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Abstract

Background: Mutations in the MYOT15A gene are a widely recognized cause of autosomal recessive non-syndromic
sensorineural hearing loss (NSHL) globally. Here, we examined the role and the genotype—phenotype correlation of
MYO15A variants in a cohort of Chinese NSHL cases.

Methods: Eighty-one cases with evidenced MYOT5A variants from the 2263 Chinese NSHL cases, who underwent
next-generation sequencing (NGS), were enrolled in the study. We investigated the association of MYO15A variants
with the severity, progression and age of onset of hearing loss, as well as compared it to the previous reports in differ-
ent nationalities. The cases were divided into groups according to the number of truncating variants: 2 truncating, 1
truncating and 1 non-truncating, 2 non-truncating variants, and compared the severity of HL among the groups.

Results: MYOT15A accounted for 3.58% (81/2263) of all NSHL cases. We analyzed 81 MYO15A-related NSHL cases, 73
of whom were with congenital bilateral, symmetric or severe-to-profound hearing loss (HL), however, 2 of them had
a postlingual, asymmetric, mild or moderate HL. There were 102 variants identified in all MYOT5A structural domains,
76.47% (78/102) of whom were novel. The most common types of detected variants were missense (44/102, 43.14%),
followed by frameshift (27/102, 26.47%), nonsense (14/102, 13.72%), splice site (10/102, 9.80%), in frame (4/102,
3.92%), non-coding (2/102, 1.96%) and synonymous (1/102, 0.98%). The most recurrent variant c.10245_10247delCTC
was detected in 12 cases. We observed that the MYOT5A variants, located in its N-terminal, motor and FERM domains,
led to partial deafness with better residual hearing at low frequencies. There were 34 cases with biallelic truncating
variants, 37 cases with monoallelic truncating variants, and 13 cases with biallelic non-truncating variants. The biallelic
non-truncating variants group had the least number of cases (12/81), and most of them (10/12) were with profound
NSHL.

Conclusions: MYOT5A is a major gene responsible for NSHL in China. Cases with MYOT15A variants mostly showed
early-onset, symmetric, severe-to-profound hearing loss. This study is by far the largest focused on the evaluation of
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cases.

the genotype-phenotype correlations among the variants in the MYO15A gene and its implication in the outcome of
NSHL. The biallelic non-truncating MYO15A variants commonly caused profound HL, and the cases with one or two
truncating MYOT5A variants tended to increase the risk of HL. Nevertheless, further investigations are needed to clarify
the causes for the variable severities and progression rates of hearing loss and the detected MYOT15A variants in these

Keywords: MYOT5A, DFNB3, Hearing loss (HL), Non-syndromic sensorineural hearing loss (NSHL)

Background

Hearing loss (HL) is one of the most common human
pathologies that significantly affects the quality of life
[1]. About 60% of congenital HL is caused by genetic
factors [2, 3]. Non-syndromic sensorineural hearing
loss (NSHL) is considered a major cause of HL. To date,
mutations in 124 genes have been identified in individu-
als affected with NSHL, among which mutations in 78
genes were related to autosomal recessive non-syndro-
mic sensorineural hearing loss (ARNSHL), mutations in
51 autosomal dominant genes and 5 X-linked genes were
correlated with NSHL (Hereditary Hearing Loss Home-
page, http://hereditaryhearingloss.org, updated on 30
August 2021). The most common variations that were
found in ARNSHL were in the genes GJB2, SLC26A4,
CDH23, MYOI5A and OTOF [4, 5]. Genetic variations
in MYOISA were considered the third most common
cause of ARNSHL in Iran due to prevalent consanguin-
eous marriages [5, 6]. Whereas in the cohort of Korean
ARNSHL patients, MYO15A mutations were recognized
as the fourth most important deafness gene variants after
those detected in other genes like GJB2, SLC26A4 and
CDH23 [7, 8].

MYOI5A (OMIM #602666) is a 71 kb long gene that
contains 66 exons. It is localized on chromosome 17p11.2
(chr17:18012020-18083116; hgl9 assembly) and encodes
the myosin-XV protein with 35,390 amino acids [9].
Myosin proteins are a large family of actin-based molecu-
lar motors that bind actin filaments to produce force and
motion, thus contributing to the hydrolysis of ATP.

