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Abstract 

Background:  Clinical use of genotype data requires high positive predictive value (PPV) and thorough understand-
ing of the genotyping platform characteristics. BeadChip arrays, such as the Global Screening Array (GSA), potentially 
offer a high-throughput, low-cost clinical screen for known variants. We hypothesize that quality assessment and 
comparison to whole-genome sequence and benchmark data establish the analytical validity of GSA genotyping.

Methods:  To test this hypothesis, we selected 263 samples from Coriell, generated GSA genotypes in triplicate, 
generated whole genome sequence (rWGS) genotypes, assessed the quality of each set of genotypes, and compared 
each set of genotypes to each other and to the 1000 Genomes Phase 3 (1KG) genotypes, a performance benchmark. 
For 59 genes (MAP59), we also performed theoretical and empirical evaluation of variants deemed medically action-
able predispositions.

Results:  Quality analyses detected sample contamination and increased assay failure along the chip margins. Com-
parison to benchmark data demonstrated that > 82% of the GSA assays had a PPV of 1. GSA assays targeting transi-
tions, genomic regions of high complexity, and common variants performed better than those targeting transver-
sions, regions of low complexity, and rare variants. Comparison of GSA data to rWGS and 1KG data showed > 99% 
performance across all measured parameters. Consistent with predictions from prior studies, the GSA detection of 
variation within the MAP59 genes was 3/261.

Conclusion:  We establish the analytical validity of GSA assays using quality analytics and comparison to benchmark 
and rWGS data. GSA assays meet the standards of a clinical screen although assays interrogating rare variants, trans-
versions, and variants within low-complexity regions require careful evaluation.
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Background
Clinical genotyping requires assays with high positive 
predictive value (PPV) and minimal error [1]. The impact 
of genotyping error has been observed for variant asso-
ciation tests [2], sibling-pair analyses [3], and variant and 
genotype interpretation [4]. Genotyping errors occur 
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when the observed genotype does not correspond to an 
individual’s true genotype [5]. Such errors arise from 
multiple factors including, but not limited to, biases in 
modeling algorithms [6], sample and technical batch 
effects [7], paralogous genomic regions [8], sample con-
tamination [9], allele frequency differences on genotyp-
ing platforms [10], and DNA sample quality [11].

Several methods have been developed to detect and 
minimize genotyping errors. These include the quality 
control (QC) metrics of genotype call rate [12, 13] and 
sample contamination detection [14]. Additional meth-
ods include assessing departure from Hardy–Weinberg 
Equilibrium (HWE) [15–17], information content for 
each chromosome before and after removal of SNPs with 
high linkage disequilibrium (LD) [18], likelihood of error 
[19], departure from expected Mendelian inheritance [4], 
and pedigree information [20].

QC of genotype data minimizes the likelihood of 
errors [11, 21, 22]. Estimating true genotypes and 
detecting errors require well-characterized benchmark 
datasets such as those described for bioinformatic geno-
typing pipelines [23], quality control algorithms [24], and 
sequencing platforms [25–27]. Additionally, theoretical 
benchmark datasets are needed for analysis of genotype 
data and estimating genotyping error [28]. Compared to 
NGS [26, 29, 30], genotyping via DNA hybridization has 
distinct, well described genotyping and platform biases 
[10, 31, 32].

Clinical genotyping using DNA hybridization, e.g., the 
Global Screening Array (GSA), requires a comprehen-
sive analytical framework to detect and limit error. Based 
on current research methodologies, we propose analyti-
cal validation of GSA genotyping by assessment of qual-
ity metrics and by comparison to truth sets: those of the 
1000 Genomes Phase 3 (1KG), the National Institute of 
Standards and Technology (NIST), and the Genome in a 
Bottle Consortium (GiAB). To test this, we selected 263 
Coriell DNA samples (Additional file 1: Table S1) and, for 
each sample, generated whole genome sequence (rWGS) 
at > 37× read depth and GSA genotypes in triplicate. 
These data were compared to each other and to the cor-
responding publicly available truth sets. Additionally, we 
characterized each GSA assay performance and biases 
by stratifying GSA assays according to allele frequency, 
nucleotide variant class, low-complexity regions, medi-
cally actionable variants, and other genomic features.

Methods
Aim and design of study
This study defines an analytical validation framework 
for detecting and limiting genotyping error in GSA data 
(Fig. 1). To minimize platform specific genotyping biases, 
internally generated genotype data from independent 

platforms were paired and compared with publicly avail-
able genotype datasets.

Samples and datasets
To generate a reference genotype cluster file for the 
GSA, 664 DNA samples were purchased from the Cori-
ell Institute for Medical Research, Camden, NJ (https://​
www.​corie​ll.​org) and 460 samples were selected from 
the Sanford Biobank. Individuals with biobank samples 
were enrolled in protocol number 03-11-061 approved by 
the Sanford Research Institutional Review Board. These 
samples were selected to cover different ethnicities (14 
Coriell diversity panels, Additional file  1: Table  S2) and 
the technical variability of the DNA extraction methods 
(460 samples from the Sanford Biobank). To capture the 
technical variability of the Infinium® HTS Assay protocol 
(Illumina Inc.), all samples were genotyped in triplicate 
(by different technicians, robot-instrument configura-
tions, reagent lots, and days) using the Infinium Global 
Screening Array-24 v.1.0 BeadChip. The resulting data 
were loaded into GenomeStudio v2.0.2 and used to gen-
erate the genotype cluster files per manufacturer recom-
mendations (https://​www.​illum​ina.​com/​Docum​ents/​
produ​cts/​techn​otes/​techn​ote_​infin​ium_​genot​yping_​
data_​analy​sis.​pdf ). Of the 1104 samples used in clus-
ter file generation 72 were also included among the 263 
samples used to define analytical validity (Supplemen-
tary Sects.  “Methods” and “Aim and design of study”). 
Two hundred sixty-three DNA samples from Coriell 
were selected as representative of individuals from the 
1000 Genomes Project Consortium (n = 258) and from 
the Genome in a Bottle Consortium (GiAB) [33] (n = 5) 
(Additional file  1: Table  S1). Additionally, they were 
selected to assess assays genotyping alleles with ≥ 1% 
minor allele frequency (MAF) in the general population 
(Additional file 1 Table S3). These 263 DNA samples were 
resequenced with whole genome sequencing (rWGS) and 
genotyped in triplicate (263 × 3) with the GSA. These 
data were compared to 1KG and to publicly available 
Whole Genome Sequence (pWGS) data (1KG phase 3; 
downloaded: June 2018). This defined 4 genotype data-
sets for the 263 samples: (i) triplicate GSA genotypes 
(ii) pWGS, (iii) rWGS, and (iv) 1KG (Additional file  1: 
Table  S4, Fig. S2, Sect. S3). All analyses including map-
ping, alignment, and genotyping were performed using 
HumanG1Kv37 (Genome Reference Consortium Human 
build 37).

