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Integrative multi‑omics identifies high 
risk multiple myeloma subgroup associated 
with significant DNA loss and dysregulated DNA 
repair and cell cycle pathways
María Ortiz‑Estévez1†  , Fadi Towfic2†  , Erin Flynt3, Nicholas Stong3  , In Sock Jang2  , Kai Wang2, 
Matthew W. B. Trotter1 and Anjan Thakurta3* 

Abstract 

Background:  Despite significant therapeutic advances in improving lives of multiple myeloma (MM) patients, it 
remains mostly incurable, with patients ultimately becoming refractory to therapies. MM is a genetically heterogene‑
ous disease and therapeutic resistance is driven by a complex interplay of disease pathobiology and mechanisms of 
drug resistance. We applied a multi-omics strategy using tumor-derived gene expression, single nucleotide variant, 
copy number variant, and structural variant profiles to investigate molecular subgroups in 514 newly diagnosed MM 
(NDMM) samples and identified 12 molecularly defined MM subgroups (MDMS1-12) with distinct genomic and tran‑
scriptomic features.

Results:  Our integrative approach let us identify NDMM subgroups with transversal profiles to previously described 
ones, based on single data types, which shows the impact of this approach for disease stratification. One key novel 
subgroup is our MDMS8, associated with poor clinical outcome [median overall survival, 38 months (global log-rank 
p-value < 1 × 10−6)], which uniquely presents a broad genomic loss (> 9% of entire genome, t-test p value < 1e−5) 
driving dysregulation of various transcriptional programs affecting DNA repair and cell cycle/mitotic processes. This 
subgroup was validated on multiple independent datasets, and a master regulator analyses identified transcription 
factors controlling MDMS8 transcriptomic profile, including CKS1B and PRKDC among others, which are regulators of 
the DNA repair and cell cycle pathways.

Conclusion:  Using multi-omics unsupervised clustering we were able to discover a new high-risk multiple myeloma 
patient segment. This high-risk group presents diverse previously known genetic markers, but also a new character‑
istic defined by accumulation of genomic loss which seems to drive transcriptional dysregulation of cell cycle, DNA 
repair and DNA damage. Finally, our work identified various master regulators, including E2F2 and CKS1B as the genes 
controlling these key biological pathways.
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Introduction
Multiple Myeloma (MM) patients have complex genetic 
heterogeneity in the tumor that includes structural vari-
ants (SVs) such as immunoglobulin heavy chain (IgH) 
translocations, single nucleotide variants (SNVs) in 
oncogenes and tumor suppressor genes, and genomic/
chromosomal copy number variants (CNVs), as well as 
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transcriptomic changes [1, 2]. A comprehensive molecu-
lar classification of the disease based on all these types of 
data may shed light into how the combinations of these 
genetic and transcriptomic features define or contrib-
ute to intra-tumoral heterogeneity, therapeutic response 
and/or resistance and eventual relapse.

The MM community has devoted significant effort 
toward identifying molecular genetic features to diag-
nose MM patients, especially focused on patients with 
poor prognosis. For this reason, they have relied upon 
supervised analyses to identify molecular features asso-
ciated with poor clinical outcome that may not neces-
sarily identify biological sub-types of disease, nor be the 
features driving aggressive biology of the tumor. Various 
signatures have been previously proposed to identify 
high-risk patients, including UAMS70/80/17 [3], EMC92 
[4], IFM15 [5], chromosome instability signature [6], cen-
trosome index signature [7] and proliferation index [8]. 
Some of these signatures were combined with disease 
stages [9] or expression of long intergenic non-coding 
RNAs [10] to improve their prognostic utility. Recently, 
we identified high-risk disease subgroups based on DNA 
features combining amp1q (CNV = 4 or more) plus Inter-
national Staging System 3 (ISS) or biallelic inactivation 
of TP53 (deletion and mutation) [11]; and clonal status 
of del17p (high-risk del17p) [12]. To date, some genomic 
biomarkers including del17p, gain1q, t(4;14) or t(14;16), 
and mutations in TP53, in combination with clinical 
characteristics have been used in the clinic or clinical tri-
als for prognosis [13, 14].

Previous efforts to stratify MM based on gene expres-
sion (GE) data identified 7 molecular subgroups with 
distinct transcriptomic profiles [15–17]. Some of these 
subgroups were linked to genomic abnormalities (includ-
ing translocations (SVs) or hyperdiploidy (HY)), while 
others such as the proliferative group (PR) apparently 
was driven mainly by transcriptional pathways [15]. More 
recently, Laganà et  al. identified gene modules, which 
were subsequently associated with genomic and clinical 
features [17]. Mutational signatures that are independ-
ent of previously defined prognostic markers have also 
been used to stratify MM patients [18] and stratification 
of MM patients based on CNVs has demonstrated some 
association with outcome [19].