The MYOI15A protein contains an N-terminal domain
(amino acids (AA) 1-1223), a motor domain (AA 1224—
1899), three light-chain binding IQ motifs (AA1909-
1942), two myosin-tail homologies 4 domains (MyTH4,
AA 2066-2174 and 3051-3161), two band F, ezrin,
radixin, myosin domains (FERM, AA 2687-2867 and
3217-3497), an Src-homology-3 domain (SH3, AA 2865—
2959) and a C-terminal PDZ ligand motif [6, 10, 11].

It is reported that MYO15A mutations cause sensorineu-
ral HL in human autosomal recessive deafness 3 (DFNB3,
OMIM #600316) [7]. The DFNB3 locus was discovered in
patients from a remote village in Indonesia, where 2.2%
(47/2185) of the population was affected by hearing loss
[12, 13]. So far, more than 200 MYOI5A variants have

been reported in more than 20 countries and regions, such
as Algeria, Arab, Brazil, China, France, Germany, India,
Iran, Israel, Japan, Mexico, the Netherlands, Oman, Paki-
stan, Palestine, Qatar, South Korea, Spain, Tunisia, Turkey
and the United States. However, due to the large size of
the gene and its many exons, simple techniques for detect-
ing variants are discordant with it. Therefore, the clinical
characteristics of MYO15A related to NSHL hearing level,
age of onset, the degree of progression, associated symp-
toms and hotspot mutations were not clearly identified.
So far, MYO15A had been reported sporadically in China.
In this study, 81 cases from 74 families identified with at
least one MYO15A pathogenic or likely pathogenic vari-
ants, or uncertain significant variants, diagnosed by next-
generation sequencing (NGS) from 2263 Chinese cases
with NSHL, were enrolled to analyze the correlation
between the MYOI5A genomic variants and NSHL path-
ological phenotype. Co-segregation of variants was con-
firmed in probands and healthy parents, as well as more
family members if available, via NGS and Sanger sequenc-
ing. This study is by far the largest focused on MYO15A
variants and their implication in the outcome of NSHL. As
well as we were able to detect the gene frequency and the
recurrent variant of the MYOI15A in Chinese patients with
NSHL. The association of MYO15A variants with heredi-
tary deafness patients, their severity, progression and age
of onset was further conducted.

Methods

Purpose of test

The performed test aimed to examine the role and the
genotype—phenotype correlation of MYO15A variants in
a cohort of Chinese NSHL patients.

Subjects and clinical evaluation

There were 2263 participants from 1842 families with
NSHL from the Genetic Testing Center for Deafness at
the College of Otolaryngology Head and Neck Surgery,
Chinese PLA General Hospital enrolled in the study,
from June 2015 to September 2021. Trio WES was per-
formed in 95 cases and their parents, trio/quadro NGS in
2009 cases and their family members, and singleton NGS
in 159 cases.
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And 81 cases from 74 families with detected MYOI5A
variants, related to NSHL, were analyzed for the assess-
ment of the correlation between the MYO15A genotype
and the NSHL phenotype. Detailed interviews were con-
ducted with probands and their families to obtain their
medical and familial histories.

All underwent testing that included physical examina-
tion, otoscopy, pure tone audiometry (PTA), tympanom-
etry, assessment of auditory brainstem responses (ABR),
distortion product otoacoustic emission (DPOAE), mul-
tiple auditory steady-state evoked responses (ASSR),
temporal bone computerized tomography scans, and
magnetic resonance of the brain. The definition for the
severity of hearing impairment, according to pure-tone
audiometry (PTA) of the better ear, was made based
on the average hearing threshold level at four frequen-
cies (500, 1000, 2000 and 4000 Hz) of air conduction.
26—40 dB HL were considered to be mild hearing loss;
41-55 dB HL, moderate hearing loss; 56—70 dB, mod-
erately severe hearing loss; 71-90 dB HL, severe hearing
loss;>90 dB HL, profound hearing loss. The occurrence
of hearing loss was categorized as prelingual (<3 years)
or post-lingual (>3 years). Asymmetric hearing loss
(AHL) was defined as greater than 15 dB between the
ears at 0.5, 1, and 2 kHz or greater than 20 dB at 4 kHz
on the audiogram (American Academy Otolaryngology-
Head Neck Surgery 1997) [14] as reported previously
[15].