Data generation
Illumina Infinium GSA
Illumina’s GSA—24 v1.0 BeadChips (24-sample format) 
were processed following the standard Infinium High-
throughput Screening (HTS) protocol using the Freedom 

https://www.coriell.org
https://www.coriell.org
https://www.illumina.com/Documents/products/technotes/technote_infinium_genotyping_data_analysis.pdf
https://www.illumina.com/Documents/products/technotes/technote_infinium_genotyping_data_analysis.pdf
https://www.illumina.com/Documents/products/technotes/technote_infinium_genotyping_data_analysis.pdf


Page 3 of 17Cherukuri et al. BMC Medical Genomics           (2022) 15:56 	

EVO® platform (Tecan) and AutoLoader 2.x (Illumina, 
Inc.). Raw intensity data for each bead on a BeadChip 
were collected using the iScan® System (Illumina, Inc.) 

and saved as intensity files. The intensity files were con-
verted to genotypes by the AutoConvert feature in the 
iScan Control software using the GenCall algorithm and 

Fig. 1  A flow-diagram showing the analytical validation framework for detecting and limiting genotyping error in BeadChip array data
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the Illumina GSA manifest file. The normalized geno-
type data were saved as binary files and used as input 
for GenomeStudio v2.0.2 to generate preliminary Qual-
ity Control (QC) parameters (CallRate, p10GC), B-allele 
frequency files, log-likelihood files, and Variant Call For-
mat (VCF) files (https://​samto​ols.​github.​io/​hts-​specs/​
VCFv4.1.​pdf ). Genotypes were called relative to Human-
G1Kv37 using gtc_to_vcf.py (v1.1.1) (https://​github.​com/​
Illum​ina/​GTCto​VCF). Alleles matching the reference 
allele were encoded as ‘0’, first alternate allele as ‘1’, sec-
ond alternate allele as ‘2’, and third alternate allele as ‘3’. 
The allelic combinations for genotypes were encoded as 
0/0, 0/1, 1/1, 0/2, etc. for a total of 10 possible genotypes. 
All possible genotypes and their comparisons are shown 
in Table 1.

Whole genome sequencing (rWGS)
The 263 DNA validation samples purchased from Cori-
ell (Additional file 1: Table S1) were sequenced using the 
Illumina HiSeqX by Genome.One (Sydney, Australia). 
rWGS produced an average of 731 million 150 bp paired-
end reads to give an average of 37× depth of coverage 
(range: 32× –42×) across HumanG1Kv37 (Additional 
file  1: Tables S4, S5, S6 and S7). Fastq were transferred 
to GenomeNext (http://​genom​enext.​com) and processed 

using the Churchill pipeline [34]. QC data and geno-
types were saved as VCF, genomic VCF (gVCF), and 
binary alignment (BAM) files. In total, 22.3 TB of rWGS 
data were archived on Amazon Web Services Storage 3 
(AWS S3). 262 rWGS BAM files (all sequence data) were 
submitted to NCBI SRA database and are publicly avail-
able (https://​www.​ncbi.​nlm.​nih.​gov/​sra/; BioProject: 
PRJNA792997. Additional file 1: Sect. S8).

Data processing
GSA quality control (QC)
Laboratory QC  Genotype clusters for the variants used 
for clinical reporting were manually curated to ensure 
accurate variant calling. Other variants were auto-
matically curated using Illumina-recommended filters 
(https://​www.​illum​ina.​com/​Docum​ents/​produ​cts/​techn​
otes/​techn​ote_​infin​ium_​genot​yping_​data_​analy​sis.​pdf ). 
Using the data of DNA samples from 1104 individuals run 
on the GSA in triplicate, the cluster file analyses of each 
GSA assay found that 610,771 (92%) assays passed and 
50,355 (8%) assays failed clustering quality control. Those 
that failed were excluded and marked as no-calls (./.) in 
the VCF files.

Table 1  Definition of genotypes and comparison of test and truth sets to each other

tp true positive, fp false positive, tn true negative, fn false negative, x other discordant genotypes, na no data, f false genotype, t true genotype

https://samtools.github.io/hts-specs/VCFv4.1.pdf
https://samtools.github.io/hts-specs/VCFv4.1.pdf
https://github.com/Illumina/GTCtoVCF
https://github.com/Illumina/GTCtoVCF
http://genomenext.com
https://www.ncbi.nlm.nih.gov/sra/
https://www.illumina.com/Documents/products/technotes/technote_infinium_genotyping_data_analysis.pdf
https://www.illumina.com/Documents/products/technotes/technote_infinium_genotyping_data_analysis.pdf
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Bioinformatics QC  The GSA data (n = 263 × 3 rep-
licates) were stratified by the  BeadChip  identifier and 
the sample location on the BeadChip (row, column) and 
grouped by sample replicate. For each sample, the 610,771 
assays that passed cluster file QC were used to evalu-
ate the following parameters: (i) genotype call rate, (ii) 
p10GC, and (iii) estimated sample contamination. Sample 
contamination was estimated according to the method 
of Jun, G. and colleagues (Jun et al. 2012) (Methodology 
in Additional file 1: Sect. S5). Aggregate QC analyses are 
shown in Fig. 2. Replicated GSA data for 262 samples (in 

triplicate) were deposited to the dbSNP database (Addi-
tional file 1: Sect. S8).

Data comparisons
Principal component analysis
Principal component analysis (PCA) was used to test 
for intact super-population structure as a corollary for 
absence of batch and technical artifacts in the genotyp-
ing datasets. PCA structure derived from GSA data was 
compared to the super-population structure derived 
from 1KG data.

