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Abstract 

Background:  As the number of COVID-19 deaths continues to rise worldwide, the identification of risk factors for the 
disease is an urgent issue, and it remains controversial whether atherogenic lipid-related traits including serum apoli-
poprotein B, low-density lipoprotein (LDL)-cholesterol, and triglyceride levels, are risk factors. The aim of this study 
was to estimate causal effects of lipid-related traits on COVID-19 risk in the European population using a two-sample 
Mendelian randomization (MR) approach.

Methods:  We used summary statistics from a genome-wide association study (GWAS) that included 441,016 
participants from the UK Biobank as the exposure dataset of lipid-related traits and from COVID-19 Host Genetics 
Initiative GWAS meta-analyses of European ancestry as the outcome dataset for COVID-19 susceptibility (32,494 cases 
and 1,316,207 controls), hospitalization (8316 cases and 1,549,095 controls), and severity (4792 cases and 1,054,664 
controls). We performed two-sample MR analyses using the inverse variance weighted (IVW) method. As sensitivity 
analyses, the MR-Egger regression, weighted median, and weighted mode methods were conducted as were leave-
one-out sensitivity analysis, the MR-PRESSO global test, PhenoScanner searches, and IVW multivariable MR analyses. A 
P value below 0.0055 with Bonferroni correction was considered statistically significant.

Results:  This MR study suggested that serum apolipoprotein B or LDL-cholesterol levels were not significantly associ-
ated with COVID-19 risk. On the other hand, we inferred that higher serum triglyceride levels were suggestively associ-
ated with higher risks of COVID-19 susceptibility (odds ratio [OR] per standard deviation increase in lifelong triglycer-
ide levels, 1.065; 95% confidence interval [CI], 1.001–1.13; P = 0.045) and hospitalization (OR, 1.174; 95% CI, 1.04–1.33; 
P = 0.012), and were significantly associated with COVID-19 severity (OR, 1.274; 95% CI, 1.08–1.50; P = 0.004). Sensitivity 
and bidirectional MR analyses suggested that horizontal pleiotropy and reverse causation were unlikely.

Conclusions:  Our MR study indicates a causal effect of higher serum triglyceride levels on a greater risk of COVID-19 
severity in the European population using the latest and largest GWAS datasets to date. However, as the underlying 
mechanisms remain unclear and our study might be still biased due to possible horizontal pleiotropy, further studies 
are warranted to validate our findings and investigate underlying mechanisms.
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Background
The World Health Organization has reported that 
the number of deaths from coronavirus disease 2019 
(COVID-19) caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) continues to rise 
worldwide (over 4.6 million as of September 2021) [1]. 
Therefore, in addition to the establishment of effective 
therapies, the identification of risk factors for COVID-19 
is an urgent issue. Observational studies have reported 
that the severity of COVID-19 depends on risk factors 
such as obesity, coronary artery disease (CAD), and dia-
betes [2, 3]. Although dyslipidemia is associated with 
these risk factors [4–6], different results from observa-
tional studies have been reported with regard to an asso-
ciation between dyslipidemia and COVID-19 risk [7–11]. 
Moreover, observational studies tend to suffer from bias 
due to possible confounders and reverse causation [12].

The Mendelian randomization (MR) method mimics a 
study with a randomized controlled design using single-
nucleotide variants (SNVs) (also called single-nucleotide 
polymorphisms [SNPs]) as instrumental variables (IVs) 
and can estimate causal effects of risk factors on diseases 
of interest. According to Mendel’s law, genetic variants 
are randomly assigned at meiosis. Therefore, MR stud-
ies are less likely to suffer from possible confounders or 
reverse causation, which as stated above are limitations 
of observational studies [12]. A recent genome-wide 
association study (GWAS) using UK Biobank (UKBB) 
data and MR analysis [13] reported that among athero-
genic lipid-related traits (apolipoprotein B [Apo-B], low-
density lipoprotein cholesterol [LDL-C], and triglyceride 
[TG]), Apo-B accounted for the causal effect on CAD 
risk, independently of LDL-C and TGs. Nevertheless, the 
estimated effects of atherogenic lipid-related traits on 
COVID-19 risk are inconsistent even among MR stud-
ies [14–17]. The aim of the present study was to estimate 
causal effects of serum Apo-B, LDL-C, and TG levels 
on risk of COVID-19 susceptibility, hospitalization, and 
severity in the European population using a two-sample 
MR approach.