Peripheral blood samples were collected from all cases,
their parents and siblings (if any). All cases obtained
informed consent for the performed molecular genetic
analysis and their clinical data publication. The study was
approved by the Ethics Committee of the Chinese PLA
General Hospital (reference number S2016-120-02).
Written informed consent was obtained from the partici-
pants and in the case of young cases from their parents.

Targeted deafness gene capture and NGS

Targeted deafness gene capture and NGS were per-
formed as previously reported [16]. DNA samples of 64
cases from 58 families were subjected to targeted NGS,
35 cases of them conducted trio (proband and parents)
targeted NGS and 29 cases conducted quarto (proband,
parents and sibling) targeted NGS. The proband received
the panel test containing 168 deafness-related genes
(Additional files 1: Table S1). All coding exons, along with
100-bp flanking regions were sequenced on the Illumina
HiSeq 2000 (Illumina, San Diego, CA, USA) using the
MyGenostics gene enrichment system (MyGenostics,
Boston, MA, USA).
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Whole-exome sequencing (WES)

Illumina NovaSeq6000 sequencing platform was used
to conduct the WES by MyGenostics (Beijing, China)
(detailed procedures shown in Additional files 3). DNA
samples from 17 MYOI15A-related cases and their par-
ents were subjected to trio WES and subsequently vali-
dated by Sanger sequencing. The nomenclature of the
mutation described in Table 1 is based on MYOIS5A
¢DNA and protein accession numbers NM_016239.3 and
NP_057323.3, respectively. We used the genomic coordi-
nates from GRCH37/hg19 constructed from the human
genome.

Bioinformatics

After sequencing the targeted region, quality control
was performed to ensure the accuracy of the data. Low-
quality data were filtered out to obtain clean sequencing
data. Burrows-Wheeler alignment was used to align the
clean sequence to the human reference genome hgl9.
Genome Analysis Toolkit (GATK) was used to detect
single-nucleotide and insertion/deletion polymorphisms
(indel). The NCBI ClinVar (https://www.ncbi.nlm.nih.
gov/clinvar/, last accessed date 16 December 2021), the
Human Gene Mutation Database (HGMD, http://www.
hgmd.cf.ac.uk/ac/, last accessed date 16 December 2021),
the Genome Aggregation Database (gnomAD, https://
gnomad.broadinstitute.org, last accessed date 16 Decem-
ber 2021) and the Deafness Variation Database (DVD
v8, https://deafnessvariationdatabase.org) were used to
obtain the variants information, including gene informa-
tion, variant consequence, minor allele frequency (MAF),
altered protein function, and related disease information.
The predictive score of pathogenicity of the variation was
calculated, and the effect of amino acid substitution on
protein structure and function was evaluated by Poly-
phen2 (http://genetics.bwh.harvard.edu/pph2/) and SIFT
(http://provean.jcvi.org/). Pathogenicity was assessed
according to the expert specification of the American
Society for Medical Genetics and Genomics/ Associa-
tion of Medical Pathology (ACMG/AMP) guidelines for
genetic HL[17].

Sanger sequencing

Presumed pathogenic or likely pathogenic variants and
variants of uncertain significance detected by WES and
deafness gene panel in the probands were subsequently
validated by a polymerase chain reaction (PCR) amplifi-
cation and Sanger sequencing. Segregation analysis was
performed on the probands and their family members.
The primer sets are listed in Additional files 2: Table S2.
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Results

Detected variants

Clinical features and genotypes of the pathogenic, likely
pathogenic and uncertain MYO15A variants are summa-
rized in Table 1. In particular, 4 cases were found to carry
homozygous variants, 77 carried compound heterozy-
gous variants.

In our study we have found 102 MYOIS5A vari-
ants, among which the most recurrent variants
were  ¢.10245_10247delCTC  (0.27%,  12/4526),
followed by c.10419_10423delCAGCT (0.24%, 11/4526),
c.10251_10253delCTT (0.15%, 7/4526), c.4441 T>C

(0.09%, 4/4526), c.4898 T>C (0.09%, 4/4526),
c.3524dupA (0.07%, 3/4526), c.5964+3G>A (0.07%,
3/4526), ¢.6177+1G>T(0.07%, 3/4526), c.8827insT

(0.07%, 3/4526) and c.9690+1G>A (0.07%, 3/4526).
Other variants appeared only once or twice (Table 1).

