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Hub microRNAs and genes in the development 
of atrial fibrillation identified by weighted gene 
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Abstract 

Co-expression network may contribute to better understanding molecular interaction patterns underlying cellular 
processes. To explore microRNAs (miRNAs) expression patterns correlated with AF, we performed weighted gene 
co-expression network analysis (WGCNA) based on the dataset GSE28954. Thereafter, we predicted target genes 
using experimentally verified databases (ENOCRI, miRTarBase, and Tarbase), and overlapped genes with differentially 
expressed genes (DEGs) from GSE79768 were identified as key genes. Integrated analysis of association between hub 
miRNAs and key genes was conducted to screen hub genes. In general, we identified 3 differentially expressed miR‑
NAs (DEMs) and 320 DEGs, predominantly enriched in inflammation-related functional items. Two significant modules 
(red and blue) and hub miRNAs (hsa-miR-146b-5p and hsa-miR-378a-5p), which highly correlated with AF-related 
phenotype, were detected by WGCNA. By overlapping the DEGs and predicted target genes, 38 genes were screened 
out. Finally, 9 genes (i.e. ATP13A3, BMP2, CXCL1, GABPA, LIF, MAP3K8, NPY1R, S100A12, SLC16A2) located at the core region 
in the miRNA-gene interaction network were identified as hub genes. In conclusion, our study identified 2 hub miR‑
NAs and 9 hub genes, which may improve the understanding of molecular mechanisms and help to reveal potential 
therapeutic targets against AF.
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Introduction
Atrial fibrillation (AF), the most common sustained 
cardiac arrhythmia, is expected to affect one quarter 
of middle-aged adults worldwide, primarily at the age 
of > 70 years [1]. According to the epidemiological inves-
tigation, the overall prevalence was estimated to be 1–4% 
in Australia, Europe and the USA [1, 2]. The number con-
tinued to increase as the population is ageing, reaching 4 

per 1000 person-years in 2016 [3, 4]. AF, which accounts 
for the majority (≈ 70%) of tachyarrhythmia, places a 
substantial economic burden on healthcare systems [5].

AF has been associated with electrophysiological and 
structural remodeling, characterized by rapid and unco-
ordinated atrial activity [6]. The mechanisms underlying 
AF are complex and multifactorial, and are broadly clas-
sified as trigger and substrate, which lead to an increased 
risk of stroke, heart failure, and premature death [7]. 
Among them, several molecular factors such as abnormal 
Ca2+ handling, fibrosis, and inflammation, are known to 
be relevant to the development of AF at systemic level [8–
11]; however, AF treatment remains challenging because 
its exact mechanisms at cellular/molecular level are not 
fully defined. Therefore, further basic investigation to 
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examine predictive and prognostic biomarkers in AF 
management will be of great interest.

MicroRNAs (miRNAs) are short (19–25 nucleotides) 
non-coding RNAs that regulate gene expression by bind-
ing to complementary sequences of mRNAs [12, 13]. One 
miRNA may target hundreds of different mRNAs, while 
one mRNA may be regulated by multiple miRNAs [14]. 
The miRNA-gene interaction network can be used to 
uncover potential biomarkers for disease detection and 
treatment. A large number of studies have demonstrated 
the important role of miRNAs in regulating cardiac excit-
ability and arrhythmogenesis in various cardiovascular 
diseases [15–18]. However, data regarding regulating 
effects of miRNAs on the transition from sinus rhythm to 
AF, including potential mechanisms, are limited.

Weighted gene co-expression network analysis 
(WGCNA) is a bioinformatics algorithm to detect causal 
relationship between genome and clinical features based 
on alterations in transcriptome expression patterns 
under pathological conditions [19]. Co-expression net-
work, composing various biological processes, is grouped 
into several modules to explore the association between 
genes and clinical features [20]; meanwhile, genes in 
the same module are usually functionally-linked and 
have similar regulating effects on signal pathways [21]. 
The most central genes tend to play a vital role within a 

specific module and are generally regarded as hub genes. 
WGCNA, unlike differential expression analysis, has 
been confirmed as a powerful systematic analysis method 
to recognize higher-order association across genes rather 
than detect disease-related individual genes. This study 
aimed to investigate hub miRNAs and genes in patients 
with AF by combining differential expression analysis 
and WGCNA.