Methods
Study design
We performed two-sample univariable MR analyses using 
summary-level GWAS datasets to estimate causal effects 
of circulating atherogenic lipid-related traits on COVID-
19 using genetically predicted serum Apo-B, LDL-C, and 
TG levels as exposures and risk of COVID-19 susceptibil-
ity, hospitalization, and severity as outcomes. To examine 
reverse causation, we also performed bidirectional two-
sample univariable MR analyses using genetically pre-
dicted risk of COVID-19 susceptibility, hospitalization, 

and severity as exposures and serum Apo-B, LDL-C, and 
TG levels as outcomes.

All analyses were conducted using the TwoSampleMR 
package (version 0.5.6) in R software (version 4.0.3) [18].

A P value below 0.0055 (0.005/3/3 by Bonferroni cor-
rection) was considered statistically significant and a P 
value between 0.0055 and 0.05 was considered sugges-
tively significant in the MR analyses.

Data sources
For the exposure dataset of genetically predicted serum 
Apo-B, LDL-C, and TG levels, summary statistics were 
available from a GWAS [13] that included up to 441,016 
participants from UKBB. To our knowledge, this is to 
date the largest GWAS in sample size of atherogenic 
lipid-related traits. The data were standardized and nor-
malized such that the mean was 0 and the standard devi-
ation (SD) was 1. However, the mean and SD of TG were 
not provided in the GWAS; instead, the median TG was 
given as 1.50 (IQR = 1.11) mmol/L. The mean (SD) TG 
of 470,434 participants in UKBB was 1.75 (1.02) mmol/L 
[19]. The GWAS datasets are publicly available from the 
IEU open GWAS database [20] as GWAS-IDs of “ieu-b-
108” for serum Apo-B level, “ieu-b-110” for serum LDL-C 
level, and “ieu-b-111” for serum TG level.

For the outcome dataset of genetically predicted risk 
of COVID-19 susceptibility, hospitalization, and sever-
ity, summary statistics were available from the GWAS 
meta-analyses by COVID-19 Host Genetics Initiative 
(COVID-19-HGI) [21] (Round 5) of European ances-
try, which excluded UKBB data. Therefore, in our two-
sample MR study, possible study overlap between the 
exposure and outcome datasets was unlikely. The out-
come dataset included 1,348,701 participants (32,494 
laboratory confirmed cases of SARS-CoV-2 infection and 
1,316,207 population controls) for COVID-19 suscepti-
bility, 1,557,411 participants (8316 hospitalized COVID-
19 patients and 1,549,095 population controls) for 
COVID-19 hospitalization, and 1,059,456 participants 
(4792 very severe respiratory confirmed COVID-19 cases 
and 1,054,664 controls) for COVID-19 severity. COVID-
19-HGI defined very severe respiratory confirmed 
COVID-19 cases as patients hospitalized for laboratory-
confirmed SARS-CoV-2 infection who died or were given 
respiratory support. The dataset (Round 5) was the latest 
version with the largest sample size involving European 
ancestry released on January 18, 2021 [22].

For the dataset of genetically predicted body 
mass index (BMI) trait, summary statistics are pub-
licly available from a GWAS of European ancestry (a 
meta-analysis of GIANT [Genetic Investigation of 
ANthropometric Traits] consortium studies and UKBB 
with a total of 681,275 participants) [23], and from 
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the IEU open GWAS database [20] as GWAS-ID of 
“ieu-b-40”.

Selection of instrumental variables
MR analyses use SNVs as IVs that must satisfy the follow-
ing three assumptions [24]: the IVs are associated with 
the exposure; the IVs affect the outcome only via expo-
sure; and the IVs are not associated with confounders.