Our analysis showed that the most common type of
MYOIS5A variants was missense (44/102, 43.14%), fol-
lowed by frameshift (27/102, 26.47%), nonsense (14/102,
13.72%), splice site (10/102, 9.80%), in frame (4/102,
3.92%), non-coding (2/102, 1.96%) and synonymous
(1/102, 0.98%) (Fig. 1). The variants showed the various
degree of HL, although the cases with the same variant
type showed different phenotypes. In frame and splice
variants showed more possibilities to cause profound HL,
and frameshift and missense variants related to various
degrees of HL (Fig. 1).

The variants were located in 41 of the 66 protein-cod-
ing exons of the MYOI5A gene (Table 1) and identified
in all domains in this study. Seventy-eight novel and 24
reported variants were identified, and all of them were
confirmed by Sanger sequencing. (Fig. 2).

According to the guidelines of the ACMG/AMP on
hereditary hearing loss, the variations in the MYOI5A
were manually classified [17, 18]. Based on the ACMG/
AMP rating, ClinVar, HGVS and DVD database, respec-
tively, the pathogenicity of the 102 MYOI5A variants
identified in this study included 40 pathogenic (P), 24
likely pathogenic (LP) and 38 variants with uncertain sig-
nificance (VUS). (Table 2) We identified 36 cases with bi-
allelic MYOI15A pathogenic or likely pathogenic variants.
The others with VUS in one of the alleles (LP/VUS, P/
VUS and VUS/VUS) were also included in the study that
classified as the best candidate of DFNB3. We also com-
pared the severity of HL by the pathogenicity of variants.
The results were inconclusive, and even the cases with
the same variations showed various phenotypes (Table 3).

Variants with HIGH impact (e.g., frameshift variants,
splice variants, stop gain variants, etc.) were counted
as protein-truncating variants (PTVs) [19]. The 81
cases were divided into groups according to the num-
ber of PTVs: 2 truncating (34 cases); 1 truncating and 1
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non-truncating (37 cases); 2 non-truncating variants (13
cases) (Table 4). We compared the severity of HL among
the groups. The 2 non-truncating variants group had the
least number of cases (12/81), and most of them (10/12)
were with profound NSHL. Thus, we suggested that cases
with the monoallelic or biallelic truncating MYOI5A var-
iant may increase the risk of HL.

Although synonymous variation is generally con-
sidered as non-pathogenic, the variant c.8340G > A(p.
Thr2780Thr) identified in the case M488 (Fig. 3) was
considered to be pathogenic (PVS1_Very Strong, PM2_
Moderate, PP5_Supporting) based on the ACMG/AMP
classification in our cohort. In the NCBI ClinVar data-
base, it was shown that the ¢.8340G > A (p.Thr2780Thr)
predicted loss of exon 45 and led to a stop codon.
(National Center for Biotechnology Information. ClinVar;
[VCV000236038.1], https://www.ncbi.nlm.nih.gov/clinv
ar/variation/VCV000236038.1 (accessed Sept. 20, 2021).)

Clinical findings

Among the 2263 cases from 1842 families with NSHL
included in this study, including 1215 males and 1048
females. Age ranged from a few days after birth to
65 years with a mean age of 15.01 +13.67 years and the
median age of 7.92 years. In our cohort, 1654 cases had
prelingual HL and 609 had postlingual HL; 71 cases were
mild, 238 were moderate, 179 were moderately severe,
512 were severe and 1263 were profound HL.

There were 81 (3.58%, 81/2263) cases from 74 fami-
lies identified with at least one MYOI5A pathogenic
or likely pathogenic variant, or uncertain significant
variant. Among them, 45 were males and 36 females,
aged from 3 months to 43 years, with an average age of
10.414+10.32 years. The ethnic distribution among the
cases was as follows: one case was belonged to Korean
ethnic group, one of Manchu, one of Tujia, while the oth-
ers were all Han. None of the participants had a history
of using aminoglycoside antibiotics.