Integrative clustering analyses across multiple data 
types from large, well annotated datasets, have iden-
tified novel biological subgroups in solid tumors and 
acute myeloid leukemia [20–23]; showing the impact of 
data integration in disease stratification. Such an analy-
sis, however, is yet to be reported in MM. As part of the 
Myeloma Genome Project (MGP) [19], here we present a 
large-scale multi-omics analysis of newly diagnosed MM 
(NDMM).

Our work identified 12 disease subgroups using an 
integrative multi-omics approach combining GE, SV, 
CNV, and SNV features (Fig. 1A), where clinical covari-
ates, such as outcome data, were not included to define 
genomic subgroups independently from known clini-
cal features. We further explored the molecular features 
and clinical associations of the 12 biological subsets and 
focused on a subgroup (MDMS8) which showed the 
worst prognosis across the entire patient cohort (Fig. 1B). 
MDMS8 main characteristic is a significant (> 8%) 
genomic loss associated with dysregulated DNA repair 
and cell cycle/mitotic related transcriptional programs. 
The integrative nature of MDMS8 comes up on its trans-
versal profile to specific known biomarkers of high risk 
(including 1q amplification, del17p and t(4;14) (Fig. 2 and 
Additional file 1: Figs. S4 and S5A-E), and to patient sub-
groups previously defined based only on gene expression 
[such as the proliferative, the MMSET and the MAF sub-
groups (15–17)] (Fig.  6). Master regulator analysis [24, 
25] identified 7 genes controlling MDMS8 transcriptional 
program, including E2F2, CKS1B and PRKDC, which 
seem to control dysregulation of DNA repair and cell 
cycle pathways putatively for sustaining the genome loss. 
We further validated MDMS8 in independent NDMM 
and relapsed/refractory MM (RRMM) datasets demon-
strating the reproducible persistence and prevalence of 
this segment across patient cohorts.

Results
Integrative clustering analysis identifies twelve 
molecularly defined disease subgroups in myeloma
We analyzed genomic and transcriptomic data from 
514 NDMM patients enrolled in the Multiple Mye-
loma Research Foundation (MMRF) CoMMpass study 
(NCT0145429, version IA17). The subset of the samples 
selected was based on the intersection of the various 
datasets (GE, CNVs, SNVs, SVs and clinical information), 
and patient characteristics are presented in Additional 
file  1: Table  S1. Demographics, clinical data, treatment 
information and data processing steps have been pub-
lished previously [11, 19].

Two alternative multi-omics integrative analysis meth-
ods were applied to the complete dataset: iCluster + [26] 
and Cluster of Clusters Analysis (COCA) [27]. Each 
clustering method was run one thousand times with re-
sampling of features and samples to ensure robustness 
(Additional file 1: Fig. S1). While iCluster + defines clus-
ters based on integrated, simultaneous analysis across the 
data types; COCA uses a two-step analysis, first cluster-
ing on each single data type and then grouping the results 
into a final set of clusters. Results of the two clustering 
methods overlapped but were not identical (Additional 
file  1: Table  S2). In our dataset, iCluster + identified 12 



Page 3 of 14Ortiz‑Estévez et al. BMC Medical Genomics          (2021) 14:295 	

NDMM Patients

Multi-omics Unsupervised 
Clustering

Tumor 
Molecular 
Profiling

Gene Expression
Transloca�ons

Muta�ons

Copy Number Variants

M
aster R

egulators

1qAmp, del17p, t(4;14), t(14;16) & 
Genomic Loss

Dysregula�on of 
Signaling Pathways

MDMS8 is HR 

12 Molecularly Defined Myeloma Segments 
(MDMS1-12)

M
asterR

egulators MDMS8

OTHERS

Latent Variable Space

MDMS8 Molecular Characteristics

t(4;14)
t(11;14)
t(14;16)

1p21.1
1q21.3

3q26.2

5q33.2

7p14.1

8p21.2

9q34.3

11q23.3

13q14.3

14q32.33
15q25.1
16q24.1
17p13.1

19p13.3

21q22.3

Gene Expression Single Nucleo�de VariantsCopy Number Variants

CCND1
CDKN1B
DIS3
FAM46C
FGFR3
IRF4
MAF
MAX
NCOR1
NFKBIA
NRAS
KRAS
PRKD2
RB1
TGDS
TRAF2
TRAF3
UBR5
TP53
IDH1
IDH2
BRAF
MYC
KLHL6
PTPN11
HUWE1

Black   – mutated
White  – wild-type

Red      – gain (CNV >= 3)
White  – wild-type
Blue     – dele�on (CNV < 2)