Materials and methods
Data sources
The workflow of this study is shown in Fig.  1. Micro-
array-based miRNA and mRNA expression data were 
obtained from the Gene Expression Omnibus (GEO) 
database if they met the following selection criteria [22]: 
(1) expression data were from atrial tissue samples in 
non-AF and AF patients; (2) study type was restricted to 
expression profiling by array; (3) organism was restricted 
to Homo sapiens; and (4) raw/processed expression data 
were public and available. The expression profiles of 
GSE28954 and GSE79768, separately containing miRNA 
and gene expression data, were included to screen hub 
miRNAs and genes related to the development of AF 
[23, 24].

Fig. 1  Flow chart of data preparation, processing, analysis, and validation. AF, atrial fibrillation; GEO, gene expression omnibus; miRNA, microRNA
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Probe reannotation and data preprocessing
The expression profiles were acquired by reannotating 
probes in the datasets, as previously described [25]. The 
probe set was mapped to RefSeq transcript ID based 
on the latest version of the annotation file. The aver-
age expression value was used if multiple probes were 
applied to detect one miRNA or mRNA. Then, we per-
formed background correction, log2-transformation, and 
quantile normalization using the ‘normalize Between 
Arrays’ function of the ‘linear models for microarray data 
(limma)’ package in R software v3.6.3 [26, 27]. No miss-
ing expression value was detected during data processing.

Identification of differentially expressed miRNAs (DEMs) 
and genes (DEGs)
We used the ‘limma’ package to screen the DEMs and 
DEGs between normal rhythm and AF samples with a 
threshold of false discovery rate (FDR) < 0.05 and |log2 
fold-change (FC)|  > 0.5. Thereafter, we visualized the 
DEMs and DEGs as a volcano plot and a heatmap using 
the ‘ggplot2’ and ‘pheatmap’ package, respectively.

Functional enrichment analysis of the DEGs
To identify characteristic biological and biochemistry 
pathways in the development of AF, we used the ‘cluster-
Profiler’ package [28], together with Metascape [29], to 
perform gene ontology (GO) [30, 31] and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis [32–34] for the DEGs, with cut-offs of q 
value < 0.05 and q value < 0.20 established for significant 
biological processes and biological processes, respec-
tively. The q-value of a test measures the proportion of 
false positives incurred (FDR) control when that particu-
lar test is called significant [35].

Weighted gene co‑expression network construction 
and module detection
To explore the relationship between genome and clinical 
features, we used the ‘WGCNA’ package to construct a 
co-expression network based on the DEMs. After assess-
ing the presence of obvious outliers by sample clustering, 
we used the ‘one-step network construction’ function to 
construct the miRNA co-expression network. We used 
the ‘pick-Soft-Threshold’ function to calculate the soft-
thresholding power β and converted the adjacency into a 
topological overlap matrix. Then, we conducted average 
linkage hierarchical clustering and dynamic tree cut at 
a merging threshold of 0.25. The co-expression network 
was visualized as a heatmap based on topological overlap 
dissimilarity and the cluster dendrogram.

Screening key modules
We used module eigengene (ME), the first principal com-
ponent of module expression, to represent the expression 
profile of module miRNAs [36]. To validate module-trait 
relationships (MTRs, defined as the correlation between 
MEs and clinical features) of miRNA modules, we cat-
egorized miRNAs into corresponding modules accord-
ing to the constructed modules [37]. We calculated the 
ME of each module and included related clinical features. 
Then, we calculated gene significance (GS, defined as the 
log10-transformation of P-value in the linear regression 
slope between gene expression and clinical features) and 
module significance (MS, described as the average GS 
of all genes in the module) to further assess correlation 
intensity between a miRNA module and a clinical feature 
[25, 38]. In general, a module with the highest MS value 
was regarded as the key module for further analysis.

Hub miRNA identification and key gene validation
After overlapping miRNAs from the key module with 
the DEMs from the dataset GSE28954, all of which were 
regarded as key miRNAs, we further calculate module 
membership (MM, representing the association between 
expression and ME) and GS (representing the associa-
tion between expression and clinical features) to identify 
hub miRNAs. In general, key miRNAs with high values 
of MM and GS were regarded as hub miRNAs. The hub 
miRNAs were uploaded to 3 experimentally verified 
miRNA target prediction databases (ENOCRI [39, 40], 
miRTarBase [41], Tarbase [42]) to map corresponding 
target genes, predict the interaction between miRNAs 
and genes, and construct a miRNA-target gene regula-
tory network. Further, we overlapped predicted target 
genes and the DEGs to determine key genes.