To estimate causal effects, we selected SNVs from the 
exposure GWAS dataset as IVs by clumping together 
all SNVs associated with the trait with P < 5.0 × 10–8 
(a genome-wide significance level) and not in linkage 
disequilibrium with other SNVs (r2 < 0.001, and dis-
tance > 10,000 kb) using the clump_data function (popu-
lation = "EUR"). We extracted the summary statistics for 
each SNV from both the exposure and outcome GWAS 
datasets and then harmonized them. We did not include 
proxy SNVs in the analysis [25, 26]. We excluded pal-
indromic SNVs with an intermediate minor allele fre-
quency (MAF) > 0.42 [24, 27]. To evaluate the strength of 
the IVs, the F-statistic for each SNV was calculated using 
the following formula: F-statistic = R2 × (N − 2)/(1 − R2), 
where R2 is the proportion of variance in phenotype 
explained by each SNV in exposure, and N is the sam-
ple size. We calculated R2 using the following formula: 
R2 = 2 × (Beta/SD)2 × (MAF) × (1 − MAF), where Beta is 
the per allele effect size of the association between each 
SNV and phenotype [28]. IVs with an F-statistic below 10 
(if any existed) were considered weak instruments [29].

Two‑sample Mendelian randomization and sensitivity 
analyses
The Wald ratio, which estimates the causal effect of each 
IV exposure on outcome, was calculated as the ratio of 
Beta for the corresponding SNV in the outcome data-
set divided by Beta for the same SNV in the exposure 
dataset [24]. We conducted a meta-analysis of each 
Wald ratio using the inverse variance weighted (IVW) 
method as a main analysis to estimate the overall causal 
effect of genetically predicted values of the exposure on 
the outcome. For the IVW method, we used a multipli-
cative random-effects model when Cochran’s Q statistic 
(as described below) was significant (P < 0.05) [30]; oth-
erwise, a fixed-effects model was used. Based on IVW 
results, we inferred the causal effect of the lifelong change 
in exposure on the outcome [31].

In addition, we conducted sensitivity analyses using 
the MR-Egger regression method, the weighted median 
method, the weighted mode method, and leave-one-out 
sensitivity analysis. The MR-Egger regression method 
can detect horizontal pleiotropy. The MR-Egger intercept 
is nonzero with statistical significance (P < 0.05) if possi-
ble horizontal pleiotropy of IVs exists [32]. The weighted 

median method can generate a valid causal estimate if at 
least 50% of the instrument SNVs satisfy the IV assump-
tions [32]. The weighted mode method forms clusters 
of individual SNVs and estimates the causal effect from 
the largest cluster [32]. Leave-one-out sensitivity analy-
sis removed each SNV from the IVW method and re-
estimated the causal effect to assess the reliability of the 
analysis [33]. We also measured heterogeneity among 
causal estimates across all SNVs in the IVW method by 
calculating Cochran’s Q statistic and the correspond-
ing P value. Low heterogeneity (P > 0.05) provides more 
reliability for causal effects [34]. Regarding MR to esti-
mate the causal effect of TGs on COVID-19 severity, we 
added the following two analyses: we searched for SNVs 
associated with P < 5.0 × 10–8 with pleiotropic effects on 
BMI and any type of leukocyte or inflammatory marker 
using the web tool PhenoScanner (version 2) [35, 36] 
and then excluded them from the IVW method; we con-
ducted the MR-PRESSO (Pleiotropy RESidual Sum and 
Outlier) global test with the run_mr_presso function to 
detect possible horizontal pleiotropy [37]. Moreover, we 
conducted IVW multivariable MR analyses with the mv_
ivw function to estimate the direct effects of genetically 
predicted TG levels on risk of COVID-19 independent 
of the effects of other exposure traits using genetically 
predicted Apo-B, LDL-C, or BMI traits as a covariate [13, 
38–41].

Statistical power
We calculated statistical power in the MR analyses at a 
type-I error rate of 0.05 using the web tool mRnd [42, 43], 
as shown in Additional file 1: Table S1. For example, we 
achieved 80% power to detect an odds ratio (OR) of 1.066 
(or 0.934) for the causal effect of genetically predicted 
Apo-B levels on COVID-19 susceptibility.

