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Abstract 

Background:  DNA methylation (DNAm) age metrics have been widely accepted as an epigenetic biomarker for bio‑
logical aging and disease. The purpose of this study is to assess whether or not individuals carrying Lynch Syndrome-
associated mutations are affected in their rate of biological aging, as measured by the epigenetic clock.

Methods:  Genome-wide bisulfite DNA sequencing data were generated using DNA from CD4 + T-cells obtained 
from peripheral blood using 27 patient samples from Lynch syndrome families. Horvath’s DNAm age model based on 
penalized linear regression was applied to estimate DNAm age from patient samples with distinct clinical and genetic 
characteristics to investigate cancer mutation-related aging effects.

Results:  Both Lynch mutation carriers and controls exhibited high variability in their estimated DNAm age, but 
regression analysis showed steeper slope for the Lynch mutation carriers. Remarkably, six Lynch Syndrome-associated 
mutation carriers showed a strong correlation to the control group, and two sisters carrying Lynch Syndrome-associ‑
ated mutations, with no significant difference in lifestyle and similar chronological age, were assigned very different 
DNAm age.

Conclusions:  Future studies will be required to explore, in larger patient populations, whether specific epigenetic 
age acceleration is predictive of time-to-cancer development, treatment response, and survival. Epigenetic clock 
DNAm metrics may be affected by the presence of cancer mutations in the germline, and thus show promise of 
potential clinical utility for stratified surveillance strategies based on the relative risk for imminent emergence of 
tumor lesions in otherwise healthy Lynch Syndrome-associated mutation carriers.
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Background
The most important risk factor for chronic disease, can-
cer, and death is chronological age [1], and it acts as a 
barometer for the various biological changes that occur 
over the life course [2]. DNA methylation (DNAm) plays 
an important role in transcription control and alters con-
sistently with age [3]. Horvath and collaborators define a 
DNA methylation clock (DNAm clock) as a set of CpGs 
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whose methylation status is used with a regression algo-
rithm to estimate the biological age of a DNA sample 
obtained from an individual [4]. Current views regarding 
the significance of epigenetic clock metrics suggest that 
DNAm clocks capture aging-related epigenetic modifi-
cations that are widespread and indicative of genomic, 
cell biology, and tissue changes that occur throughout 
life. These molecular changes could lead to a more pre-
cise and high-resolution knowledge of age-related dis-
ease and physiology, according to a recent review by Bell 
et  al., 2019 [5]. Patients with HIV infection and Down 
syndrome have been found to have accelerated DNAm 
aging [3]. In addition, a large body of literature has iden-
tified DNAm as one of the key mechanisms underlying 
the association between aging and cancer [6, 7], show-
ing epigenetic age acceleration might represent an early 
event in the development of cancerous cells and could be 
utilized to predict cancer risk and cancer incidence [8].

Several DNAm clocks have been proposed in the lit-
erature [4, 5]. These predictors are trained on data from 
different platforms and tissues, hence some variability 
between their predictions has been reported [5]. The 
clock reported by Hannum et al. [9] relied on 71 CpGs 
from the Illumina 450  K array, using DNA obtained 
from human peripheral blood samples. Horvath et  al. 
proposed a “pan-tissue” DNAm clock [10] comprised 
of a subset of 353 CpGs present in the Illumina 27  k 
array. Recently, DNAm clocks have been proposed that 
are trained on age-related and disease phenotypes, 
such as the “PhenoAge” DNA methylation clock [4] or 
the “Grim Age” clock [11]. While these clocks lead to 
a stronger prediction on lifespan and healthspan, they 
are not solely based on methylation signals but require 
more information such as age-related biochemical 
measures or smoking related habits [11].

Hereditary nonpolyposis colorectal cancer (HNPCC), 
also known as Lynch syndrome, represents around 5% 
of colorectal cancers (CRC) and, it is transmitted in an 
autosomal dominant manner. Carriers of the different 
Lynch Syndrome-associated mutations in DNA mis-
match repair (MMR) genes (MLH1, MSH2, MSH6, and 
PMS2 [12]) have a significantly higher risk of develop-
ing colorectal cancer in first-degree. Moreover, these 
patients also have a higher risk of developing other 
tumor types, as endometrial adenocarcinoma, affect-
ing at least to one female relative in 50% of Lynch syn-
drome pedigrees, stomach, small intestine, liver, biliary 
tract, brain, and ovary cancers, as well as transition 
cell carcinoma in ureters and renal pelvis. The average 
age of CRC detection in carriers of any of these muta-
tions is in the mid 40 s to early 50 s, in contrast to the 
60  years average age of onset for other sporadic CRC 
patients [13].