Construction of the miRNA‑gene interaction network
To reveal the principle of cellular organization and pre-
dict protein functions, we constructed a protein–protein 
interaction (PPI) network of the DEGs by Metascape, an 
online tool for analyzing system-level datasets. Then, we 
constructed a miRNA-gene interaction network based 
on upstream and downstream relationship between hub 
miRNAs and key genes. After analyzing the interaction 
between key genes using the STRING database v11.0 with 
a threshold of confidence score > 0.150, we illustrated the 
network graph and merged the key gene interaction net-
work and miRNA-target gene regulatory network into a 
miRNA-gene interaction network by Cytoscape v3.6.2 [43]. 
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However, the STRING database, which contains both posi-
tive and negative regulatory relationship between miRNAs 
and genes, does not provide their causal association. The 
core region with a dense connection in the network was 
detected by the ‘cytoHubba’ plugin via mixed character 
calculation.

Results
Microarray data normalization and identification 
of the DEMs and DEGs
In the dataset GSE28954, 10 AF and 18 non-AF sam-
ples were included, with no further information given; 
in the dataset GSE79768, 14 AF and 12 non-AF samples 
were included with a mean age of 55.4  years, compris-
ing 10 (38.5%) men and 16 (61.5%) women. After data 
preprocessing of AF chip expression datasets GSE28954 
and GSE79768 (Fig. 2A–D), 3 DEMs and 320 DEGs were 
identified at cut-off levels of FDR < 0.05 and |log2 FC| > 0.5. 
Among the 3 DEMs, hsa-miR-146b-5p was up-regulated in 
atrial tissue samples from AF patients, whereas hsa-miR-
378a-5p and hsa-miR-490-3p were down-regulated; among 
the 320 DEGs, 203 DEGs were up-regulated in atrial tissue 
samples from AF patients, whereas 117 DEGs were down-
regulated. The volcano plot and heatmap are shown in 
Fig. 2E–H.

Functional enrichment analysis of the DEGs
We performed functional enrichment analysis of the 
DEGs based on the GO and KEGG databases. As shown 
in Fig.  3A, the enriched biological processes were mainly 
involved in nephron development, T cell mediated immu-
nity, regulation of T cell mediated immunity, regulation of 
T cell cytokine production, T cell cytokine production, and 
positive regulation of neuroinflammatory response. More-
over, the KEGG enrichment analysis showed that cytokine-
cytokine receptor interaction was the most enriched 
pathway, followed by neuroactive ligand-receptor interac-
tion, viral protein interaction with cytokine and cytokine 
receptor, and chemokine signaling pathway (Fig. 3B).

Figure 3C summarizes the top 20 clusters of pathway and 
process enrichment analysis in Metascape, of which 5 rep-
resentative enrichment terms were closely associated with 
inflammation, including regulation of T cell cytokine pro-
duction, positive regulation of cell migration, regulation of 
cell adhesion, regulation of leukocyte migration, and heter-
otypic cell–cell adhesion. In general, functional enrichment 

analysis of the DEGs supported the involvement of inflam-
mation in the development of AF.

Construction of the co‑expression network
We used average linkage method, together with Pearson’s 
correlation method, to cluster the samples of GSE28954; 
meanwhile, we used distance across samples in Pear-
son’s correlation matrices to assess quality of microarray 
and locate obvious outliers. The samples were included if 
they met the inclusion criteria: data cut-off height of < 20 
(Fig. 4A, B). The soft-thresholding power was set at 5 since 
scale-free topology index reached 0.9 and mean connec-
tivity was relatively high (Fig.  4C). In general, 7 modules 
were identified by average linkage hierarchical clustering, 
with none merged due to dissimilarity (data cut-off height 
of < 0.25). Turquoise module was the largest module with 
123 miRNAs, followed by blue module with 106 miRNAs; 
conversely, red module was the smallest module with 39 
miRNAs. Grey module, which included miRNAs belonging 
to no other module, was were dismissed in the following 
analysis. The cluster dendrogram of the DEMs is shown in 
Fig. 4D. Moreover, we analyzed the interaction association 
between modules. The network heatmap, in combination 
with eigengene adjacency heatmap of miRNAs, demon-
strated a high level of independence across co-expression 
clusters (Fig. 4E, F).