Fig. 2  Aggregate quality control analysis of the GSA data. A Principal Component Analysis (PCA) plots of 1KG data and GSA genotype data. red: 
African (AFR), yellow-green: Admixed Americans (AMR), dark-green: East Asian (EAS), blue: European (EUR), purple: South Asian (SAS). B Heatmaps 
of BeadChip array quality control analysis of call-rate (left), p10GC (middle), and estimated DNA contamination (right). Color gradient scales for the 
three panels are as follows: call-rate (orange < 0.94–blue > 0.99), p10GC (yellow < 0.50–blue > 0.60) and estimated DNA contamination (rainbow 
gradient: purple ~ 1%, blue ~ 2%, green ~ 3%, orange/red ~ >4%). C Heatmaps of reproducibility quality control analysis using replicate data as 
measured by call rate, estimated DNA contamination, number of assays with no genotype calls, and heterozygote to homozygote ratio. Color 
gradient scales for these four heatmaps are as follows: No genotype calls (blue < 166,000–orange > 400,000), and rainbow gradient for call rate 
(purple > 0.99–red < 0.94), estimated DNA contamination (purple < 1%–red > 4%), and heterozygote/homozygote ratio (purple > 2.25–red < 1.25), 
respectively
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Whole genome sequence data quality control (QC)
Bioinformatics QC
For bioinformatics quality control of rWGS data 
(n = 263), central tendency and anomalous outlier data 
points were assessed for (i) total processed reads, (ii) dis-
cordant reads, (iii) mapq0 reads, (iv) unmapped reads, 
(v) mapped reads, and (vi) average depth of sequencing 
(Additional file  1: Tables S4 and S5). On average > 95% 
of processed reads per sample (731,227,993/767,540,183 
reads) mapped to the reference sequence. Because the 
concordance of two rWGS datasets (HG00111 and 
HG00257) with the 1KG data were 0.870 and 0.622, they 
were dropped from our GSA analyses leaving a total of 
261 samples in the rWGS dataset. Variation data for 260 
samples (SNVs and short indels ≥ 20× coverage and a 
Phred score ≥ 30) were submitted to the dbSNP database 
(Additional file 1: Sect. S8).

Performance metrics
Genotype concordance, sensitivity, specificity and positive 
predictive value (PPV)
GSA and rWGS genotypes were compared to each other 
and to 1KG genotypes using the following performance 
metrics: (i) genotype concordance (C), (ii) sensitivity 
(S), (iii) specificity (P), and (iv) positive predictive value 
(PPV). We used the following definitions of genotype 
classification to label genotypes as positive [true positive 
(tp), false positive (fp)], negative [true negative (tn), false 
negative (fn)], or discordant (x) (Table 1):

Given the above definitions of true/false positive and 
negative and discordant genotypes (Table  1), we com-
puted the performance metrics as follows:

Genotype concordance (C)

Sensitivity (S)

(1)a =

∑

tp

(2)b =

∑

fp

(3)c =
∑

tn

(4)d =

∑

fn

(5)z =
∑

x

(6)C =

(

a+ c

a+ b+ c + d + z

)

Specificity (P)

Positive predictive value (PPV)

Classification of GSA assays
Variation type
GSA assays were stratified according to variant classes: 
single nucleotide variants (SNVs; 656,601), multi-allelic 
variants (MAVs; 616), deletions (DEL; 2799), and inser-
tions (INS; 1110).

Nucleotide change class  By parsing the VCF files and 
cataloging the alternate nucleotide, SNVs were stratified 
by whether the nucleotide change was a transition or a 
transversion.

Allele frequency  SNVs were binned into 13 strata based 
on the alternate allele frequency reported in the 1KG VCF 
file (allele frequency × 100): (a) [0–0.1%], (b) (0.1–1%], 
(c) (1–5%], (d) (5–10%], (e) (10–20%], (f ) (20–30%], (g) 
(30–40%], (h) (40–50%], (i) (50–60%], (j) (60–70%], (k) 
(70–80%], (l) (80–90%], and (m) (90–100%].

Genomic complexity of  variation locus (low‑complexity 
regions)  To categorize SNVs based on the genomic com-
plexity of the GSA assay locus, we used the UCSC genome 
browser bed-file definitions to define simple-repeats, 
micro-satellite regions, and low-complexity regions. The 
SimpRep, Microsatellites, and RepeatMasker bedfiles 
were downloaded from the UCSC Genome Browser FTP 
site and intersected with the GSA manifest file. Across the 
HumanG1Kv37 reference sequence, there were 962,715 
simple repeat, 41,573 microsatellite, and 5,298,131 
RepeatMasker regions.

GSA panels
Medically actionable predispositions (MAP) 59 gene panel
GSA assays targeting potentially disease-associated var-
iants in MAP59 genes [35] were selected in a multistep 
process (Table 2). Firstly, GSA assays that interrogated 
positions within 1000-bases upstream and downstream 
of the transcript start and end in HumanG1Kv37 were 
selected for the RefSeq transcript chosen for each gene. 
Secondly, alleles were annotated with their respective 

(7)S =

(

a

a+ d

)

(8)P =

(

c

c + b

)

(9)PPV =

(

a

a+ b

)
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ClinVar classifications, and those that had at least one 
classification of pathogenic or likely pathogenic were 
selected. Thirdly, these assays were curated by clinical 
and laboratory staff to define a managed variant list 
(MVL) of 1883 assays appropriate for clinical reporting.

Statistics and compute infrastructure
Statistical analyses and data visualization were per-
formed using R (version 3.4.3). Data analysis was done on 
a Linux Operating System with the following configura-
tion: x86_64, 32 CPUs, 2.8 GHz AMD Opteron Proces-
sor 6320. AWS EC2 instances were spun-up for large 
compute jobs. All NGS and GSA data were archived on 
AWS S3. In-house software and data processing code 
and scripts were written primarily in Perl, Ruby, awk, and 
bash.

Results
Data summary
DNA samples from 263 individuals were purchased from 
Coriell and genotyped in triplicate (n = 789) with the 
GSA. Genotypes and data for each replicate were saved 
to a VCF file. The GSA data were grouped and summa-
rized as replicate datasets 1, 2, and 3. Of the 263 samples, 
258 were present in the 1KG. Of the other 5 samples, 3 
were from the Personal Genomes Project (PGP) [36], and 
2 were from the NIGMS Human Genetic Cell Reposi-
tory. The 263 × 3 data were compared with the 1KG data 

and with two WGS datasets, the resequenced WGS data 
(n = 261; rWGS = 37×) and the downloaded public WGS 
data (n = 24; pWGS = 51×) (Additional file 1: Sect. S3).