Colonoscopic and gynecological monitoring is recom-
mended for patients with a germinal mutation in MMR 
genes [14, 15]. Healthy carriers of Lynch Syndrome-asso-
ciated mutations are subject to a psychological burden by 
the knowledge that a cancer lesion is likely to emerge at 
any time. Physicians monitoring the health of these indi-
viduals need reliable metrics of imminent cancer risk to 
be able to prioritize care for the most severely affected 
individuals. Here we show data suggesting that DNA 
methylation metrics in general, and the epigenetic clock 
in particular, may be of utility in monitoring imminent 
cancer risk in healthy carriers of Lynch Syndrome-asso-
ciated mutations.

Methods
Patients
18 Lynch syndrome patients without tumor and nine 
healthy relatives from 13 different families (shown in 

Table 1  Sample ID, sex, Lynch-associated mutation and age 
at diagnosis for the 27 participants of the 13 different families 
involved in the study

Sample Sex Mutation Age at 
diagnosis

Family

HC1 Female Negative 24 Fam1 (MSH6)

HC2 Male MSH6 21

HC3 Female MSH6 51 Fam2 (MSH6)

HC4 Female MSH6 52

HC5 Female Negative 57

HC7 Female Negative 50

HC8 Male MSH6 40 Fam3 (MSH6)

HC9 Female MSH6 38

HC11 Male MLH1 43 Fam4 (MLH1)

VN1 Female MSH6 36 Fam5 (MSH6)

VN2 Male MSH6 40

VN3 Female Negative 30

VN4 Male Negative 39

VN10 Female MSH6 41

VN6 Female MLH1 34 Fam6 (MLH1)

VN8 Female Negative 33

VN9 Female Negative 28

VN7 Male PMS2 29 Fam7 (PMS2)

M2 Female Negative 64 Fam8

M3 Male MSH2 55 Fam9 (MSH2)

M6 Female Negative 34 Fam10 (MCH1)

M7 Male MCH1 30

M8 Male MLH1 42 Fam11 (MLH1)

M9 Female MLH1 44

M10 Male MLH1 37 Fam12 (MLH1)

M11 Female MLH1 32

M12 Female MSH2 44 Fam13 (MSH2)
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Table 1) provide peripheral blood samples for isolation of 
CD4 + cells. All patients with documented mutations in 
our study are members of large “Lynch family” cohorts. 
In each of these Lynch families known relatives have died 
from CRC caused by Lynch syndrome-associated muta-
tions. The CRC tumors in affected family members con-
tained germline mutations and displayed microsatellite 
instability, indicating that the Lynch syndrome-associ-
ated mutations are pathogenic. Samples were obtained 
from the Hospital Universitario San Cecilio (Granada, 
Spain), Hospital Virgen de las Nieves (Granada, Spain) 
and Hospital Regional Universitario Carlos Haya (Mál-
aga, Spain). Participants provided written consent in 
accordance with the procedures of the Declaration of 
Helsinki and the institutional and national guidelines.

Library synthesis
Peripheral blood mononuclear cells were obtained 
from patient blood samples by ficoll-hypaque (GE 
Healthcare) gradient. Dynabeads® CD4 Positive Iso-
lation Kit (Thermo Fisher Scientific, MA, USA) was 
used to separate CD4 + cells. Genomic DNA was iso-
lated from CD4 + cells using DNeasy Mini Kit (Qiagen, 
Carlsbad, CA). All protocols were made according to 

manufacturer’s procedures. Libraries were generated 
using the SureSelectXT Human Methyl-Seq (Agilent) 
Targeted Enrichment Kit (Agilent Technologies, Santa 
Clara, CA). Combining the SureSelectXT system and 
bisulfite conversion, studying 80  Mb and covering over 
3.7 million CpGs. Samples were processed following the 
recommended Methyl‐Seq protocol Version B, January 
2013. The samples target sequences were bisulfite con-
verted using the EZ DNA Methylation‐Gold kit (Zymo 
Research) as described in the Methyl‐Seq protocol.