Constitution of module‑trait relationship and detection 
of key modules
To identify miRNAs related to a specific clinical feature, 
we used correlation analysis to explore the association of 
modules with overall health status (healthy, valvular heart 
disease, coronary artery bypass graft, and AF). Red mod-
ule had the highest negative correlation with the develop-
ment of AF (r = − 0.46, P = 0.02), whereas blue module had 
the highest positive correlation (r = 0.36, P = 0.06; Fig. 4G). 
Moreover, Fig.  4H shows that they had the highest MS 
values across all modules. Therefore, red module and blue 
module were regarded as key modules for AF. Significant 
correlation between MM and GS were also seen for the 
development of AF (Fig. 4I).

Identification of hub miRNAs
After overlapping miRNAs in key modules with the 
DEMs from the dataset GSE28954, hsa-miR-146b-5p and 
hsa-miR-378a-5p were regarded as the 2 key miRNAs. 

Fig. 2  The normalization of microarray expression profiles and visualization of differentially expressed miRNAs and genes between normal 
rhythm and AF samples. A, B The normalization of the dataset GSE28954. C, D The normalization of the dataset GSE79768. E, F The volcano plot 
and heatmap to show differential miRNA expression from GSE28954 with a threshold of false discovery rate (FDR) < 0.05 and |log2 fold-change 
(FC)| > 0.5. G, H The volcano plot and heatmap to show differential gene expression from GSE79768 with a threshold of FDR < 0.05 and |log2 
FC| > 0.5. AF, atrial fibrillation; miRNA, microRNA

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Furthermore, the |MM| and |GS| values of hsa-miR-
146b-5p were 0.48 and 0.62, respectively, whereas the num-
bers separately reached 0.46 and 0.68 in hsa-miR-378a-5p. 
Therefore, hsa-miR-146b-5p and hsa-miR-378a-5p were 
further regarded as hub miRNAs.

Target gene prediction and key gene validation
A total of 2935 target genes and 3000 miRNA-gene pairs 
were obtained after miRNA-gene mapping by electronic 
databases (i.e. ENOCRI, miRTarBase, Tarbase). The 
association between AF-related hub miRNAs and genes 

Fig. 3  A Gene ontology and B Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for the DEGs. The dot color reflects the 
statistical significance, whereas the dot size reflects the number of the DEGs in corresponding pathways. C The network of enriched terms. Each 
node that represents an enriched item is colored by cluster ID; nodes with the same cluster ID are typically close to each other. DEG, differentially 
expressed gene
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was further verified by overlapping target genes and the 
DEGs. Finally, 38 genes were regarded as key genes.

Analysis of the miRNA‑gene interaction network
To better understand the interaction between the DEGs, 
we used Metascape to perform PPI enrichment analy-
sis and illustrate a list of important gene components 
(Fig.  5A). Then, we performed pathway and process 
enrichment analysis and identified 4 molecular complex 
detection (MCODE) components (Fig.  5B). The results 
showed that biological functions of MCODE components 
were mainly involved in G protein-coupled receptor 
activity, generation of precursor metabolites and energy, 
protein translation process, and positive regulation of 
cytokine secretion.

Moreover, we constructed a miRNA-gene interaction 
network to determine hub genes related to the regulation 
of key signaling pathways in the development of AF. As 
shown in Fig. 5C, 40 nodes (2 miRNAs and 38 genes) and 
57 pairs of interaction relationship were observed in the 

network. The hsa-miR-146b-5p was the top hub node in 
the network with a degree of 36. Further, the ‘cytoHubba’ 
plugin detected 9 hub genes based on topological param-
eters of the network, including ATP13A3, BMP2, CXCL1, 
GABPA, LIF, MAP3K8, NPY1R, S100A12, and SLC16A2 
(Fig. 5D).