2

1

0

-1

-2

A

B

Fig. 1  Twelve multiple myeloma subgroups identified by integrative clustering. A Figure representing a visual summary of the work presented 
in the paper. From NDMM molecular profiles to identification of HR patient segment by multi-omics unsupervised clustering and its main 
characteristics including genomic loss, master regulators and DNA repair and cell cycle dysregulation. B Heatmap showing molecular characteristics 
of the molecularly defined myeloma subgroups (MDMS 1-12): Left panel shows copy number variants with structural variants added as tracks 
above; middle panel shows gene expression (top 30 over-expressed genes per MDMS without replication); and right panel shows single nucleotide 
variants (black band denotes mutation, white band denotes wild-type sequence)
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subgroups (in > 40% of the iterations, followed by 11 clus-
ters selected < 30%) compared to 14 subgroups (> 30% 
of the iterations, followed by 12 clusters selected < 20%) 
identified by COCA. Consensus across iterations, defined 
by prevalence of same samples being clustered together, 
was higher in iCluster + (> 70% iCluster + vs < 65% 
COCA) thus, the iCluster + output was selected for fur-
ther analysis.

Twelve molecularly defined MM subgroups (MDMS) 
were identified by iCluster + (Additional file 1: File 2), 
with sizes ranging from 5 to 12% of the total cohort 
of 514 (Fig.  1B and Additional file  1: Fig. S2). These 
included six HY subgroups (MDMS1-6), character-
ized by gains (CNV = 3 or more) of chromosomes 3, 
5, 9, 15 and 19, and six non-HY subgroups (MDMS7-
12) (Figs. 1B and 2; Additional file 1: Table S3). Within 
the HY group, MDMS1-2-3 share several molecular 
characteristics, including gain of Chr11 (gain11) and 
over-expression of PAPD7. MDMS1 is differenti-
ated from MDMS3 and MDMS5 by deletion of 8p22.1 
(del8p22.1), mutation of RB1, over-expression of 
NSDHL and up-regulated cell cycle and checkpoints 
signaling pathways. MDMS2 shows a deep down-reg-
ulation of cell cycle related pathways, and this charac-
teristic is shared with MDMS6. MDMS3 is enriched 
in FAM46C and NRAS mutation and up-regulation of 
the interferon pathway. MDMS4 and MDMS5 have no 
gain of Chr11, but MDMS5 only is enriched in gain 
of Chr3 and has significant del13q and mutations in 

ARID2, EGR1 and NF1 genes. MDMS6 is defined by 
gain20q11, gain11q23.3, down-regulation of MED11, 
and down-regulation of DNA repair, cell cycle and 
checkpoints pathways (Figs. 1B and 2; Additional file 1: 
Table S3).

Among the non-HY subgroups, MDMS7, MDMS11 
and MDMS12 are significantly associated with t(11;14) 
(Figs. 1B and 2; Additional file 1: Table S3). MDMS7 is 
also enriched in gain19q13 and up-regulated interferon 
pathways. Both MDMS8 and MDMS9 have t(14;16) and 
t(4;14) patients, however, due to the low prevalence 
of t(14;16) patients in the study it does not appear to 
be the driver of any of these groups (Additional file 1: 
Fig. S3). MDMS8 is also significantly enriched in 
gain1q; del1p, del16q, del17p. In addition to t(14;16), 
MDMS9 shows a significant enrichment of gain1q, 
del13q14.3, del16q24.1, and mutations in ATM, DIS3, 
TP53 and TRAF3. MDMS10 is defined by del13q14.3 
and mutations in DIS3 and PRKD2; while also present-
ing the highest significant enrichment for t(4;14) and 
FGFR3 mutations compared to the other disease sub-
groups. The pattern of mutations in MDMS10 aligns 
with the activation of MEK/ERK signaling pathway 
[28]. MDMS11 presents down-regulation of interferon 
related pathways (in contrast to MDMS7) and reduced 
expression of FBXW2 and KIF4B. MDMS12, mainly 
driven by t(11;14), is also enriched in CCND1, IRF4 and 
NRAS mutations, over-expression of CCND1 and low 
expression of CCND2 (Figs. 1B and 2; Additional file 1: 
Table S3).