Principal component analysis defines the same population 
structure in GSA data and 1KG data
Principal component analysis (PCA) on each replicate of 
autosomal GSA data identified 5 major super populations 
conserved across replicates. PCA of the 1KG autosomal 
genotype data from the same loci generated a similar 
population structure (Fig.  2A). This suggested that the 
GSA data did not have confounding technical factors 
skewing the PCA plot. To determine if fewer GSA geno-
types were sufficient for this test, we randomly sub-sam-
pled close to 10,000 genotypes; these recapitulated the 
population structure (Additional file 1: Sect. S4).

GSA triplicate data analysis shows data reproducibility 
in the majority of samples and no detectable stochastic QC 
failure
Given that PCA did not detect major technical con-
founders within the GSA genotypes, we analyzed the 
263 × 3 data for quality and reproducibility [10] (Table 3; 
Fig. 3). Data were stratified by BeadChip identifiers and 
sample location on the BeadChip (row, column). Addi-
tionally, samples were grouped by replicates, and each 
replicate sample was evaluated for (i) genotype call-
rate (n = 610,771 assays), (ii) p10GC, and (iii) estimated 
DNA sample contamination (Additional file 1: Sect. S5). 
Aggregate quality control analysis showed a lower p10GC 
in higher numbered rows on the BeadChip (Fig.  2B); 
excluding contaminated samples, p10GC ranged from 
0.56–0.61 (mean = 0.60,  SD = 0.0085) in row 1 and from 
0.50–0.61 (mean = 0.55, SD = 0.03) in row 12. Over 99% 
(782/789) of samples had a call rate of > 0.98. 3 samples 
in the third replicate dataset were contaminated, and 2 
of these 3 samples had a call rate < 0.98 (0.93 and 0.94, 
Fig. 2C).

To test if call-rates were reproducible across repli-
cates, we measured deviations from expectation and 
dispersion. The first approach, a Z-score method, com-
putes the number of standard deviations a replicate 

Table 2  Selection process for GSA assays targeting genotypes 
considered medically actionable predispositions

HGMD Human Gene Mutation Database, Path pathogenic, MVL Managed Variant 
List

GSA MAP59 subsets Number 
of assays

GSA MAP59 (+ / − 1 kb) 6841

GSA MAP59 (select: “ClinVar” AND “Predicted Path”) 5075

GSA MAP59 (select: “ClinVar” AND “Predicted Path” AND 
“HGMD”)

3082

GSA MAP59 MVL (select: “ClinVar” AND “Predicted Path” AND 
“HGMD” AND “Curated”)

1883

Table 3  Summary of GSA triplicate data and average number of genotypes detected in all triplicate samples

ªWe define the alternate genotype as a genotype different from  homozygous reference sequence genotype

Replicate 1 Replicate 2 Replicate 3 All data

Total genotypes called 609,852 (± 1625) 609,723 (± 2548) 609,648 (± 3501) 609,741 (± 2668)

Missing genotypes 919 (± 1625) 1048 (± 2548) 1122 (± 3501) 1030 (± 2668)

Autosomal genotypes 599,666 (± 1619) 599,538 (± 2538) 599,467 (± 3459) 599,557 (± 2645)

Autosomal heterozygous genotypes 103,328 (± 4061) 103,221 (± 4063) 103,309 (± 4087) 103,286 (± 4066)

Autosomal homozygous alternate genotypesª 60,652 (± 3081) 60,643 (± 3098) 60,623 (± 3081) 60,639 (± 3083)
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sample call-rate is from the expected as defined by the 
global dataset average and standard deviation. The sec-
ond approach computes the average call-rate of all rep-
licates for a given sample and then computes variation 
around the average. Using the Z-score method, 7 sam-
ples had a Z-score ≤  − 4. With a more conservative 
cut-off (Z-score < −3), 11 samples deviated from expec-
tation (Additional file  1: Sect. S6; Fig. S12). When ana-
lyzed relative to the BeadChip row and column, outlier 
Z-scores occurred for wells on the edge of the Illumina 
BeadChip—R12C01 or R11C01; the only exceptions were 
two contaminated samples that were in wells R01C01 

and R01C02. Dispersion metrics calculated for call rates 
across each set of three replicates (Table  4) identified 
higher relative dispersion for the same samples detected 
by the Z-score method.

Replicate pairwise concordance was calculated to 
assess the stochastic nature of sample genotyping qual-
ity and these were plotted as a 3D scatter-plot: [R1 vs. R2 
(x-axis), R2 vs. R3 (y-axis), and R1 vs. R3 (z-axis)] (Fig. 3). 
The data along the diagonal of the cube are correlated 
data values across triplicates for all measured GSA geno-
types for a given DNA sample. 260 of 263 samples in the 
triplicate dataset (262/263 R1 vs. R2; 260/263 R2 vs. R3; 
261/263 R1 vs. R3) had concordance greater than 0.999 
between replicates suggesting high reproducibility. Off-
diagonal points, i.e., those with poor call rates (< 0.98) 
(Fig. 2B), were along the edge of Illumina chip or contam-
inated; we did not observe random occurrence of poor 
call rates.