Results
The characteristics of all SNVs included in our univari-
able MR analyses are shown in Additional file  1: Tables 
S2–S4. The F-statistic for every instrument was > 25, indi-
cating no weak instrument bias. During harmonization, 
several SNVs were excluded because they were palin-
dromic with intermediate MAFs (“palindromic ambigu-
ous” was “TRUE” in Additional file  1: Tables S2–S4). 
The overall univariable MR results are shown in Table 1, 
Fig. 1, and Additional file 2: Figures S1–S3. None of the 
MR methods, including IVW, indicated any causal effect 
of genetically predicted Apo-B or LDL-C levels on risk 
of COVID-19, whereas some MR methods did indicate 
causal effects of genetically predicted TG levels (Table 1). 
By employing the IVW methods, we inferred that life-
long elevated TG levels had suggestive causal effects on 
a higher risk of COVID-19 susceptibility (OR per 1-SD 
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Table 1  Univariable MR results of the effect of genetically predicted atherogenic lipid-related traits on COVID-19 risk

Apo-B, apolipoprotein B; CI, confidence interval; COVID-19, coronavirus disease 2019; IVW, inverse variance weighted; LDL-C, low-density lipoprotein cholesterol; MR, 
Mendelian randomization; N, number; OR, odds ratio; SE, standard error; SNV, single nucleotide variant; TG, triglyceride

Exposure 
traits

Outcome 
traits

N of SNVs IVW method MR-Egger regression method Weighted 
median 
method

Weighted 
mode method

Heterogeneity 
(IVW method)