Most of the audiological assessments and clinical
history of the affected members showed a prelingual
(92.59%, 75/81), symmetrical (97.53%, 79/81), bilateral
(100%, 81/81), non-syndromic (100%, 81/81), sensorineu-
ral (100%, 81/81) HL (Fig. 4). Only a few showed a post-
lingual (7.41%, 6/81) and asymmetrical (2.47%, 2/81) HL.
Analysis of the high-resolution CT scan of the temporal
bone in the affected members showed a normal middle
and inner ear structure.

The cases showed large variations in the degree of HL.
The degree of HL was profound in 61 cases (75.30%,
61/81), severe in 12 (14.81%, 12/81), moderately severe
in 4 (4.94%, 4/81), moderate in 3 (3.70%, 3/81) and mild
in 1 (1.22%, 1/81). The last had the right ear with a mild
HL and the left ear with a profound HL. Audiogram
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Fig. 1 The degree of HL and the types of detected variants in the identified MYO15A variations. *The Multiple column represented the cases with
the same variations showed different degrees of HL

N-terminal extension

¢.1179insC ¢.3866+1G>A 1Q Motif
c.1185dupC ¢.4198G>A ¢.5809C>T
€.1651G>A €4252G>A .5835T>G ¢.6956+9C>G
¢.2957delC c.4310A>G ¢.5964+3G>A
¢.3524dupA ¢.4322G>T
¢.4441T>C
¢.4642G>A
¢.4777G>A
¢.4898T>C

¢.8459G>C

¢.8324G>A

¢.9478C>T

¢.3700C>T
¢.3829C>T .6611G>A
€.3926A>T C.6616T>A
¢3971C>A BT
c.4037A>G 6634G>A
¢.198_199del ¢.4430G>A b
€.220_221del €4519C>T eST16A>C c.9787+1G>A
= eoa .6764+1G>T :
Shoa c. 2 ¢.8129insT ¢.8827insT ¢.9941del
CA6T6T>C c7396-1G>A &
€.735C>G e ¢75194elC c.8151delC c.8828T>C €.9942_9943delCAins
C. 1D #
¢.900delT 48176 7698 7699de] ©-8240_8241del ¢.8976insA ¢.10129dup
¢.1101del ¢.5036G>A c7770delc  ©-8283_8306del s gilnct
.1201delT ¢.5134-1G>A ¢.8324G>T © ¢.10183C>T
1261CT €.5360G>A c8340G>A  ¢.8583delC €.9400C>T ¢.10250_10252del
' ¢.5362T>G €.5722_5725del  ¢.6338T>A ¢8362C>T  c.8713+1del ©.9401G>C €.10291_10305del
. 3118delC
63118ac €5504G>T CSITICT  c6442T>A c8458A>C  c.8745_8747del C95321=C ¢.10350+2T>G
¢.3136delC ¢.5507T>C €617741G>T  ¢.6510-1G>T ¢.8791delT €.9534C>A

¢.10419_10423del

¢.9690+1G>A
€.10245_10247del
¢.10251_10253del

Fig. 2 The locations of the detected 102 MYO15A variants. The figure shows the locations of 102 MYO15A variants correlated with NSHL found in
this study. The previously reported ones are shown at the bottom. Pathogenic variants were expressed in red words, likely pathogenic variants in

green words, and VUS in black words

forms showed 6 cases with a flat type, 50 cases with total
deafness, 10 cases with a descending type, whereas 24
remained undefined.

The age of onset among cases ranged from a few days
after birth to 41 years. The hearing loss in 79.01% (64/81) of
the cases appeared at birth, in 13.58% (11/81) was detected

during the first 1-3 years, in 6.17% (5/81) HL arose around
the age of 4-10 years, in 1.23% (1/81) was reported after
18 years (with severe deafness in the left ear and moderate
deafness in the right ear, especially at the age of 41). (Fig. 5).