Grouping GSA assays by variation type shows that SNVs 
have > 0.99 performance relative to the benchmark dataset 
1KG across all metrics
Of the 263 samples with GSA data, 258 had correspond-
ing 1KG genotype data for computing performance 
metrics of concordance, sensitivity, specificity, and PPV. 
Each GSA assay was grouped according to the type of 
nucleotide change assessed: (a) single nucleotide vari-
ant (SNV), (b) multi-allelic variant (MAV), (c) insertion, 
and (d) deletion (Table  5). SNVs accounted for 99.3% 
(656,601/661,126); 610,771 of these passed cluster file 
quality control, and 594,361 detected genotypes pre-
sent in the 1KG. Among the MAV assays, 526 of 616 
passed cluster file QC; however, because only 3 of these 
had genotypes present in the 1KG, we excluded MAVs 
from further analysis. Among insertion assays, 1044 of 
1110 passed cluster file QC, and 36 of these had geno-
types present in the 1KG. Among deletion assays 2677 of 
2799 assays passed cluster file QC, and 95 of these had 
genotypes present in the1KG. Using the three replicate 

Fig. 3  Three-dimensional scatterplot showing reproducibility of 
GSA call rate measured in three replicates for each Coriell sample 
(pairwise analysis of triplicate data). The data is plotted as correlation 
across triplicates for all measured GSA genotypes for a given DNA 
sample. Note that most samples had concordance greater than 
0.999 between replicates suggesting high reproducibility. A few 
samples had off-diagonal points, i.e., those with poor call rates or 
reproducibility. The color rainbow gradient is from blue (< 0.996) to 
dark red (1.00)

Table 4  Dispersion data paired with Z-score data

Sample R1 call rate R2 call rate R3 call rate Average Z-score detected 
replicate

Dispersion (call rate) Estimated 
contamination

NA20351 0.9987 0.9544 0.9989 0.984 R2 0.000447 2.75

NA19475 0.9793 0.9856 0.9961 0.987 R1 0.000048 2.5

NA19472 0.9986 0.9993 0.9451 0.981 R3 0.000659 3.75

NA19390 0.9918 0.9706 0.9989 0.987 R2 0.000146 2.5

NA18861 0.9991 0.9707 0.9817 0.984 R2 0.000139 2.5

NA18508 0.9987 0.9988 0.9318 0.976 R3 0.001021 4

HG03279 0.9793 0.9878 0.9967 0.988 R1 0.000051 2.5

NA19466 0.9989 0.9988 0.9971 0.998 – 0.000001 4.25 (R3)
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GSA genotype datasets, the performance metrics of SNV 
assays were > 0.99. In contrast, insertion assays had highly 
variable concordance with the 1KG, and deletion assays 
had poor performance metrics (Fig. 4A).

GSA assays for transitions perform better than do those 
for transversions
Classifying the GSA-detected SNVs as transitions 
(purine-to-purine OR pyrimidine-to-pyrimidine) or 
transversions (purine-to-pyrimidine or vice versa) iden-
tified 522,938 (79.6%) assays for transitions and 133,663 
(20.4%) for transversions. 476,908 (91.2%) transition 

assays and 117,322 (87.8%) transversion assays passed 
cluster file QC and had genotypes present in the 1KG.

Assays for transitions performed better than those for 
transversions across all performance metrics. Overall 
concordance, sensitivity, specificity and positive predic-
tive value for transitions versus transversions were 0.9985 
vs. 0.9965, 0.9982 vs. 0.9965, 0.9994 vs. 0.9985 and 0.998 
vs. 0.996, respectively (Fig. 4B). The assays for transver-
sions between complementary nucleotides (i.e., A>T, 
T>A, C>G, G>C; Additional file  1: Sect. S7) had lower 
sensitivity (< 0.99) and lower cluster file QC pass rate 
(66–73%; Table 6) than did those for other transversions.

Table 5  Summary of GSA assays subgrouped by nucleotide variation type

*Poor overlap with 1KG MAVs and excluded from further analysis

Nucleotide variant type assay subsets All GSA data GSA pass manifest clusterfile 
QC

GSA pass manifest QC 
and present in 1KG 
Phase 3

Single nucleotide variants (SNVs) 656,601 606,524 594,230

Multi-allelic variants (MAVs) 616 526 3*

Insertions 1110 1044 36

Deletions 2799 2677 95

Total 661,126 610,771 594,361

Fig. 4  Boxplot analysis of the performance metrics of GSA vs 1KG benchmark dataset when assays are classified according to A variation type 
(deletion (DEL), insertion (INS), single nucleotide variant (SNV)), B type of single nucleotide change (transition (TNS), transversion (TVS)), (C) 
frequency of the alternate allele in the 1000 Genomes (1KG) data, and (D) interrogation of a low complexity genomic region (microsatellite region 
(MicroSat), RepeatMasker region (RepMask), or simple repeat (SimRep)). The performance metrics measured and plotted as boxplots for each class/
panel are concordance (blue), sensitivity (coral), specificity (green) and positive predictive value (PPV) (orange)
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GSA assays for rare variants are harder to evaluate 
and confirm using benchmark datasets
Using the allele frequency in the 1KG as a surrogate for 
the general population variant allele frequency, we inter-
rogated the effect of alternate allele (variant allele) fre-
quency on the performance metrics. 643,012 GSA SNV 
assays were binned according to the alternate allele 
frequency extracted from the 1KG VCF file (allele fre-
quency × 100): [0–0.1%], (0.1–1%], (1–5%], (5–10%], 
(10–20%], (20–30%], (30–40%], (40–50%], (50–60%], 
(60–70%], (70–80%], (80–90%], and (90–100%] (Table 7). 
On average the QC process removed 7–8% of assays from 
each bin. The bins [0–0.1%] and (90–100%] had 2% and 
12% respectively removed (Table 7); this might reflect the 
small number of assays in these bins (17,830 and 4552, 
respectively). Consistent with previous publications 
(Ritchie et al. 2011), the average performance metrics for 
GSA assays passing cluster file QC in each bin showed 
that PPV and sensitivity suffered when the alternate allele 
frequency was < 5%, whereas specificity and concordance 

declined as the alternate allele frequency increased 
(Fig. 4C).

Among the 594,346 GSA SNV assays with IKG geno-
types, 476,707 had a PPV equal to 1 (zero false positives) 
based on concordance with the 1KG and rWGS geno-
types (Table 8). We observed that 81% of GSA assays in 
the [0–0.1%] and 28% of GSA assays in the (0.1–1%] 
bins had PPV < 1 (Fig.  5; Table  9), whereas other allele 
frequency bins had an average of 13% (8–17%) with a 
PPV < 1 (Table 8). These results are consistent with prior 
observations showing that accurate calling of rare alleles 
(MAF < 0.01) by genotyping arrays is compromised by 
low genotype frequencies and an absence of the homozy-
gous alternate alleles needed for construction of cluster 
files [22, 37].