Fig. 2  Significant genomic, transcriptomic and clinical characteristics across disease subgroups. Enrichment scores [−log10 (fdr), Fisher exact t test 
(binary values) or t test (continuous values) p-values]. Red and blue colors represent positive and negative associations, respectively. Values were 
trimmed between (−3, 3). Dot size corresponds with level of significance
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Identification and validation of MDMS8
Survival analyses were performed to understand how the 
molecular disease subgroups relate to clinical outcome. 
Eleven of the disease subgroups share a progression-
free survival (PFS) and overall survival (OS) similar to 
standard risk patients (Fig.  3) [29]. In contrast, patients 
in MDMS8 display significantly poorer outcomes 
(median PFS, 19 months, log-rank p < 0.001; median OS, 
38  months, log-rank p < 1 × 10–6) (Fig.  3). MDMS8 has 

enrichment for ISS III patients (Fisher exact test p < 0.05) 
and biallelic TP53 (Fisher exact test p < 0.05) (Fig.  2, 
Additional file  1: Tables S3 and S4). Moreover, among 
patients in MDMS8 carrying previously described high-
risk markers in MM, including t(4;14), t(14;16), gain1q, 
del13q and del17p, both PFS and OS are significantly 
worse than among patients with similar genomic charac-
teristics in non-MDMS8 clusters (Fig. 4). Two multivari-
ate cox-regressions (one including clinical features and 

Fig. 3  Kaplan–Meier (KM) survival analysis of outcome among the disease subgroups MDMS 1-12. Progression-free survival (left) and overall 
survival (right) among patients in each of the 12 myeloma subgroups. Global log-rank p-value shown for each KM plot

Fig. 4  Kaplan–Meier (KM) survival analysis of genomic subgroups versus MDMS8. KM survival analysis showing overall survival (OS) of patients 
carrying one or more of the following genomic aberrations: [t(4;14), t(14;16), gain1q or del17p] versus the remaining patients (left); overall survival 
(OS) of patients with genomic aberrations [t(4;14), t(14;16), gain1q or del17p] in MDMS8 versus the same subset of patients in non-MDMS8 
subgroups (middle); and progression free survival (PFS) of patients with genomic aberrations [(t(4;14), t(14;16), gain1q or del17p] in MDMS8 versus 
the same subset of patients in non-MDMS8 subgroups
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MDMS8 and the other including cytogenetic features 
and MDMS8) showed MDMS8 is an independent prog-
nostic factor (Additional file  1: Fig. S4). Separate analy-
ses for each of these high-risk markers, showed similar 
results, suggesting the presence of a common biology 
across these different genomic groups in addition to their 
high-risk features contribute to overall clinical outcome 
(Additional file 1: Fig. S5A-E).

In MDMS8 patients, DNA repair/damage related 
genes, such as ARID2, apoptosis related BIRC2, TRAF1, 
TRAF2 [30, 31], and genes associated with CDK function, 
including MAX, RB1, and TP53 [32, 33], are significantly 
mutated. Differential GE analysis identified significant 
activation of genes controlling mitotic and DNA damage/
repair processes (CENPI, SKA1, NUF2, PLK1, AURKB, 
BIRC5 and BUB1), DNA synthesis (POLA1, PRIM1 
and PRIM2), and checkpoints (MCM/CDC/RFC gene 
families and CDK1/2)-all generally involved in cell cycle 
related pathways (Fig. 5A). A differential gene expression 
analysis comparing patients with shared genomic charac-
teristics (including t(4;14) or gain1q) in MDMS8 versus 
non-MDMS8 patients shows DNA repair, mitotic, check-
point and MYC pathways significantly up regulated in 
MDMS8 (Additional file 1: Fig. S4A-B).

The genomes of MDMS8 samples present an increased 
loss of genes on various chromosomes, including 1, 
13, 14, 16 and 17 on the p arm (Fig. 1 and top panel of 
Fig. 5B) compared to the other molecular subgroups. We 
calculated the number of genomic cytobands containing 
a deletion and the total amount of genomic deletion in all 
samples (measured by the extent of deletion as percent-
age of the whole genome), which showed a significantly 
increased number of genomic regions having a loss in 
MDMS8 (median > 8% of genomic loss (Methods)) com-
pared to the rest of the patients (median < 4% of genomic 
loss) (t-test p-value < 1e−6, bottom panel Fig. 5B). A gene 
set variant analysis (GSVA, see methods) on DNA dam-
age/repair pathways (including REACTOME and DNA 
Damage Response (DDR) pathways [34]) showed a sig-
nificant up-regulation of REACTOME DNA damage and 
repair pathways, as well as the DDR Homology-depend-
ent recombination (HDR), Translesion Synthesis (TLS) 
and Base Excision Repair pathways in MDMS8 compared 
to the other NDMM patients (Fig. 5C, Additional file 1: 
Fig. S6).