Discussion
AF is the most common sustained cardiac arrhythmias, 
characterized by rapid and uncoordinated atrial activ-
ity, which leads to an increased risk of complications (e.g. 
stroke, heart failure, premature death) and constitutes a 
substantial economic burden worldwide. However, the 
mechanisms underlying AF are intricate and have not been 
fully understood; there remains an unmet medical need in 
the treatment of AF to date. In the present study, we used 
miRNA and gene expression data to identify predictive 
and prognostic biomarkers in AF management. Further-
more, we performed integrated analysis to construct a 
miRNA-gene interaction network for further validation.

Fig. 4  The identification of key modules by weighted gene co-expression network analysis. A Clustering dendrogram of samples in the dataset 
GSE28954. The red line in the dendrogram is the cut line for outlier detection, with samples cut by this line considered as outliers. B Clustering 
dendrogram of 9 AF and 18 non-AF samples. C Analysis of network topology for various soft-thresholding powers. D Clustering dendrogram of 
miRNAs, with dissimilarity based on topological overlap, together with assigned module colors. E The visualization of the co-expression modules 
using a heatmap. The degree of overlap increases with increasing intensity of yellow. F Eigengene adjacency heatmap of different co-expression 
modules. G The heatmap to show the correlation between module eigengenes and overall health status (healthy, valvular heart disease, coronary 
artery bypass graft, and AF). H The distribution of average expression significance across modules related to AF. I The scatter plot of module 
eigengenes in red module and blue module. AF, atrial fibrillation; miRNA, microRNA
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Our study performed WGCNA to identify miRNA 
co-expression modules and the MTRs related to AF; 
the results showed a significant correlation of red mod-
ule and blue module with the development of AF. The 
differential expression analysis showed that 3 miRNAs 
and 38 key genes were differentially expressed in atrial 
tissue samples from AF patients. Overall, we identi-
fied 2 hub miRNAs (hsa-miR-146b-5p and hsa-miR-
378a-5) and constructed a miRNA-gene interaction 
network containing 9 hub genes (ATP13A3, BMP2, 
CXCL1, GABPA, LIF, MAP3K8, NPY1R, S100A12, 
and SLC16A2), of which 7 (ATP13A3, BMP2, CXCL1, 
LIF, MAP3K8, NPY1R, and S100A12) were linked to 

hsa-miR-146b-5p. Functional enrichment analysis, 
including biological functions of MCODE compo-
nents, showed that the DEGs were mainly involved in 
inflammation-related items, highlighting a central role 
of inflammation in the development of AF.

New-onset or exacerbation of AF results from the 
interaction between trigger and substrate conceptually 
[6]; moreover, the maintenance of AF requires a vulner-
able substrate, largely attributable to genetic predispo-
sition, cardiovascular neurohormonal regulation, and 
disease-related cardiac remodeling [44, 45]. Cardiac elec-
trophysiology remodeling represents the change in prop-
erties of ion channels, whereas structural remodeling 

Fig. 5  A The protein–protein interaction network of differentially expressed genes. The network contains the subset of proteins that form physical 
interactions with at least one other member. B Four molecular complex detection components identified by pathway and process enrichment 
analysis. C The construction of the miRNA-gene interaction network. The hub miRNAs are shown in dark pink, whereas the key genes are shown in 
light pink. The edge between two nodes represents the interaction between miRNAs and/or genes. D Nine hub genes identified by the ‘cytoHubba’ 
plugin via mixed character calculation. The significance of hub genes increases with increasing intensity of the dot color. miRNA, microRNA
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represents the change in organization structure (includ-
ing atrial dilatation and fibrosis) [46]. While the exact 
mechanism underlying the development of AF has not 
been clearly established, atrial dilatation and fibrosis are 
known to influence a variety of biological processes, pri-
marily through regulation of angiotensin II and related 
mediators (e.g. transforming growth factor [TGF]-β1, 
platelet derived growth factor [PDFG], connective tis-
sue growth factor [CTGF]) [47]. AF can stimulate the 
release of pro-inflammatory cytokines and chemokines 
related to cardiovascular disease and tissue injuries such 
as angiotensin II, interleukin (IL)-6, IL-8, and tumor 
necrosis factor (TNF)-α [48]. In addition, accumulating 
evidence has demonstrated that mechanical stretch and 
injuries stimulate leukocyte activation and the release 
of pro-inflammatory mediators, including nicotinamide 
adenine dinucleotide phosphate oxidase-derived reactive 
oxygen species, fibroblast growth factors, and regulatory 
hormones [49].