DNA methylome sequencing
Indexed and pooled libraries were sent to the CNAG-
CRG Sequencing Unit in Barcelona, Spain for DNA 
sequencing. Sequencing was performed on the Illumina 
HiSeq2000 instrument (100 bp paired‐end reads, 40 mil-
lion reads per sample, representing 50X to 80X coverage). 
The sequencing reads were processed at CNAG-CGR in 
Barcelona and provided to us as fastq files.

Computational analysis of methylation data
The computational analysis of the data is depicted in 
Fig.  1. First, the raw reads underwent a quality control 
analysis with FastQC (https://​github.​com/s-​andre​ws/​

Fig. 1  Analysis pipeline

https://github.com/s-andrews/FastQC
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FastQC). Second, we used Bismark [16] for BS-Seq align-
ment and computing the methylation ratios for all the 
CpG sites in the Agilent SureSelectMethylKit. Results 
of the alignment showed an average coverage of 61X 
(std ± 25) for the different samples. Horvath’s methylation 
age computation is based on the methylation beta values 
of 353 CpGs included in the Illumina450K arrays [4]. This 
estimation is computed as a linear combination of the 
beta values of these 353 CpGs using the coefficients for 
each CpG provided by the authors. After mapping these 
coordinates from Genome build 36 to Genome build 37 
and use samtools to intersect Agilent SureSelectMethyl-
Kit target CpG sites with Horvath’s methylation age sig-
nature, we got a total of 317 CpG coordinates. Therefore, 
36 CpGs from Horvaths’ methylation age signature could 
not be considered. With the remaining 317 CpGs meth-
ylation values, we computed Horvath’s methylation age 
using the R code distributed by the authors [4].

A linear regression was carried out separately for Lynch 
and Control samples using the values of age and esti-
mated methylation with function lm in R [17].

Results
In the present study, we compiled peripheral blood 
DNA methylation data, generated using target enrich-
ment and bisulfite DNA sequencing. Target enrichment 
was performed using the Methyl-Seq Analysis Platform 
(Agilent kit, see Methods). The study cohort consisted 
of 18 subjects who had previously confirmed clinical 
and molecular diagnoses of Lynch syndrome (caused by 
germline mutation in one of the MMR genes, MLH1, 
MSH2, MSH6, or PMS2), and 9 family relatives without 
the mutation. All patients were healthy and had no clini-
cal evidence of Lynch syndrome associated tumors at the 
date of peripheral blood extraction (Table 1).

For the 27 samples, we computed the DNAm clock by 
Horvath et  al. [4] and compared the obtained methyla-
tion age (mAge) to the chronological age. The correlation 
between mAge and Age (Fig. 2) was higher for the Lynch 
Syndrome-associated mutation carriers group (Multi-
ple R2 0.27, p value = 0.026) than for the control group 
(Multiple R2 0.23, p value = 0.182). Both groups exhib-
ited high variability in their estimated mAge. R2 values 
are below 30%, indicating that more variables are needed 
(apart from chronological age) to explain the variance 
of mAge. However, there are some striking cases which 
draw our attention in these preliminary results. One of 
these examples are samples HC3 and HC4, members of 
the same family (sisters). HC3, a carrier of a Lynch Syn-
drome-associated mutation does not correlate with the 
regression line for Lynch syndrome-associated mutation 
carriers, but with the regression line for control cases. 
The computed DNAm age for HC3 was 33% lower than 