OR (95% CI)
P-value

OR (95% CI)
P-value

Intercept (SE)
P-value

OR (95% CI)
P-value

OR (95% CI)
P-value

Cochran’s Q
P-value

Apo-B COVID-19 
susceptibility

128 0.995 
(0.93–1.07)
0.89

1.013 
(0.91–1.12)
0.81

− 0.0009 
(0.0019)
0.64

1.057 
(0.93–1.19)
0.38

1.026 
(0.93–1.14)
0.63

128.4
0.45

Apo-B COVID-19 hos-
pitalization

126 0.995 
(0.85–1.16)
0.94

0.909 
(0.72–1.15)
0.43

0.0040 (0.0041)
0.33

0.902 
(0.71–1.15)
0.41

0.881 
(0.68–1.15)
0.35

125.7
0.47

Apo-B COVID-19 
severity

130 1.033 
(0.82–1.31)
0.79

0.933 
(0.64–1.35)
0.71

0.0046 (0.0065)
0.48

0.935 
(0.67–1.31)
0.70

0.979 
(0.70–1.36)
0.90

172.0
0.007

LDL-C COVID-19 
susceptibility

114 1.048 
(0.96–1.14)
0.27

1.028 
(0.89–1.18)
0.70

0.0008 (0.0023)
0.74

1.056 
(0.93–1.20)
0.41

1.025 
(0.90–1.17)
0.71

114.2
0.45

LDL-C COVID-19 hos-
pitalization

113 0.986 
(0.83–1.17)
0.86

0.853 
(0.64–1.14)
0.28

0.0057 (0.0046)
0.22

0.892 
(0.68–1.17)
0.41

0.889 
(0.67–1.18)
0.42

108.5
0.58

LDL-C COVID-19 
severity

115 1.034 
(0.83–1.29)
0.77

0.806 
(0.54–1.21)
0.30

0.0099 (0.0067)
0.14

0.882 
(0.62–1.26)
0.49

0.949 
(0.65–1.38)
0.79

127.1
0.19

TG COVID-19 
susceptibility

208 1.065 
(1.00–1.13)
0.045

1.101 
(0.99–1.21)
0.052

− 0.0014 
(0.0016)
0.36

1.099 
(0.99–1.22)
0.07

1.079 
(0.98–1.19)
0.13

235.9
0.08

TG COVID-19 hos-
pitalization

205 1.174 
(1.04–1.33)
0.012

1.275 
(1.06–1.53)
0.010

− 0.0036 
(0.0030)
0.23

1.167 
(0.96–1.42)
0.12

1.201 
(1.01–1.43)
0.039

192.5
0.71

TG COVID-19 
severity

208 1.274 
(1.08–1.50)
0.004

1.310 
(1.03–1.67)
0.030

− 0.0013 
(0.0040)
0.75

1.201 
(0.92–1.57)
0.18

1.160 
(0.91–1.47)
0.22

210.2
0.43

Fig. 1  Scatter plots for estimating causal effects of genetically predicted serum TG levels on risk of a susceptibility, b hospitalization, and c severity. 
Each black point representing the effect sizes of each SNP on the exposure (horizontal-axis) and on the outcome (vertical-axis) is plotted with error 
bars corresponding to each standard error (SE). The slope of each line corresponds to the combined estimate using each method of the IVW (light 
blue line), the MR-Egger regression (blue line), the weighted median (light green line), and the weighted mode (green line)
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increase in TGs, 1.065; 95% CI, 1.001–1.13; P = 0.045) 
and hospitalization (OR, 1.174; 95% CI, 1.04–1.33; 
P = 0.012). Moreover, IVW allowed us to infer that life-
long elevated TG levels had a significant causal effect 
on a higher risk of COVID-19 severity (OR, 1.274; 95% 
CI, 1.08–1.50; P = 0.004). The MR-Egger intercept indi-
cated little evidence of horizontal pleiotropy (P = 0.75), 
and Cochran’s Q statistic for the IVW method indicated 
low heterogeneity (P = 0.43) and reliability of the causal 
effect. Leave-one-out sensitivity analysis (Additional 
file 2: Figure S3a) revealed the reliability of the IVW anal-
ysis, and the MR-PRESSO global test (P = 0.44) suggested 
a lack of possible horizontal pleiotropy. Furthermore, a 
funnel plot (Additional file 2: Figure S3b) depicted gen-
eral symmetry, suggesting little evidence of heterogene-
ity or horizontal pleiotropy [32]. The weighted median 
and weighted mode methods also showed OR scales 
and directions consistent with the IVW method; how-
ever, the effects were not significant, raising the possibil-
ity of horizontal pleiotropy and confounding. Therefore, 
we performed PhenoScanner searches to identify SNVs 
associated with possible pleiotropic effects on other 
risk factors for COVID-19 at P < 5.0 × 10–8. Among 208 
SNVs used as IVs for serum TG levels, we identified 17 
SNVs associated with BMI (rs10797119, rs10811662, 
rs10883026, rs11030107, rs13389219, rs2937124, 
rs2943645, rs3808477, rs3814883, rs394872, rs60856912, 
rs62135012, rs684773, rs7239575, rs7947951, rs921971, 
and rs998584), and 20 SNVs associated with any type 
of leukocyte or inflammatory marker (rs11187019, 
rs12185242, rs1292065, rs174566, rs2382825, rs28383314, 
rs326222, rs3775228, rs3814883, rs4665972, rs4761234, 
rs60856912, rs61905078, rs62427982, rs6432622, 
rs6999569, rs7239575, rs72603744, rs483082 [C-reactive 
protein (CRP)], and rs79287178 [TRAIL (tumor necro-
sis factor-related apoptosis inducing ligand) level]). We 
obtained results comparable to those of the original IVW 

method when we excluded the 17 SNVs or 20 SNVs (for 
the former: OR, 1.271; 95% CI, 1.07–1.51; P = 0.0059; 
number of SNVs, 191; for the latter: OR, 1.341; 95% CI, 
1.10–1.64; P = 0.004; number of SNVs, 188).

Moreover, we carried out IVW multivariable MR anal-
yses as sensitivity analyses to estimate the direct causal 
effect of genetically predicted TG levels on COVID-19 
risk adjusted for each of the genetically predicted Apo-
B, LDL-C, and BMI traits. The IVW multivariable MR 
results are shown in Table 2. The suggested causal effect 
of TGs on COVID-19 susceptibility was eliminated upon 
adjustment for each trait. We obtained comparable 
results regarding the causal effect of TGs on COVID-19 
hospitalization and severity after adjustment for each 
trait; however, the latter had only suggestive significance.

Finally, we examined reverse causation by performing 
bidirectional two-sample univariable MR analyses using 
genetically predicted risks of COVID-19 as exposures 
and atherogenic lipid-related traits as outcomes. The 
results are shown in Additional file 3: Table S5. Overall, 
numbers of instrumental SNVs were low, and heteroge-
neities were high. We found that none of the COVID-19 
risks had any significant causal effects on atherogenic 
lipid-related traits.