To explore the prevalence of MDMS8 in other MM 
datasets, we built a GE classifier on the discovery data, 
applied it to independent cohorts (including IFM [5] and 

Fig. 5  Genomic and gene expression characteristics of MDMS8. A Signaling pathway network showing significantly up-regulated pathways in 
MDMS8 compared to the rest of the disease subgroups. B Prevalence of deletions (negative Y-axis, blue) and gains (positive Y-axis, red) across the 
genome in MDMS8 (top panel). Percentage of genomic losses in MDMS8 vs the rest of NDMM patients (bottom panel). C Enrichment scores of the 
Reactome DNA repair pathway in MDMS8 vs the rest (left panel) and Homology-dependent Recombination (HDR) pathway in MDMS8 vs the rest 
(right panel)
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APEX [15, 35] (Additional file 1: Fig. 6A), and UAMS [17] 
(Fig.  6)), and explored prevalence and genomic proper-
ties (when available) of patients classified as ‘MDMS8-
like’ (Additional file 1: Fig. 6B). We generated a multiclass 

linear model classifier with lasso regression for feature 
selection based on gene expression, since it was the com-
mon datatype available across the datasets. The trained 
classifier comprised a linear model on the expression of 

*
Si

gn
ifi

ca
nt

 (F
ish

er
’s 

ex
ac

t t
es

t, 
p 

< 
0.

05
)

*
*

*

*
*

*

100

50

0

50

100
Chromosomes 1                      2                       3                   4                 5                6   7              8              9             10           11           12           13         14        15      16 17     18    19   20  21 22

Copy Number Varia�ons in MDMS8

De
le

�o
ns

   
   

  G
ai

ns

CN
V 

Pr
ev

al
en

ce

B)

Fig. 5  continued



Page 8 of 14Ortiz‑Estévez et al. BMC Medical Genomics          (2021) 14:295 

35 genes (Additional file  1: Table  S4). The training per-
formance of the classifier for MDMS8 has a recall ~ 80% 
and precision of 75% (where false positives were mostly 
patients from MDMS9 and MDMS10) (Additional file 1: 
Table  S5). Information on the training performance 
of the classifier for all clusters is shown in Additional 
file  1: Table  S5, with a median recall of 60% and preci-
sion of 64%; where most of the mis-classified calls hap-
pened between HY groups. Application of the classifier 
to the IFM dataset (Additional file 1: Table S3) identified 
a MDMS8-like group with similar prevalence (~ 12%) and 
significantly poorer OS (median OS not reached, long 
rank p < 1e−4) (left panel of Additional file 1: Fig. S7A). 
Importantly, the MDMS8-like group in IFM also pre-
sented the high rate of genomic loss (median genomic 
loss MDMS8-like > 8% and rest < 4%, Additional file  1: 
Fig. S7B), validating not only the gene expression profile 
but also the genomic features. We applied the classifier to 
the APEX trial Affymetrix-based GEP dataset (RRMM) 
[15, 35], where, again, there was a significant difference in 
OS observed between MDMS8-like versus other RRMM 
patients (right panel of Additional file  1: Fig. S7A). 

Prevalence of the MDMS8-like segment in the APEX 
trial was < 15%. This analysis demonstrates that MDMS8-
like segment is reproducible across multiple datasets and 
that its poor OS is independent of treatment regimen.

MDMS8 comparison to previously reported MM subgroups 
and high‑risk signatures and biomarkers
To place our analysis in the context of previous efforts, we 
explored similarities and differences between MDMS8 
and other MM subgroups identified using GE datasets by 
Zhan et al. [15] and Broyl et al. [16]. In Fig. 6 (and Addi-
tional file 1: Fig. S8) MDMS8 shows a significant enrich-
ment in the signature scores of the publicly described PR 
(proliferative), MS (MMSET) and MF (MAF) groups, 
which is coherent with MDMS8 since it contains t(4;14) 
patients (MS group), t(14;16) patients (MF group) and it 
shows dysregulation of cell cycle (PR group). Conversely, 
Zhan et  al. groups are associated with multiple MDMS 
clusters, suggesting no 1:1 association between the two 
clustering approaches. We also applied our classifier 
to the Zhan et  al. GEP discovery dataset and compared 
our cluster calls to theirs. This comparison, again, shows 

Fig. 6  Comparison of MDMS8 to other gene expression signatures. A gene expression enrichment of Zhan et al. GE patient subgroups signatures 
[15] across the twelve molecularly defined myeloma subgroups. Red represents positive enrichment; blue represents negative enrichment. Blue 
squares highlight significant association (enrichment scores t-test p < 0.01) between the Zhan et al. signatures and MDMS disease subgroups