the corresponding chronological age (DNAm age of 
33.75 and chronological age of 51). This result is surpris-
ing, since HC4 is only 1  year older than HC3 (52  years 
old, at the date of the study). It is unfortunate that we do 
not have potentially relevant clinical data for each patient 
regarding differences in lifestyle (cigarette smoking, oral 
contraceptives, etc.). Regarding relevant clinical vari-
ables affecting the two sisters we do know the time of the 
endocrine disruption produced by hysterectomy. While 
HC3 was hysterectomized 5 years before the date of the 
study, HC4 was hysterectomized 20 years earlier, with a 
potential influence of time of surgery on epigenetic age. It 
is also striking that six cases which are carriers of Lynch 
syndrome-associated mutations (M10, HC8, VN2, VN10, 
M9, and HC3) have DNAm metrics that fall within the 
95% confidence interval for the regression line of the nine 
“normal” cases that are not mutation carriers. One possi-
ble interpretation that could explain the “normal” DNAm 
metrics of these six cases is that in these individuals the 
loss of the remaining functional allele in somatic cells of 
the colon epithelium has not yet occurred, and micros-
atellite instability is not yet prevalent in epithelial cells. 
To further evaluate this possible interpretation, we note 
that among these six individuals, four are carriers of the 
MSH6 mutation, for which the time of onset of CRC is 
known to be delayed by approximately nine years, com-
pared to MLH1 and MSH2 mutation carriers [18]. The 
other two cases are carriers of the MLH1 mutation, and 
are 37 and 44 years old, respectively. The data in the Ryan 
et al. study [18] showed that approximately 50% of MLH1 
mutation carriers develop CRC tumors after the age of 
46, therefore it is possible that DNAm metrics for these 
two individuals reflect their excellent health status, medi-
ated by a delay in the onset of mismatch repair defects 
and microsatellite instability. In Fig. 3 we show a modi-
fied DNAm scatter plot of all 27 cases, in which we have 
excluded the six mutation-carrying outliers (highlighted 
in green) from the linear regression analysis of the Lynch 
mutation carriers. The slope of the regression line for the 
12 remaining mutation carriers (highlighted in red) is 
now steeper, possibly reflecting the deteriorating health 
status and acceleration of the epigenetic clock in the sub-
set of mutation carriers for whom microsatellite instabil-
ity and a high mutational burden are already prevalent in 
colonic tissues.

Discussion
The data obtained in this study shows that the major-
ity of individuals carrying Lynch syndrome-associated 
mutations display an acceleration of the epigenetic 
clock, as defined by the Horvath CpG methylation met-
rics. However, six out of 18 individuals with genetically 
documented mutations did not show acceleration of the 

https://github.com/s-andrews/FastQC
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epigenetic clock, suggesting that for these cases there has 
been a delay in the onset of the Lynch syndrome disease 
process.

Physicians monitoring the health of individuals known 
to be carriers of Lynch mutations need reliable metrics 
of relative cancer risk to be able to assess and prioritize 
care according to the likelihood of the imminent appear-
ance of a cancer lesion. Here we show data indicating that 
DNA methylation metrics may be able to stratify carri-
ers and non-carriers on the basis of the rate of biological 

aging as defined by the epigenetic clock. With follow-up 
studies involving a larger number of subjects, it may be 
possible to refine these biomarkers of the biological aging 
process, so they can be of utility in monitoring imminent 
cancer risk in healthy carriers of Lynch Syndrome-asso-
ciated mutations. When fully developed, these DNAm 
biomarkers could be of potential clinical utility for strati-
fied surveillance strategies that will facilitate cancer pre-
vention in Lynch syndrome patients. Prospective studies, 
where the biological age based on the epigenetic clock is 

Fig. 2  Scatterplot with the estimated methylation age (DNAmAge), against chronological age (Age) of the cases. Patients with Lynch 
Syndrome-associated mutations are colored in red. The nine cases negative for mutations are highlighted in blue. Regression lines for Lynch/control 
cases are depicted in red/blue, respectively, with 95% confidence intervals in dark grey. Multiple R2 value for the blue regression line is 0.23 (p value: 
0.18). Multiple R2 value for the red regression line is 0.27 (p value: 0.026)



Page 6 of 7Cuadros et al. BMC Medical Genomics           (2022) 15:45 

measured every year until cancers actually appear in cer-
tain individuals have potential to reveal additional corre-
lations or insights, such as the possibility of accelerated 
biological aging just before the time of tumor emergence.

We note that our study has certain limitations relating 
to statistical significance, due to the small sample size of 
the patient population. In addition, the clinical annota-
tion of the subjects who participated in the study suffers 

from lack of data relating to nutrition habits and lifestyle 
choices, such as contraceptives, alcohol consumption, 
smoking, etc. These limitations could be addressed by 
performing studies with larger numbers of Lynch syn-
drome patients, and also by collecting samples from the 
same individuals every year in order to generate longitu-
dinal data sets.