Discussion
From univariable MR studies, we inferred suggestive 
causal effects of lifelong higher TG levels on higher risk 
of COVID-19 susceptibility (OR, 1.065; 95% CI, 1.001–
1.13; P = 0.045) and hospitalization (OR, 1.174; 95% CI, 
1.04–1.33; P = 0.012) and a significant causal effect of 
TGs on COVID-19 severity (OR, 1.274; 95% CI, 1.08–
1.50; P = 0.004) but could not find any causal effect of 
Apo-B or LDL-C levels. The suggested effect of TGs on 
COVID-19 susceptibility was eliminated and the signifi-
cant effect on COVID-19 severity was attenuated with 
suggestive significance after adjustment each for Apo-B, 

Table 2  IVW multivariable MR for the effects of TGs on COVID-19 risk adjusted for other traits

Apo-B, apolipoprotein B; BMI, body mass index; CI, confidence interval; COVID-19, coronavirus disease 2019; IVW, inverse variance weighted; LDL-C, low-density 
lipoprotein cholesterol; MR, Mendelian randomization; OR, odds ratio; SE, standard error; SNV, single nucleotide variant; TG, triglyceride

Exposure traits Adjustment Outcome traits

COVID-19 susceptibility COVID-19 hospitalization COVID-19 severity

OR (95% CI), P-value OR (95% CI), P-value OR (95% CI), P-value

Apo-B TG 0.966 (0.89–1.05), 0.422 0.905 (0.77–1.06), 0.228 0.954 (0.73–1.24), 0.725

TG Apo-B 1.063 (0.98–1.15), 0.139 1.178 (1.01–1.37), 0.036 1.306 (1.06–1.60), 0.011

LDL TG 1.017 (0.93–1.12), 0.717 0.948 (0.79–1.13), 0.558 1.036 (0.79–1.35), 0.795

TG LDL-C 1.073 (0.99–1.16), 0.073 1.158 (1.00–1.34), 0.042 1.276 (1.05–1.55), 0.013

BMI TG 1.130 (1.02–1.25), 0.016 1.374 (1.13–1.67), 0.001 1.404 (1.08–1.83), 0.012

TG BMI 1.071 (0.99–1.15), 0.066 1.189 (1.04–1.36), 0.013 1.261 (1.04–1.53), 0.018
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LDL-C, and BMI traits in IVW multivariable MR analy-
ses. Nonetheless, our bidirectional MR study indicated 
that reverse causation of COVID-19 risk on atherogenic 
lipid-related traits was unlikely.

Observational studies have reported contradictory 
results. A study among 9005 UKBB participants (1508 
patients testing positive for SARS-CoV-2 and 7497 con-
trols) reported that Apo-B, LDL-C, and TGs were not 
significantly associated with SARS-CoV-2 infection [7]. A 
systematic review and meta-analysis including 23 studies 
involving 10,122 COVID-19 patients showed that hos-
pitalized patients with severe disease or non-survivor 
status had significantly lower serum LDL-C but not TG 
levels compared to patients with milder disease or sur-
vivor status; however, only a few studies of those with 
European ancestry were included [8]. A retrospective 
single-center study with 654 patients in Spain showed 
that LDL-C < 69  mg/dl at admission was indepen-
dently associated with a greater risk of 30-day mortality 
from COVID-19 (hazard ratio, 1.94; 95% CI, 1.14–3.31, 
P = 0.014) [9]. However, a prospective single-center study 
with 48 COVID-19 patients in France did not detect 
a significant relationship between LDL-C and 28-day 
mortality [10]. A retrospective single-center study with 
600 COVID-19 patients in the United States reported 
hypertriglyceridemia as being associated with mortal-
ity (OR, 2.3; 95% CI, 1.4–3.7; P = 0.001) independent of 
obesity, high CRP, and high leukocyte count [11]. Some 
observational studies of European-ancestry subjects were 
consistent with our MR results, though others were not. 
Such discrepancies may be due to the small sample size 
and retrospective and/or single-center designs of obser-
vational studies. Moreover, observational studies tend 
to suffer from bias by possible confounders and reverse 
causation [12]. For example, serum lipid levels might be 
lower as a result of poor nutrition status due to COVID-
19 severity [8]. Associations between serum lipid levels 
and COVID-19 risks might be secondary to immune-
inflammatory responses that could worsen COVID-19 
outcomes [8, 9, 11], though the association of LDL-C 
with COVID-19 mortality was independent of inflamma-
tory markers in the above Spanish study [9]. MR studies 
can overcome such limitations of observational stud-
ies [12]. Regardless, estimates of MR studies tend to be 
larger than those of observational studies, as the former 
estimate lifelong rather than short-term effects [31].

