcriptomes in melanoma
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Molecular expression datasets
	Known melanoma-related biomolecules
	Data preprocessing
	Feature selection
	Construction of the differential co-expression network
	Identification of cell types and candidate cell markers

	Results
	Feature selection
	Identification of dropout clusters and differential molecules
	Analysis of the differential co-expression network
	Identification of differential modules and cell types
	Analysis of cell similarity in cell types
	Differential analysis between cell types
	Prediction of candidate cell markers in melanoma
	Analysis of known melanoma cell markers
	Enrichment analysis of key cell types

	Discussion
	Conclusion
	Acknowledgements
	References