In our study, it was found that the genotype—phe-
notype correlation between the variants in the
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Table 3 The severity of HL with different pathogenicity of variants
Pathogenicity of Severity of HL
variant*

Mild Moderate Moderately severe  Severe Profound Total
P/P 3 14 17
P/LP 1 1 1 1 14
P/U 1 1 4 17 23
LP/LP 1 3 4
LP/U 2 1 14 17
u/u 1 3 5 9
Total 1 3 4 12 64 84

P: Pathogenic; LP: Likely pathogenic; U: Uncertain significance

MYOI5A gene and the HL in some cases was differ-
ent from that of the others. For example, the cases
M80 and M646 with an asymmetric unilateral severe
deafness bore the compound heterozygous variants
¢.2957delC(p.Thr986fs)/c.9478C < T(p.Leu3160Phe)
and ¢.1179insC(p.Glu396 Argfs*36)/c.1261C > T
(p.Pro421Ser), respectively. (Fig. 6).

Affected  subjects also showed  progression
with the different onset of HL. Case M623 with
¢.10251_10253delCTT homozygous variants was found
in this study, who passed the hearing screening at birth,
but was diagnosed with HL at the age of 3 and the HL
demonstrated a progressive trait. His brother carrying
the same ¢.10251_10253delCTT homozygous variant
showed severe bilateral sensorineural HL at the age of
3 years.

Through the telephone follow-up of 56 MYOI15A-
related cases, the effect of using hearing aids and cochlea
implants was satisfactory in most of the participants.

Discussion

Mutations in MYOI5A were initially identified in HL
individuals of consanguineous families from Bengkala,
Bali in 1995 [12, 13]. Screening for the reported variants
in the MYOI5A gene with 66 exons was a very difficult
and expensive task at that time. Therefore, the MYOI5A
gene was rarely sequenced in familial segregated deaf-
ness unless significant genetic linkage data implicated
the presence of the DFNB3 locus. Instead, efforts were
invested in screening for variations in smaller genes that
have been identified as important contributors to inher-
ited HL in humans, such as G/B2, which has only one
protein-coding exon. The widespread contribution of
MYOI5A mutations on human HL was not recognized
until the NGS became cost-effective and widely adopted
around the world [20]. Now, mutations in MYOISA
are a widely recognized cause of recessively inherited
NSHL globally. More than 200 MYOI5A variants have

previously been reported ranging along with the domains
and motifs of the encoded by MYOI5A protein myosin
XVA (Table 5) [8, 11, 13, 20—68].

Many studies analyzed the mutations in the G/B2 and
SLC26A4 genes among cases with NSHL in different
parts of the world. The obtained results demonstrated
that the prevalence of the variants in G/B2 and SLC26A4
in HL accounted for about 15% to 25% and 2% to 12.6%,
respectively, all dependent on the region localized [69].
The reported frequency of MYOISA variations in HL
was 1.1% to 28% in respect to the different regions [70].
Besides Farjami et al. [70] reported that the MYO15A var-
iant frequency in NSHL was 4.9% considering the variant
rate of the G/B2 gene of 20%. In our study, the estimated
prevalence of MYOI15A variants in NSHL was 3.58%,
which was similar to Farjami’s report. Moreover, Far-
jami et al. [70] proposed a total of 192 recessive MYO15A
variants related to HL. The evaluated proportions of the
various types of variants detected by him were similar
to those noticed in our study. The composition of the
detected variant types was similar in the different inten-
sities of the HL (see Fig. 1). The ¢.10245_ 10247delCTC
variant was identified as the most recurrent HL vari-
ant in our cohort. According to the MAF of 0.000016 in
the Exome Aggregation Consortium (ExAC) database,
0.000389 in East Asian population and 0.000281 in total
population by gnomAD, the ¢.10245_10247delCTC had
been previously reported pathogenic, causing ARNSHL
in the Japanese, Korean and Chinese individuals [7, 21,
71]. Therefore, we suggest that this variant is the hot-
spot of the MYOI15A-related NSHL variant in East-Asian
populations.