Fig. 3  Scatterplot with the estimated methylation age (DNAmAge), against chronological age (Age) of the cases. Patients with Lynch 
Syndrome-associated mutations are colored in red, except for six patients (colored in green) whose metrics fall within the 95% confidence interval 
(grey area) of the regression line for the control cases and out of the 95% confidence interval of the regression line for Lynch cases. Cases negative 
for mutations are highlighted in blue. Regression lines for Lynch/control patients are depicted in red/blue, respectively, but the six Lynch cases 
highlighted in green are not included in the regression analysis plots. Multiple R2 value for the blue regression line is 0.23 (p value: 0.18). Multiple R2 
value for the red regression line is 0.54 (p value: 0.006)
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Conclusions
Epigenetic clock DNAm metrics may be affected by the 
presence of cancer mutations in the germline, and thus 
show promise of potential clinical utility for assessment 
of relative risk related to imminent emergence of tumor 
lesions in otherwise healthy Lynch Syndrome-associated 
mutation carriers.

Abbreviations
DNAm: DNA methylation; DNAm clock: DNA methylation clock; HNPCC: 
Hereditary nonpolyposis colorectal cancer; CCR​: Colorectal cancer; MMR: 
Mismatch repair.

Acknowledgements
This work has been carried out as part of Projects CAIXA2017/1 of “la Caixa” 
Foundation, and DPI2017-84439-R of MINECO, Madrid and FEDERand A-BIO-
470-UGR20 of University of Granada and FEDER.

Authors’ contributions
MC, CC, AB, AG and PL, Conceptualization; CC, Data curation; CC and PL, 
Formal analysis; MC, CC, AB, AG and PL Funding acquisition; MC, JLM, APA, FRC, 
SP, GD, MB, MDBO, PM and TP, Investigation; MC, CC, AB, PL, PM and AG, Meth‑
odology; AB and PL, Project administration; MC, CC, AB and PL, Resources; CC 
and MSB, Software; MC, CC, AB and PL, Supervision; CC Validation; CC, MSB, 
AB and PL, Visualization; MC, CC, AB and PL, Writing—original draft; CC, PL, AB, 
MSB and SGR, Writing—review and editing. All authors have read and agreed 
to the published version of the manuscript.

Funding
The research leading to these results has received funding from “la Caixa” 
Foundation (Ref: CAIXA2017/1) for library preparation, sequencing, and 
employment of research personnel, from The Fundación Progreso y Salud, 
Junta de Andalucía, Spain and from DPI2017-84439-R of MINECO, Madrid 
and FEDER for sequencing and employment of research personnel. Finally, 
grant ref. A-BIO-470-UGR20 from University of Granada and FEDER has funded 
article processing charges (APC) and sample processing expenses.

Availability of data and materials
Bisulfite-Seq data are available at NCBI BioProject and Sequence Read Archive 
with Accession Number: PRJNA804259. http://​www.​ncbi.​nlm.​nih.​gov/​biopr​
oject/​804259, https://​www.​ncbi.​nlm.​nih.​gov/​Traces/​study/?​acc=​PRJNA​
804259.

Declarations

Ethics approval and consent to participate
The research protocol referenced in this manuscript abided by Declara‑
tion of Helsinki and the institutional and national guidelines and has been 
approved by the Ethics Committee “Comité Ético de Investigación” (CEI/CEIm) 
of Granada, member of the Ethics Committee of the Andalusian Public Health 
Service (“Sistema Sanitario Público de Andalucía”). This authorization, together 
with the written informed consent obtained from all subjects involved in the 
study, allowed our team to access the clinical/personal patient data used in 
this research.

Consent for publication
Written informed consent was obtained from the patients for publication of 
this paper.

Competing interests
The authors declare no conflict of interest.

Author details
1 Department of Biochemistry and Molecular Biology III and Immunology, Fac‑
ulty of Medicine, University of Granada, Av. de la Investigación 11, 18007 Gra‑
nada, Spain. 2 Department of Computer Science and Artificial Intelligence, 

University of Granada, Granada, Spain. 3 Hospital Universitario San Cecilio, Gra‑
nada, Spain. 4 Hospital Virgen de Las Nieves, Granada, Spain. 5 Hospital Regional 
Universitario Carlos Haya, Málaga, Spain. 6 Hospital Costa del Sol, Marbella, 
Spain. 7 Instituto de Parasitología y Biomedicina LopezNeyra - CSIC, Granada, 
Spain. 8 GENYO, Centre for Genomics and Oncological Research, Pfizer/Univer‑
sity of Granada/Andalusian Regional Government, Av. de la Ilustración 114, 
18007 Granada, Spain. 9 Health Research Institute of Granada (Ibis.Granada), 
Av. Fuerzas Armadas 2, 18014 Granada, Spain. 10 Department of Biochemistry 
and Molecular Biology I, Faculty of Sciences, University of Granada, Av. de 
Fuente Nueva S/N, 18071 Granada, Spain. 