Table 6  Distribution of GSA (reference (Ref ) to alternate (Alt) allele) SNV assays present in the 1KG Phase 3 data versus number of 
assays passing QC

Ref\Alt Purine Purine Pyrimidine Pyrimidine
A G C T

Purine A – 101,994/111,493 (91%) 25,107/28,214 (89%) 1368/2065 (66%)

Purine G 136,350/149,635 (91%) – 2404/3280 (73%) 29,629/33,115 (89%)

Pyrimidine C 30,130/33,566 (90%) 2339/3216 (73%) – 136,392/149,801 (91%)

Pyrimidine T 1362/2074 (66%) 24,983/28,133 (89%) 102,172/112,009 (91%) –

Table 7  Number of GSA assays and their relative percentages 
binned by alternate allele frequency in 1KG Phase 3 data

Alternate allele 
frequency bins 
(%)

All GSA assays 
and in 1KG

GSA pass QC 
and in 1KG

Percent assays 
that failed QC 
(%)

0–0.1 17,830 17,454 2

0.1–1 148,959 138,342 7

1–5 113,374 104,272 8

5–10 63,688 58,421 8

10–20 84,729 78,631 7

20–30 56,601 52,398 7

30–40 39,684 36,620 8

40–50 30,095 27,476 9

50–60 25,078 23,053 8

60–70 21,944 20,134 8

70–80 20,866 19,210 8

80–90 15,612 14,312 8

90–100 4552 4023 12

Total 643,012 594,346 8

Table 8  GSA assays with a PPV = 1 based on concordance 
with the1KG Phase 3 data and the rWGS data. Data is binned by 
alternate allele frequency

Allele 
frequency 
bins

Total 
QC pass 
assays

Assays with PPV = 1; 
GSA versus 1KG and 
GSA versus rWGS

% left % filtered

0–0.1 17,454 3283 19 81

0.1–1 138,342 99,508 72 28

1–5 104,272 88,235 85 15

5–10 58,421 48,532 83 17

10–20 78,631 66,027 84 16

20–30 52,398 44,511 85 15

30–40 36,620 31,223 85 15

40–50 27,476 23,563 86 14

50–60 23,053 20,041 87 13

60–70 20,134 17,799 88 12

70–80 19,210 17,318 90 10

80–90 14,312 13,103 92 8

90–100 4023 3564 89 11

Total 594,346 476,707
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GSA assays interrogating low‑complexity genomic regions 
perform poorer than other assays
To determine assay performance characteristics within 
repetitive regions of the genome, we intersected GSA 
assays with annotated low complexity regions (LCRs) 
including simple repeats, microsatellites, and repeat 
masked (RepeatMasker-defined) regions in the human 
genome. Of a total of 594,346 assays passing QC and 
present in the 1KG, 203,901 (~ 34%) assessed a variant 
within one of the three annotation classes. 201,579 GSA 
assays mapped within the RepeatMasker class. Overlap-
ping partially with the other two classes, 431 GSA assays 
mapped within the simple repeat class. GSA assays tar-
geting genotypes within each LCR class had poorer 

performance metrics than did assays interrogating geno-
types outside of these regions (Fig. 4D).

rWGS performed better than GSA relative 
to the benchmark dataset 1KG
rWGS data corresponding to GSA assays passing QC 
were extracted from the rWGS gVCF files and compared 
to the 1KG. Restricting the analyses to GSA assays for 
which > 90% of rWGS samples had genotype data defined 
602,582 assays and excluded 38,093 GSA assays. An addi-
tional 9642 assays on the chromosome X were excluded 
due to discrepancies in genotype representation in com-
parison datasets. For the remaining 592,940 autosomal 
assays, the rWGS genotypes with ≥ 20 × coverage and 

Fig. 5  Bar plot of percentage of GSA assays with a positive predictive value (PPV) < 1 as a function of alternate allele frequency bins (allele 
frequency bins as percentage). The alternate allele frequency bins were defined based on the frequency information in 1000 Genomes (1KG) data

Table 9  Summary of performance metrics for GSA and rWGS relative to 1KG Phase 3 data

Performance metrics Global screening array (GSA) versus. 1KG mean 
(± std.dev)

Whole genome sequencing 
(WGS) versus 1KG mean (± std.
dev)

Concordance 0.9932 (± 0.0005) 0.9981 (± 0.0005)

Sensitivity 0.9927 (± 0.0007) 0.9981 (± 0.0005)

Specificity 0.9957 (± 0.0003) 0.9991 (± 0.0003)

Positive predictive value (PPV) 0.9892 (± 0.0008) 0.9977 (± 0.0007)
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a Phred score ≥ 30 were used for calculation of perfor-
mance metrics. These analyses, i.e., GSA vs. 1KG and 
rWGS vs. 1KG, showed consistent average metrics and 
small standard deviations among datasets (Table 9).

For the 256 Coriell samples with 1KG data, we 
observed that rWGS performed better than GSA across 
all 4 performance metrics (Fig. 6A; Table 9). Overall aver-
age concordance, sensitivity, and specificity for rWGS 
vs. 1KG were 0.9981, 0.9981 and 0.9991, respectively, 
whereas for GSA vs. 1KG, they were 0.9932, 0.9927, and 
0.9957, respectively. PPV was 0.9977 for rWGS vs. 1KG 
and was 0.9892 for GSA vs. 1KG (Table 9).

Over 82% of all GSA assays have a PPV = 1
We compared the GSA and rWGS genotypes to the 1KG 
and computed the PPV. As shown in Fig.  6B, over 82% 
(476,828) of assays had a PPV of 1 for both the GSA and 
rWGS. Approximately 1.5% (8710) of rWGS assays had a 
PPV of 1 when GSA was 0, whereas only 0.12% (699) of 
GSA assays did when rWGS was 0.

GSA MAP59 secondary findings validated using rWGS, 
pWGS, and 1KG
Given that > 80% of GSA assays have a PPV = 1, we 
assessed rare variation detection within the 59 medically 
actionable predisposition genes (MAP59) defined by the 
American College of Medical Genetics (ACMG) [35]. 
Given the expected secondary finding rate of 1–2% [38–
40] and the limited genomic space profiled by the GSA, 
we hypothesized 2–3 or fewer samples with GSA-detect-
able variants in the 261 cohort. Additionally, we hypoth-
esized that comparison of these data to the 1KG and the 
rWGS data identifies false negative and false positive 
variants as well as pathogenic variation undetected by the 
GSA. Focusing on nucleotides with ≥ 20 × rWGS cover-
age (Fig. 7), we found that an average of 6347 (± 88) sites 
were genotyped by both rWGS and GSA in any given 
DNA sample. The GSA vs. rWGS average concordance, 
sensitivity, specificity, and PPV were 0.99897, 0.99367, 
0.99962, and 0.9946, respectively.