In the past two decades, scholars worldwide have
gradually made a progress in the understanding of the
correlation between the genotype and the resultant phe-
notype of MYOIS5A variants. During the first decade, it
was thought that the hearing phenotype of ARSNHL was
congenital, bilateral, full-frequency, severe to profound



Fu et al. BMC Medical Genomics (2022) 15:71 Page 21 of 32

Table 4 The severity of HL cases with different numbers of truncating variants

Number of truncating Severity of HL
variant*
Mild Moderate Moderately severe  Severe Profound Total
11 1 2 3 27 33
1/0 1 2 9 27 39
0/0 2 10 12
Total 1 3 12 64 84
“ 1 Truncating variant; 0 Non-truncating variant
a M488 b dBlZS 250 500 1000 2000 4000 8000 Hz
-10
10
20
30
40
50
60
. 70
M488-1 M488-2 8@
€.8340G>A(p.Thr2780Thn / €.95327>Clp.Cys3178Arg)/
€.8340G>A(p. Thr2780Thr) €.3971C>Alp.Alal324Asp) 90
100 < p: N
o E W W W
(.9532&’(:?&3\78@” 120 - -
€.8340G>A(p.Thr2780Thr)
130
Fig. 3 The audiograms and the pedigree of case M488. a Pedigree of case M488 and her family members. b All case M488 and her parents had the
same profound HL of total deafness type
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Symmetrical 97.53%, 79
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1%

Fig. 4 Audiological phenotype of MYO15A-related HL

Fig. 5 Age of onset of MYO15A-related HL
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Fig. 6 The audiograms and the pedigree of case M80 (a, b) and M646 (c, d)
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sensorineural hearing loss (SNHL). In 2007, Nal et al.
[22] reported for the first time that an N-terminal vari-
ant (p.Glul112fs*1124) in the exon 2 of the MYOI5A
gene resulted in a mild hearing loss with residual hear-
ing at low frequency. At that time, it was considered that
the phenotype of the hearing loss in cases with MYO15A
variants was closely related to the region where this gene
variant was located. However, subsequent studies showed
that the correlation between the genotype and pheno-
type of MYOI5A seemed to be more complex. Notably,
the congenital non-progressive NSHL was investigated
as the main consequence of the MYOISA variants.

Interestingly, in families with ARNSHL with the same
MYOI15A pathogenic variant, the degree of the hearing
phenotype was different [23, 24]. Different hearing phe-
notypes of non-congenital binaural severe SNHL were
reported. Except for the residual hearing in the low-fre-
quency region [25], it also included congenital moderate
and severe SNHL with descending hearing curve [22, 23,
26, 27], all-frequency moderate and severe SNHL [28],
progressive high-frequency descending severe SNHL
[29], delayed and progressive moderate and severe SNHL
[7, 30]. Allelic heterogeneity is common in hearing loss
and is associated with clinical phenotype heterogeneity
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Table 5 Overview of published variants of the MYOT5A in NSHL patients

Exon Domain Nucleotide Change Amino Acid Age of Hearing ACMG Origin of Reference
Change Onset Level® Classification® Family
2 N-terminal  ¢.373_374delCG p.Arg125Valfs*101 - Profound - Ashkenazi, Brownstein
Jewish (2011)
2 N-terminal  c419del p.Lys140Serfs*304 - Profound - - Zhang (2019)
2 N-terminal  ¢453_455delCGAINSTGG  p.Glu152Glyfs*81  Progressive  Mild and - Qatar Vozzi (2014)
ACGCCTGGTCGGGCA Profound
GTGG
2 N-terminal  ¢514C>T p.Leu172Phe - - LP Japan Miyagawa
(2013)
2 N-terminal  ¢535G>T p.Glu179Ter Congenital Moderate p Korea, Japan  Park (2014),
and severe Miyagawa
(2015)
2 N-terminal  ¢554G>A p.Gly185Asp - - U Japan Miyagawa
(2013)
2 N-terminal  ¢613T>C p.Phe205Leu - - U Japan Miyagawa
(2013)
2 N-terminal  c.625G>T p.Glu209Ter - Severe to p - Zhang (2019)
profound
2 N-terminal  c671A>G p.Tyr224Cys - - U Japan Miyagawa
(2013)
2 N-terminal  ¢.742C>G p.Arg248Gly - - P - Rehman (2016)
2 N-terminal ~ c.855dup p.Pro286Serfs*15  Congenital ~ Severe to p China Zhang (2019)
profound
2 N-terminal  ¢867C>G p.Tyr289Ter Congenital ~ Moderateto P Turkey Cengiz (2010)