Received: 18 June 2021   Accepted: 15 February 2022

References
	1.	 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. Ca Cancer J Clin. 

2018;68(1):7–30.
	2.	 Risques RA, Kennedy S. Aging and the rise of somatic cancer-associated 

mutations in normal tissues. PLoS Genet. 2018;14(1):e1007108.
	3.	 Petkovich DA, Podolskiy D, Lobanov AV, Lee S-G, Miller RA, Gladyshev VN. 

Using DNA methylation profiling to evaluate biological age and longevity 
interventions. Cell Metab. 2017;25(4):954-960.eb.

	4.	 Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic 
clock theory of ageing. Nat Rev Genet. 2018;19(6):371–84.

	5.	 Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, et al. DNA meth‑
ylation aging clocks: challenges and recommendations. Genome Biol. 
2019;20:249.

	6.	 López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks 
of aging. Cell. 2013;153(6):1194–217.

	7.	 Aunan JR, Cho WC, Soreide K. The biology of aging and cáncer: a brief 
overview of shared and divergent molecular Hallmarks. Aging Dis. 
2017;8(5):628–42.

	8.	 Perna L, Zhang Y, Mons U, Holleczek B, Saum KU, Brenner H. Epigenetic age 
acceleration predict cáncer, cardiovascular, and all-cause mortality in a Ger‑
man case cohort. Clin Epigenet. 2016;8:64.

	9.	 Hanumm G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-
wide methylation profiles reveal quantitative views of human aging rates. 
Mol Cell. 2013;49(2):359–67.

	10.	 Horvath S. DNA methylation age of human tissues and cell types. Genome 
Biol. 2013;14(10):R115.

	11.	 Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation 
GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 
2019;11(12):303–27.

	12.	 Lynch HT, Snyder CL, Shaw TG, Heinen CD, Hitchins M. Milestones of Lynch 
syndrome: 1895–2015. Nat Rev Cancer. 2015;15(3):181–94.

	13.	 Jasperson KW, Vu TM, Schwab AL, Neklason DW, Rodriguez-Bigas MA, Burt 
R, et al. Evaluating Lynch syndrome in very early onset colorectal cancer 
probands without apparent polyposis. Fam Cancer. 2010;9(2):99–107.

	14.	 Syngal S, Brand RE, Chruch JM, Giardiello FM, Hampel HL, Burt JM. ACG clini‑
cal guideline: genetic testing and management of hereditary gastrointesti‑
nal cancer syndromes. Am J Gastroenterol. 2015;110(2):223–63.

	15.	 Crosbie EJ, Ryan NAJ, Arends MJ, Bosse T, Burn J, Cornes JM, et al. The 
Manchester International Consensus Group recommendations for the 
management of gynecological cancers in Lynch syndrome. Genet Med. 
2019;21(10):2390–2340.

	16.	 Krueger F, Andrews SR. Bismark: A flexible aligner and methylation caller for 
Bisulfite-Seq applications. Bioinformatics. 2011;27(10):1571–2.

	17.	 Chambers JM. Linear models. In: Chambers JM, Hastie TJ (eds) Chapter 4 
of statistical models in S. Wadsworth & Brooks/Cole, Pacific Grove, 1992;pp 
95–146

	18.	 Ryan NAJ, Morris J, Green K, Lalloo F, Woodward EA, Hill J, Crosbie EJ, Evans 
G. Association of mismatch repair mutation with age at Cancer onset in 
Lynch syndrome; Implications for stratified surveillance strategies. JAMA 
Oncol. 2017;3(12):1702–6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

http://www.ncbi.nlm.nih.gov/bioproject/804259
http://www.ncbi.nlm.nih.gov/bioproject/804259
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA804259
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA804259

	Acceleration of the DNA methylation clock among lynch syndrome-associated mutation carriers
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Patients
	Library synthesis
	DNA methylome sequencing
	Computational analysis of methylation data

	Results
	Discussion
	Conclusions
	Acknowledgements
	References