Page 9 of 14Ortiz‑Estévez et al. BMC Medical Genomics          (2021) 14:295 	

commonalities among some of the groups, such as the 
HY (hiperdiploid) from Zhan et al. which contains most 
of our MDMS3 and MDMS5, while CD2 maps uniquely 
to MDMS12; but it also shows clear differences, includ-
ing MDMS4 (which from our genomics data is HY) 
which doesn’t associate to the previously defined HY 
group. Also, MF and MS groups are subdivided into vari-
ous MDMSs. Finally, MDMS8, presents a transversal pro-
file to the previously defined GEP subgroups (containing 
patients from MF, MS, MY and PR) suggesting the biol-
ogy of this group is more heterogeneous than what was 
previously described (Additional file 1: Table S6). While 
both attempts (Zhan et al. and ours) are unsupervised in 
nature, results show key differences between using GE 
only vs multi-omics integrative approach. Comparison of 
MDMS8 with the CNV clusters defined by Walker et al. 
[19] identifies significant enrichment of CN7 (charac-
terized by gain1q and del13q); however, the CN7 clus-
ter does not include all of the MDMS8 patients, notably 
excluding those with t(4;14).

UAMS70 [3] and EMC92 [4] high-risk MM classifi-
ers were applied to the discovery dataset to explore the 
overlap between patients deemed high-risk by these out-
come-based classifiers and MDMS8 patients. MDMS8 
captures a significant number of high-risk patients 
identified by both EMC92 (34%) and UAMS70 (40%). A 
third of MDMS8 patients, however, were not captured 
by these high-risk GE-classifiers (Additional file  1: Fig. 

S9). Discordance among these groups is not unexpected, 
given that the number of shared genes between UAMS70 
and EMC92 signatures is < 5%. Moreover, unlike the GE-
classifiers, the unsupervised approach used to identify 
MDMS8 was not based on clinical outcome.

Master regulators drive transcriptional phenotype 
in MDMS8
Finally, a master regulator (MR) analysis using msVIPER 
[36] was performed to elucidate the mechanisms link-
ing genomic alterations to the transcriptional profiles of 
MDMS8. The master regulator genes were selected on 
the basis of impact on transcriptional changes of their 
inferred downstream targets (regulons) using a context-
specific gene regulatory model [37]. Ten MRs were iden-
tified (Fig.  7 and Additional file  1: Fig. S10), with seven 
of them showing positive activation in MDMS8: E2F2, a 
transcription factor member of the e2f family; CKS1B, 
a protein kinase regulator located in 1q21; RBL1, which 
encodes a gene that is similar in sequence and possibly 
function to retinoblastoma 1 (RB1), significantly mutated 
in MDMS8; PRKDC, a protein kinase sensor for DNA 
damage incurred in DNA repair/recombination; RUSC1, 
related to the Trk receptor signaling mediated by the 
MAPK pathway; NUP93, described as tumor growth 
modulator via cell proliferation and actin cytoskeleton 
remodeling [38] and migration and invasion capac-
ity of cancer cells [39], and MSN, Moesin, described as 
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an unfavorable prognostic biomarker in various cancers 
[40–42]. Genes encoding the two zinc finger proteins 
(ZBTB40 and ZNF837) and the histone deacetylase 3 
(HDAC3) were down-regulated MRs (Additional file  1: 
Fig. S10).

An enrichment analysis based on the regulons of 
MDMS8 MR was performed to understand MDMS8 
biology and signaling functions controlled by these MRs. 
Most of the activated MRs control diverse biological pro-
cesses (Fig. 7) including ones related to mitosis, such as 
the E2F2 regulon, which contains the KIF family, and 
the CKS1B regulon with RAD21 and the MCM fam-
ily; or the MSN regulon, associated with Rho GTPases 
(switches that regulate the actin cytoskeleton, influence 
cell polarity, microtubule dynamics, membrane trans-
port pathways and transcription factor activity [43]). Cell 
cycle and DNA repair pathways in MDMS8 appear to be 
controlled by RBL1, NUP93 and PRKDC, although genes 
in the PRKDC regulon are involved also in spliceosome 
and RNA transport pathways, consistent with MDMS8 
biology. Regulons downstream of the negatively activated 
MRs were not significantly associated with any specific 
signaling pathways, although they contained previously 
defined tumor suppressor genes, such as KDM4A [44] 
and E2F4 [45]. Of the MRs, the specific roles of PRKDC 
and RBL1 and their regulons in DNA damage/repair 
would be consistent with supporting the maintenance of 
MDMS8 myeloma cell’s loss of genetic material.