Inflammation has been associated with a clinically rel-
evant effect on the increase of cardiac/serum inflamma-
tory biomarkers, and was shown to regulate expression 
patterns of specific miRNAs and genes in AF patients, 
thereby potentiating the fibrosis of an established AF sub-
strate [50–53]. AF, largely driven by inflammation, also 
has been reported to initiate additional inflammatory 
responses, aggravate atrial remodeling, and deteriorate 
cardiac function [54]. Such interactions may constitute 
a key inducement of the transformation from fibroblasts 
into myofibroblasts and attain significance for the mech-
anism underlying AF. Other inflammation-related factors 
such as oxidative stress, apoptosis, and thrombogenesis 
from the bioactivation of coagulation cascade, were also 
generally associated with the development of AF [50]. 
Inflammation, particularly those related to atrial fibrosis, 
represents an important mechanism of AF. Herein, we 
summarize a list of miRNAs and genes potentially associ-
ated with the inflammatory process in the presence of AF.

BMPs, bone morphogenetic proteins, constitute the 
largest branch of TGF-β family ligands. In addition to 
enhancing bone regeneration, BMPs also exert anti-
inflammatory activity by inhibiting inflammatory cell 
infiltration in patients with cardiovascular disease [55, 
56]. BMP2 and BMP4 have been reported to participate 
in the development of cardiac function, and so their 
interruption or discontinuation can lead to cardiac func-
tion abnormalities in adulthood [57, 58]. Howden et  al. 
[59] demonstrated that QRS duration and ST inter-
val were significantly reduced in BMP2/BMP4 knock-
out mice compared with wide-type group, suggesting a 
potential role for BMP2 and BMP4 in the development 
of short QT interval syndrome and following initiation 
of AF. BMP7, an inhibitor of apoptosis, fibrosis, and 

calcification, has been shown to stimulate the differen-
tiation from pro-inflammatory infiltrated monocytes to 
anti-inflammatory M2 macrophages and reduce the pro-
gression of cardiac dysfunction in multiple cardiovascu-
lar diseases [60]. Our results indicated that BMPs were 
down-regulated in subjects with AF than in subjects with 
sinus rhythm, with its expression significantly correlating 
with the presence of AF.

CXCL1, C-X-C motif chemokine ligand 1, is a member 
of the alpha chemokine subfamily involved in enhanced 
neutrophil chemotaxis and phagocytosis during inflam-
mation. It has been suggested that the level of CXCL1 
was in keep with the extent of myocardial inflamma-
tion and the percentage of CD14++DN16− monocytes 
[61]. Moreover, CXCL1-induced myocardial or systemic 
inflammation in patients with acute cardiomyopathy was 
significantly associated with monocyte adhesion, mac-
rophage infiltration into the myocardium, and the release 
of inflammatory cells from bone marrow. Fan et al. [62] 
also demonstrated that the level of CXCL1 was signifi-
cantly higher in the AF group than in the control group 
(by stimulation of cytokines), which was consistent with 
that seen in our study. Overall, molecular mechanisms 
of action of CXCL1 behind AF have not been fully eluci-
dated, and remain to be confirmed.

LIF, leukemia inhibitory factor, is a secreted glycopro-
tein of interleukin-6-type cytokine family. LIF has been 
shown to transmit biological information through a het-
erodimer receptor complex comprising LIF receptor and 
Interleukin 6 signal transducer in a variety of inflamma-
tory processes, including acute phase reaction, hemat-
opoiesis, bone metabolism, and cancer progression [63]. 
Our study indicated that LIF was down-expressed in 
atrial tissue of AF patients, suggesting that inflammation-
related atrial fibrosis was of particular importance for the 
development of AF. However, an earlier animal study in 
adult pigs found no significant difference between the AF 
group and the control group, which was conflicting with 
that seen in previous reports [64]. Additional studies 
would help to determine the position of LIF in the devel-
opment of AF.