For clinically reportable rare variants curated into 
the managed variant list (MVL), the GSA and rWGS 
were concordant for a heterozygous variant (MUTYH 
p.(Gly368Asp); rs36053993) in three samples and across 
GSA replicates. Two of the 3 samples had 1KG data 

Fig. 6  Scatter-plot comparison of performance metrics of whole genome sequencing (rWGS) and GSA using 1KG as the benchmark dataset. 
A Scatter plots show sample-level performance metrics of rWGS and GSA relative to 1KG reference data. Plots are concordance (top left; blue), 
sensitivity (top right; orange), specificity (bottom left; green) and positive predictive value (PPV) (bottom right; maroon) respectively. Each dot 
represents a single sample’s performance metric value. B Density scatterplot of each GSA assay’s positive predictive value computed for GSA (y-axis) 
vs. rWGS (x-axis) using 1KG as the benchmark dataset. Each square represents PPV measured for GSA and rWGS relative to 1KG benchmark dataset, 
and the color indicates the number of assays within each square. The color gradient of each square ranges from 1 assay (dark purple) to 476,828 
assays (yellow); therefore, the color on the scatterplot indicates the density of data-points in 2 dimensions
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and were concordant; one of these two had pWGS data 
that was also concordant. Highlighting the potential for 
false positives, rWGS and 1KG data refuted a GSA call 
of PKP2 p.(Arg355Ter) (rs754912778) in one sample. 
Conversely, highlighting the potential for false nega-
tives, rWGS and 1KG detected two variants that were 
not detected by GSA: RB1 p.(Arg661Trp) (rs137853294), 
which the GSA called homozygous reference in triplicate, 
and MUTYH p.(Pro391Leu) (rs529008617), which the 
GSA called “no-call” in triplicate. In summary, the GSA 
identified 1 pathogenic variant (true positive), 1 false 
positive, and 2 false negatives (2 assayed and missed) 
among the MAP59.

To identify rare pathogenic variation discovered 
by rWGS and not assayed by the GSA (lack of probe 

coverage), we intersected rWGS data with ClinVar patho-
genic variation and found 4 heterozygote variants not 
assayed by the GSA. These were APOB p.(Arg3527Trp) 
(rs144467873), SDHAF2 p.(Asn103GlufsTer4) (frameshift 
insertion; rs753554501), BRCA2 p.(Ser1748Ter) (inser-
tion (NM_000059.3:c.5241_5242insTA); rs749980674) 
and ATP7B p.(Thr991Met) (rs41292782). One of these 
4 (APOB p.(Arg3527Trp); rs144467873) was present in 
1KG. The ATP7B p.(Thr991Met) (rs41292782) variant 
was likely absent from the 1KG due to poor coverage. In 
summary, rWGS identified 7 rare pathogenic variants in 
MAP59 genes in 9 samples; the GSA lacked assays for 4 
rare pathogenic variants detected by WGS.

The rWGS rate of detection of rare pathogenic vari-
ants in the MAP59 genes was 0.034 (3.4%); 7 variants in 

Fig. 7  Plot of the average percentage of bases within each MAP59 gene covered by whole genome sequencing (rWGS) to a read depth of A 
×10 or more (gte10x) B ×20 or more (gte20x) among the 263 samples. Each rWGS nucleotide was required to have a Phred-based quality score of 
greater than 30 to be considered for this analysis
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9 samples from a population of 261. Removing the 3 vari-
ants that were not independently confirmed by the 1KG 
due to lack of 1KG data gives 4 pathogenic variants in 5 
individuals from a population of 261 or a rate of 0.019 
(1.9%). This range (0.019–0.034) of pathogenic variants 
in the MAP59 genes is consistent with the published dis-
covery rate [38, 39, 41, 42].

Discussion
We report an approach to analytical validation of the 
GSA through quality analyses and through assessment of 
performance by comparison to benchmark datasets and 
independent whole-genome sequencing data. To the best 
of our knowledge, this is the first comprehensive ana-
lytical validation of the GSA for clinical genotyping. Our 
findings support and extend recently reported research 
studies assessing the utility of the GSA for genetic 
screening in primary immunodeficiency [43], for popula-
tion-based genomic screening for rare and medically rel-
evant variation [44], and for detecting rare and clinically 
relevant markers in multiethnic Indian populations [45].

In our study we used call rate and sample contamina-
tion as preliminary parameters of quality control for 
genotype analysis. Call rate is a primary quality con-
trol parameter in all genotyping studies [12, 13]. A high 
threshold for call rate not only ensures inclusion of sam-
ples with high quality genotype data but also allows, inde-
pendent of sample DNA quality, for detection of assays 
that perform poorly. Additionally, sample contamination 
detection [14] is key in preventing return of false posi-
tive genotypes and is demonstrated by our results. While 
more advanced quality control methods such as Hardy–
Weinberg Equilibrium (HWE) test [15], likelihood of 
error [19], departure from Mendelian inheritance, and 
pedigree information are used in various research stud-
ies [4, 20], they are implemented in analyses that follow 
genotype generation and are dependent on what analy-
ses are subsequently performed using the genotype data. 
HWE is used to detect genotypes that deviate from the 
expectation of HWE, and it is typically applied to vari-
ants with a MAF of greater than 0.05 [12]. Consequently, 
because of our interest in variants of lower MAF, we did 
not implement this QC metric; however, HWE might be 
useful within certain cut-offs for MAF as implemented 
by Suratannon et al. [43] and Narang et al. [45]. Similarly, 
Mendelian inheritance and pedigree information quality 
control are critical for linkage and segregation analyses 
and did not apply to our individual-focused assay.