Discussion
In this study, we describe molecular segmentation of 
NDMM by a joint modeling of multiple omics data types 
to identify common latent variables to group patient 
samples into biologically distinct disease subtypes. Our 
unsupervised analysis identifies twelve biological sub-
groups of MM, confirming hyperdiploidy-dependent 
and SV-dependent as the two predominant molecular 
subtypes of MM. Notably, we identified and replicated 
a new disease segment (MDMS8) that is enriched in 
diverse known high-risk genomic features, accompanied 
by various MM driver mutations and dysregulation of 
DNA damage and repair pathways and cell cycle/mitotic 
processes, alongside a genome loss, that had not been 
previously described in MM. Master regulator analyses 
identified potential drivers of the transcriptional pro-
gram pointing to key pathways in DNA repair, cell prolif-
eration, cell cycle progression and chromosomal stability 
and maintenance. PFS and OS are significantly inferior 
for patients in MDMS8 compared with patients in non-
MDMS8 subgroups, even when patients in both cohorts 
carry the same high-risk genomic biomarkers, includ-
ing 1q gain, del17p, t(4;14) and/or t(14;16). Our analysis 
shows for the first time that along with the different high 

risk markers (del17p, t(4;14), amp1q) in NDMM there is 
a common transcriptional program linked to the accu-
mulation of genome loss in a subset of those tumors. In 
our estimation, the identification of MDMS8 by the inte-
gration of multiple data-types enabled a transversal and 
improved molecular description of high risk MM biol-
ogy over previous GE-based or CN-based approaches. 
Not surprisingly, due to its association with poor clini-
cal outcome, MDMS8 contains a significant number of 
patients picked up by gene expression based high-risk 
classifiers, EMC92 [4] and UAMS70 [3]. Besides, our 
integrated clustering analyses separate t(4;14) MM sam-
ples into multiple disease subgroups, including MDMS10 
and MDMS8, all with high MMSET/NSD2 expression 
independent of the disease segment. The outcome and 
transcriptomic profile of MDMS8, however, are distinctly 
different from patients with t(4;14) in other disease sub-
groups, suggesting that overexpression of MMSET/NSD2 
per se does not play a direct role in high-risk biology as 
had been previously discussed in the literature. While 
additional work is needed to tease out the implications 
of such observations, taken together, our results suggest 
that an integrated analysis of multiple data types could 
effectively sort out the heterogeneity of t(4;14) myeloma.

Identification of MDMS8, and its genomic loss 
linked with the dysregulated transcriptional phenotype 
prompted our exploration of functional drivers. The 
mechanism of the genome loss or its association with 
high-risk genetic loci is not clear at this time. Gene set 
enrichment analysis however revealed the relation-
ship between MDMS8 transcription profiles with DNA 
repair/damage and cell cycle pathways, especially those 
directing the mitotic machinery and steps required 
for functional cell division. We envision that MDMS8 
cells have adaptive mechanisms to tolerate excess DNA 
damage. It is likely that these transcriptional pathways 
are critical for repairing DNA damage as a consequence 
of DNA replication or induced to relieve the stress of 
multiple steps of proper chromosomal segregation 
during mitosis. All 7 MRs whose activities are up-reg-
ulated in MDMS8 are essential genes in MM, control-
ling key biological functions required for DNA repair/
damage, cell cycle check points for G1/S and G2/M, 
MYC-driven growth and survival pathways and mitotic 
processes. This analysis provides a pool of proteins to 
potentially target the underlying biological basis of the 
aggressive nature of the disease. Similar approaches in 
other cancers [24] have suggested possible synthetic 
lethal relationships between MRs which could provide 
novel combination approaches for therapeutics devel-
opment in high-risk MM. These efforts could be com-
bined or complemented with targeting the dysregulated 
DNA damage repair pathways.
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In conclusion, this work presents an integrative clus-
tering-derived molecular classification of Multiple Mye-
loma using key genetic features with the transcriptome. 
We find a molecular segment enriched in extensive DNA 
loss, accompanied by upregulated DNA damage repair 
and cell cycle/mitotic pathways. This integrative analysis 
also illustrates that this type of approach could improve 
our understanding of the disease heterogeneity of Mul-
tiple Myeloma by studying the individual molecular seg-
ment such as MDMS8.

Methods
Data processing
Gene expression
RNA extraction, library preparation and sequencing for 
both MMRF CoMMpass and IFM/DFCI were previ-
ously described by Walker et al. [19] and https://​resea​rch.​
themm​rf.​org.

BAM to FastQ file conversion for MMRF CoMMpass cohort
Previously aligned BAM files were collected from data-
base of Genotypes and Phenotypes (dbGaP) and con-
verted to FASTQ using Picard tools v2.1.1 to extract read 
sequences and base quality scores.

Quantification
FASTQ files from both cohorts were quantified using 
Salmon. Isoform level expressions were quantified with 
Quasi-mapping using GRCh38 cDNA reference genome 
from Gencode v24. Gene level abundances were calcu-
lated using tximport and isoform level TPM (transcript 
per million) estimates for each sample.