Consistent with the results of recent reports, our study 
further demonstrated that hsa-miR-146b-5p was over-
expressed in AF patients [53, 65]. has-miR-146b-5p has 
been reported to function as an intracellular mediator 
in maladaptive remodeling of atrial fibrosis by break-
ing the balance of MMP/TIMP axis and increasing the 
level of collagen content of cardiac fibroblasts in AF 
patients [53, 66]. Emerging evidence suggests that vascu-
lar smooth muscle cells (VSMCs) can achieve perceived 
plasticity and exert non-professional phagocytic activity 
to maintain inflammatory or senescent condition [67]. 
Notably, MBNL1 was significantly down-regulated via its 
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interaction with hsa-miR-146b-5p, which was expected 
to influence VSMC proliferation and differentiation [68, 
69]. In human monocytes and murine cardiomyocytes, 
has-miR-146b-5p regulated the expression of several 
pro-inflammatory mediators, including tumor necrosis 
factor-associated factor 6 (TRAF6), Interleukin-1 recep-
tor (IL-1R)-associated kinase (IRAK1), IL-6, and signal 
transducer and activator of transcription 3 (STAT3) [70, 
71]. Studies in mouse models showed that has-miR-
146b-5p down-regulated TRAF6 expression (known to 
act upstream of the NF-κB pathway) under hypoxia con-
ditions, thereby inhibiting cardiac fibrosis and preventing 
cardiac dysfunction in patients with heart failure [71]. 
In addition to hub genes described above, ATP13A3, 
MAP3K8, NPY1R, and S100A12 were regulated by hsa-
miR-146b-5p; their exact mechanisms of action underly-
ing AF remain elusive, and therefore, further molecular 
biology studies are warranted in the future. In general, 
hsa-miR-146b-5p may be a central mediator in the devel-
opment of AF.

hsa-miR-378a-5p was another hub miRNA that could 
influence the development of AF, primarily through 
reversible inhibition of GABPA and SLC16A2. Our 
results showed that they were down-regulated, in con-
trast to hsa-miR-378a-5p that was over-expressed in the 
presence of AF. hsa-miR-146b-5p, targeting anti-prolifer-
ative protein TOB2, has been shown to positively regu-
late the cell cycle and the following angiogenic process, 
thereby inducing or enhancing the development of AF 
by inflammation or fibrosis [72–74]. Despite the lack of 
studies on the association of GABPA with AF, GABPA 
has been reported to down-regulate genes involved in the 
inflammatory response and oxidative stress at transcrip-
tional level [75]. Additional research is needed to fully 
elucidate the potential cardioprotective effects, if any, of 
SLC16A2 in the development of AF.

The main strength of this study is the use of atrial tissue 
samples from AF patients instead of commonly reported 
murine aneurysmal model or human VSMCs in miRNA 
studies, whose results need additional testing and anal-
ysis. Another strength is to provide an overview and 
perspective from the interaction between miRNAs and 
genes for AF management, despite requiring more in-
depth investigation and further validation.

Our study has several limitations. First, although 2 
independent datasets were used for integrated analy-
sis, input data were insufficient to accurately identify 
and validate predictive and prognostic biomarkers in AF 
management. Second, given that a substantial proportion 
of AF samples from the dataset GSE28954 were strongly 
correlated with dilated atria due to valvular heart disease, 
our findings were expected to be outmost applicable to 
patients with AF and concurrent valvular heart disease, 

with a controversial generalizability to the whole popu-
lation. Third, our study merely focused on detecting hub 
miRNAs and genes related to the development of AF, 
without considering epigenetic mechanisms behind mul-
tifactorial nature of disease, which are generally stable 
and are often affected by environmental factors. Fourth, 
despite advances in the pathogenesis of AF over the past 
decade, there remains a paucity of functional studies on 
hub molecules identified in our study, making it difficult 
to understand their implication for potential mechanisms 
of AF. Fifth, the paucity of confirmatory experiments 
is another noteworthy limitation; further results from 
molecular biology studies would be beneficial.

Conclusion
WGCNA, in combination with a miRNA-gene interac-
tion network, identified 2 hub miRNAs and 9 hub genes 
in the occurrence and progression of AF. This study may 
improve the understanding of molecular mechanisms 
and reveal potential therapeutic targets against AF. Fur-
ther confirmatory experiments are warranted to validate 
these findings and elucidate underlying mechanisms.
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