Some MR studies have investigated the causal effects of 
atherogenic lipid-related traits on COVID-19 risk. Leong 
A et  al. [14] did not find any causal effect of LDL-C or 
TGs on COVID-19 susceptibility or severity that was 
significant after Bonferroni correction (LDL-C and sus-
ceptibility: OR, 1.09; 95% CI, 1.01–1.18; P = 0.04; LDL-C 
and severity: OR, 1.11; 95% CI, 0.98–1.26; P = 0.11; TG 

and susceptibility: OR, 1.05; 95% CI, 0.99–1.11; P = 0.08; 
TG and severity: OR, 1.05; 95% CI, 0.95–1.15; P = 0.36) 
using Global Lipids Genetic Consortium (GLGC) GWAS 
data for LDL-C and TG traits for 188,577 participants 
of European ancestry [44] and COVID-19-HGI GWAS 
meta-analyses data (Round 4). Aung N et  al. [15] used 
two-sample MR with IVW methods to investigate causal 
effects of LDL-C and TGs on COVID-19 susceptibil-
ity (for LDL-C: OR, 1.20; 95% CI, 1.06–1.37, P = 0.006; 
for TG: OR, 1.10; 95% CI, 0.79–1.53; P = 0.58) using 
GLGC GWAS data [44] and COVID-19-HGI GWAS 
meta-analyses data (Round 2). Ponsford MJ et  al. [16] 
reported no effect of LDL-C on COVID-19 with respira-
tory failure (OR, 0.85; 95% CI, 0.61–1.20) using GLGC 
GWAS data [44] and COVID-19 GWAS data involv-
ing 1610 cases with respiratory failure and 2205 con-
trols in Italy and Spain [45]. Recently, Zhang et  al. [17] 
reported that Apo-B had a causal effect on COVID-19 
susceptibility (OR, 1.18; 95% CI, 1.07–1.29; P = 0.001) 
using GWAS data of the Apo-B trait for 24,925 partici-
pants of European ancestry and UKBB data with 1221 
COVID-19 cases and 4117 controls. However, they did 
not find any causal effect of Apo-B, LDL-C or TGs on 
COVID-19 severity (for Apo-B: OR, 0.95; 95% CI, 0.84–
1.07; P = 0.36; for LDL-C: OR, 0.96; 95% CI, 0.85–1.09; 
P = 0.51; for TG: OR, 0.94; 95% CI, 0.78–1.15; P = 0.56) 
using LDL-C and TG traits GWAS for less than 300,000 
participants of European ancestry and COVID-19 GWAS 
data obtained in Italy and Spain [45]. We performed our 
MR study using the latest GWAS datasets with the largest 
sample sizes to date, which might explain the discrepan-
cies between our and previous MR studies. In a preprint 
article, Sun Y et  al. [46] performed an MR study using 
the UKBB dataset for the TG trait (given as GWAS-ID of 
“ukb-d-30870_irnt”), COVID-19-HGI GWAS meta-anal-
yses data, and COVID-19 GWAS data obtained in Italy 
and Spain [45]. Consistent with our MR study, they found 
that higher TGs had causal effects on the risk of severe 
COVID-19 (for 2972 very severe respiratory confirmed 
covid cases: beta, 0.219; P = 0.021; for 6492 hospitalized 
cases: beta, 0.224; P = 0.001; for 1610 cases with respira-
tory failure: beta, 0.446; P = 0.006).