Affymetrix gene expression
GE from GSE2658 dataset hybridized to Affymetrix 
HG-U133 Plus 2 microarray was obtained using the 
RMA algorithm in the aroma.affymetrix framework 
(https://​aroma-​proje​ct.​org/) based on a Brainarray refer-
ence file of the Ensembl 74 transcriptome to map probe 
IDs to gene symbols. Data for APEX trial was obtained 
from GSE9782 and the microarray used was Affymetrix 
UA133A/B array. Processing was based on MAS 5.0 nor-
malization and log2 of MAS 5.0 intensities were utilized 
for analysis. Gene symbol annotation from Bioconducto 
(hg133 version 3.2.3) was used to map probe IDs to gene 
symbols.

Scaling gene level expressions and selecting high variable 
genes
GE was normalized for each sample against three house-
keeping genes. 11 housekeeping genes [46] were origi-
nally tested and the top 3 genes with lowest standard 
deviation were selected. Geometric mean of these 3 

housekeeping genes (NONO, PGK1 and VPS29) was 
used to scale gene level expressions.

Calling copy number variants
Preprocessing for copy number analysis has been 
described previously Walker et  al. [19]. Genomic loss 
was calculated in each sample adding all the length of all 
the subgroups with a “loss” call from control-freec out-
put (including both homozygous and heterozygous dele-
tions). The final proportion of genomic loss is calculated 
per patient using size of genomic loss previously calcu-
lated over the genome size.

SNV data
SNVs were called and preprocessed as previously 
described [19]. After preprocessing, only missense muta-
tions that were observed in ≥ 3% of the patients were kept 
for further analysis.

SV data
SVs were called and preprocessed as previously described 
[19]. Lowly prevalent SVs might be under-represented in 
our dataset due to size limitations.

Clustering
Two different clustering algorithms iCluster + [26] and 
the Cluster of Clusters Algorithm (COCA) by the Cancer 
Genome Atlas Research Network [27] that integrate mul-
tiple OMICs data types with different approaches were 
run with a range of parameters to identify the combina-
tion which produced the most robust and stable clus-
ters across our dataset. The number of clusters ranged 
between 2 and 20, and the optimal solution was selected 
based on Bayesian Information Criteria (BIC). Mem-
bership consistency across iterations was used to select 
iCluster + as the final clustering approach. More infor-
mation can be found in the Additional file 2.

Biomarker analysis
Differential gene expression
Voom-LIMMA was run for GE analysis, using linear 
models to assess differential expression in the context 
of multifactor designed experiments [47]. It was imple-
mented in the limma package for Bioconductor (http://​
www.​bioco​nduct​or.​org) and applied to test differential 
relative abundance between conditions for each clus-
ter independently. Significance p-values were corrected 
for multiple testing by the false-discovery method and 
deemed significant at an FDR threshold of 0.05 (5%) [48].

Pathway analysis
Gene-set enrichment analysis (GSEA [49]) was 
applied to rank relative abundance ratios obtained 

https://research.themmrf.org
https://research.themmrf.org
https://aroma-project.org/
http://www.bioconductor.org
http://www.bioconductor.org
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during differential analysis for each comparison. 
Weighted enrichment statistic calculations were used 
instead of the classic unweighted ranking to account for 
fold change differences in addition to protein ranking. 
Gene categories assessed for enrichment corresponded 
to the canonical pathway collection (e.g. Reactome, Bio-
carta, KEGG) obtained from the MSigDB database (file: 
c2.cp.v5.2.symbols [50]). Enrichment p-values were cor-
rected for multiple testing by FDR.

Signature enrichment analysis
GSVA r package was used to calculate enrichment 
analysis of the various signatures. For UAMS70 [3] and 
EMC92 analysis, thresholds were refined to RNAseq data 
to select respectively 15% and 20% of the population with 
the highest scores.

Identification of master regulators
Master regulator analysis was performed using the msVI-
PER algorithm in the VIPER R package. More informa-
tion can be found in the Additional file 2.

Classifier
We utilized the glmnet package in CRAN (https://​cran.r-​
proje​ct.​org/​web/​packa​ges/​glmnet/​index.​html) to esti-
mate a multinomial elastic net modelregression model 
with cross validation. The features were selected by esti-
mating models with 100 nfolds on the top 3813 genes by 
coefficient of variance across all datasets. 42 genes identi-
fied across the cross-validation iterations were included 
in the final model. In order to make all the MM datasets 
comparable, they were normalized together with voom/
limma and dataset bias was removed with Combat R 
function [51]. Finally, all datasets were scaled indepen-
dently by genes to median = 0 and standard variation = 1.

Statistical analyses
Various statistical tests from the stats v3.5.3 R [52] CRAN 
package were used to check significance of the associa-
tion of the subgroups to different variables. Fisher’s exact 
test for binary data (mutations/CNVs), t-test for continu-
ous variables (GE pathway scores), and global log-rank 
test for outcome (PFS/OS).
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