This evaluation of GSA data is consistent with previ-
ous studies that demonstrated the utility of sample data 
quality metrics like genotype call-rate, p10GC, and DNA 
contamination detection [11, 22]. By analysis of repli-
cates, we show that the majority of the GSA data are 

highly reproducible. Outliers arose either from position-
ing along the edges of the Illumina BeadChip or from 
contamination. Characterization of each GSA assay by 
variation class, type, genomic DNA complexity, and 
alternate allele frequency showed that the GSA has the 
highest performance for SNVs and transition nucleotide 
changes in genomic regions of high complexity. In con-
trast, assays interrogating low-complexity regions, rare 
alleles, or transversions performed poorly. Transversions 
between complementary nucleotides likely performed 
poorly because of the characteristics of the assays for 
these particular transversions (Additional file 1: Sect. S7). 
Also, consistent with previous reports [46–48], assays for 
rare alleles (< 0.001) had lower performance and might be 
improved by using algorithms for rare variant detection 
[10, 31, 32] or joint-calling [22] rather than the default 
genotype caller (GenCall). These should be considered in 
the future to improve detection of rare variants by geno-
typing chips.

The analytical framework implemented in this study 
followed a three-way analysis (GSA-rWGS-1KG) to 
assess the strengths and limitations of individual GSA 
assays. Unlike many published analyses in which WGS 
is the test dataset and the BeadArray genotypes are the 
truth [25–27, 30], our study had the BeadArray as the 
test dataset and WGS as the truth. The reversal of test 
and truth datasets is a major challenge for comparing 
our results to the published literature. To overcome this 
challenge, we ensured that the rWGS data had perfor-
mance metrics (concordance = 0.9981) comparable to 
that previously published (concordance = 0.9984 [25]). 
The three-way analysis framework also allowed detection 
of false positive and false negative genotypes on the GSA 
platform. Though not evaluated in the current study, the 
three-way comparison framework in our analysis allows 
for modeling of genotyping-error specific to variation 
classes and categories triaged during characterization of 
the GSA.

Over 82% of assays on the GSA returned genotypes 
with a high positive predictive value (PPV). The GSA 
detected some pathogenic variation (MAP59) in the 
test dataset of 261 Coriell samples, and these variants 
were independently validated by either the 1KG data or 
the rWGS/pWGS data or both. Although we attempted 
to compare GSA results to other chip results, the com-
parison to previous work was impeded by differences in 
probe content and density as well as chip design (e.g., 
610 k assays on GSA, vs. 247 k assays on HumanExome 
chip). Some of the pros and cons of using the GSA are 
summarized in Table 10 below.

The test characteristics of the GSA compared to WGS 
clearly show that the GSA is not a diagnostic genomic 
test for individuals with rare disorders. As shown by our 
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MAP59 results and recent research studies [43, 44], the 
GSA lacks robustness for genotyping rare variants as 
well as probes for detection of private familial disease 
variants. On the other hand, we show that the GSA has 
the analytical robustness to serve as a clinical screen for 
genotypes for which one can establish robust cluster files 
for the AA, AB, and BB genotypes. This is most easily 
accomplished for more common genotypes that contrib-
ute to polygenic predispositions to disease, particularly 
common diseases. Screening of an asymptomatic popula-
tion to assess the likelihood of predisposition to a disease 
is well established within medicine, and examples include 
newborn screening for inborn errors of metabolism, 
mammography for breast cancer, and cholesterol levels 
for coronary artery disease [50, 51]. A major objective of 
screening tests is to reduce morbidity and mortality in 
the subject population through risk stratification to tar-
get surveillance, early detection, and treatment. With the 
characterization of genomic risk for drug responsiveness 
and predisposition to various cancers and cardiovascular 
disease [52–54], we propose that the GSA offers a poten-
tial clinical tool for genomic screening.

Limitations of our study
Our comparison of BeadChip arrays to NGS and bench-
mark datasets has some limitations. Firstly, we evaluated 
our dataset using accepted algorithms. This did not take 
into account the benefits of consensus genotyping by 
multiple algorithms for GSA or NGS data; Hwang et al. 
found that consensus genotyping minimized false find-
ings [47]. Secondly, cell-line derived variation or low-
level somatic variation might also have contributed to 

differences between datasets [25]. Thirdly, we did not 
analyze variants close to or overlapping other varia-
tion in the same location, e.g., insertions/deletions and 
copy number variation, because these loci are eukary-
otic mutation hotspots [55]. Fourthly, our analysis would 
benefit from comparison to variant benchmark datasets 
defined in more recent publications [47] and to NIST/
GiAB datasets.

Conclusions
We established the analytical validity of the GSA via a 
systematic approach utilizing benchmark and rWGS data 
to evaluate the performance of each assay. We highlight 
that the GSA assays interrogating rare variants, transver-
sions, and variants within low-complexity regions need 
careful evaluation. GSA assays can be analytically vali-
dated to clinically screen for common genotypes predis-
posing to disease.
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Table 10  Pros and cons of arrays versus whole genome sequencing [49]

Feature SNP arrays (GSA) WGS

Cost Lower cost Higher cost

Genomic coverage Best for variants for which DNAs of all genotype combinations 
are available, i.e., not robust for rare variants

Appropriate for detection of nearly all genetic variation in the 
genome depending on the depth of sequencing, i.e., not robust 
for difficult to sequence regions

Requires prior knowledge of the variant, i.e., unable to detect 
private variants not previously reported

Reduced accuracy in genomic regions of low complexity

Reduced accuracy in genomic regions of low complexity

Analyses Well established analytical protocols and tools for data analyses High computational costs and greater analytical complexity

Larger multiple testing burden when conducting single-variant 
tests

Greater costs to store, process, analyze and interpret the result-
ing data

Suitability Screening Diagnostic testing

Analyzing known or candidate associations in large cohorts Detecting and fine-mapping rare variants

Detecting low-frequency, common variant associations in large 
sample sizes

Detecting ultra-rare risk variants when it becomes economically 
viable to perform WGS at a very large scale
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nlm.​nih.​gov/​sra) (Additional file 1: Table S9). The GSA (replicated in triplicate; 
samples = 262) and WGS (QC pass and concordant with GSA samples = 260) 
variation data were submitted to dbSNP database (https://​www.​ncbi.​nlm.​nih.​
gov/​snp) are available at https://​ftp.​ncbi.​nlm.​nih.​gov/​snp/​submi​ssion/​SANFO​
RD_​IMAGE​NETICS/.
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