The underlying mechanisms by which hypertriglyceri-
demia worsens COVID-19 outcomes clinically and path-
ologically remain unclear. Although an MR study showed 
that genetically predicted lower counts of basophils and 
myeloid white blood cells had causal effects on COVID-
19 severity [47], an observational study found positive 
correlations of higher leukocyte counts and CRP with 
TGs in COVID-19 patients and suggested that hyper-
triglyceridemia might have a direct effect on COVID-19 
severity due to an enhanced inflammatory response [11]. 
In fact, studies suggested that hypertriglyceridemia could 
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promote inflammation through leukocyte activation [48], 
macrophage accumulation in several organs [49] and 
increased sensitivity to cytokine stimulation of aortic 
endothelial cells [50]. Moreover, an MR study indicated 
causal effects of cardiometabolic exposures, including 
BMI and TGs, on circulating proteins that might contrib-
ute to severe COVID-19 [51]. For example, univariable 
MR indicated that both BMI and TGs had causal effects 
on reducing immunoglobulin G (IgG), a class of anti-
bodies that help protect against infection. Nonetheless, 
multivariable MR indicated that BMI indirectly lowers 
IgG due to its influence on raising serum TG levels [51]. 
Therefore, we infer that hypertriglyceridemia may worsen 
COVID-19 at least partly through the direct causal effect 
of TGs on inflammatory responses.

There are several major limitations to be noted in 
the present MR study. First, our MR analyses estimat-
ing a causal effect of TGs on COVID-19 severity using 
the weighted median and weighted mode methods had 
directionally consistent results but no statistical signifi-
cance. Although so did other MR analyses [15, 37, 52], 
we must pay attention to possible horizontal pleiotropy 
and confounding. Therefore, we attempted to exclude 
possible pleiotropic effects by performing Phenoscanner 
searches. Previous MR studies have indicated that BMI is 
a risk factor for COVID-19 severity [14, 15, 37, 52], but 
CAD and diabetes are unlikely [14, 53]. Therefore, we 
excluded SNVs associated with BMI as well as inflam-
matory responses from the IVW method. Moreover, we 
conducted IVW multivariable MR analyses to eliminate 
the effect of Apo-B, LDL-C, or BMI traits. Regardless, 
we obtained results comparable to those of original IVW 
methods estimating causal effects of TGs on COVID-19 
hospitalization and/or severity. Although the multivari-
able MR results had only suggestive significance, Bonfer-
roni correction can be considered overly conservative, 
given the high correlation between lipid-related traits 
[13]. Therefore, it is suggested that hypertriglyceridemia 
increases risk of COVID-19 hospitalization and sever-
ity to some extent independently of the effects of BMI, 
inflammatory responses, and other atherogenic lipid-
related traits. Second, as described in the Methods sec-
tion and Additional file  1: Table  S1, our MR analyses 
estimating the causal effects of Apo-B and LDL-C on 
risk of COVID-19 might not possess sufficient statisti-
cal power to detect, if any existed, a weak association. 
Third, an observational study found a U-shaped associa-
tion between LDL-C and COVID-19 severity [54]. How-
ever, as two-sample MR analysis based on summary-level 
data assumes a linear relationship between exposure and 
outcome, we could not test for a nonlinear relationship 
between LDL-C and COVID-19 severity [38]. Fourth, 
our MR analysis was based on populations of European 

ancestry, and the findings are unlikely to be generalized 
to other populations. Fifth, the GWAS of lipid-related 
traits was conducted, including blood samples dur-
ing a non-fasting status that might affect serum lipid or 
lipoprotein levels [13, 55], which may have affected our 
causal estimate of TGs on the risks of COVID-19. None-
theless, the GWAS and MR study adjusted for fasting 
time led to negligible changes in the effect estimates of 
Apo-B, LDL-C, and TGs on a higher risk of CAD [13].

Conclusions
Our two-sample MR approach indicated the causal effect 
of higher serum TG levels on a higher risk of COVID-
19 severity in the European population using the most 
recent and largest GWAS datasets to date, suggesting 
that hypertriglyceridemia is a risk factor for COVID-19 
severity. However, as the underlying mechanisms remain 
unclear and our MR study might be biased due to pos-
sible horizontal pleiotropy, further studies are warranted 
to validate our MR findings and investigate underlying 
mechanisms.
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