or prelingual, severe/R
progressive

2 N-terminal  c.1047C>A p.Tyr349Ter - - P Russian Imtiaz (2011)
2 N-terminal  c.1047C>T p.Tyr349= - - LB Saudi Arabia  Sloan-Heggen
(2015), Imtiaz
(2011)
2 N-terminal  c.1137delC p.Tyr380Metfs*65  Prelingual Normal p German Vona (2014)
progressive  between
0.125 and
0.25 kHz/S
2 N-terminal  ¢.1171_1177dupGCC p.Tyr393Cysfs*41  Congenital ~ Severe to p Oman Palombo
ATCT profound (2017)
2 N-terminal  ¢.1185dupC p.Glu396Argfs*36  10-14y Moderateto P Pakistan, Bashir (2012),
congenital profound/R Japan Miyagawa
(2013)
2 N-terminal  c.1223C>T p.Ala408Val - - p - Brownstein
(2014)
2 N-terminal  c.1387A>G p.Met463Val Congenital Severe to C [ran Fattahi (2012)
profound/R
2 N-terminal  c.1454T>C p.Val485Ala - - C - Sloan-Heggen
(2015)
2 N-terminal  c.1634C>T p.Ala545Val - - @ - Sloan-Heggen
(2015)
2 N-terminal  c.1651G>A p.Ala551Thr Congenital  Severe to U - Zhang (2019)
profound
2 N-terminal  c.2456C > A p.Ser819Ter Congenital Severe to LP Pakistan Richard (2019)
profound
2 N-terminal  c.2516del p.Pro839Argfs*24 - - p Iran Sloan-Heggen
(2015)
2 N-terminal  ¢2759G>A p.Trp920Ter Congenital ~ Moderate - Iran Sloan-Heggen
(2015)
2 N-terminal  ¢3020C >A p.Pro1009His Congenital - - China Yang (2013)

2 N-terminal  ¢3026C>A p.Pro1009His Congenital - C China Yang (2013)
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Table 5 (continued)
Exon Domain Nucleotide Change Amino Acid Age of Hearing ACMG Origin of Reference
Change Onset Level® Classification® Family
2 N-terminal  ¢3313G>T p.Glu1105Ter Congenital Profound p Pakistan Nal (2007),
Miyagawa
(2013)
2 N-terminal  ¢.3334delG p.Arg1112fs*1124  Congenital Mild to - Pakistan Nal (2007),
Profound/R Miyagawa
(2013)
2 N-terminal ~ ¢3505C>T p.Arg1169Ter Congenital ~ Severe to P Pakistan Richard (2019)
profound
2 N-terminal  c.3524dupA p.Ser- Congenital ~ Severe/R P China Li (2016)
1175Valfs*1188
2 N-terminal  c.3524dup pSer1176Valfs*14  Congenital  Mild P China Zhang (2019)
2 Motor c.3685C>T p.GIN1229Ter Congenital Profound p Pakistan Liburd (2001)
Intron4  Motor c3756+1G>T p.Asp1232fs¥1241 Congenital ~ Profound P Pakistan Liburd (2001)
4 Motor c3742C>T p.Arg1248Thr Congenital ~ Severe U China Zhang (2019)
4 Motor c.3758C>T p.Thr1253lle Congenital Severe to p India Nal (2007)
profound
Intron 5  Motor 3866+ 1G>A p.Thr1253fs*1277  Congenital Moderateto P Pakistan Nal (2007), Naz
profound (2017)
5 Motor €3844C>T p.Arg1282Trp Congenital ~ Severe to U Netherlands ~ Neveling
profound (2013)
6 Motor €.3866dupC p.His1290Alafs*25 Congenital ~ Severe to U China Bai (2019)
profound
6 Motor c3871C>T p.Leu1291Phe Congenital ~ Severe p - Zhang (2019)
6 Motor c.3892G>A p.Ala1298Thr Congenital Mild to - China Gu (2015)
Severe/R
6 Motor c3932T7>C p.lle1311Thr - - LP - Zhang (2019)
6 Motor Cc.3944G>A p.Gly1315Glu - - p - Zhang (2019)
8 Motor c4072G>A p.Gly1358Ser Second Moderate Japan Miyagawa
decade and severe (2015)
9 Motor c4176C>A p.Tyr1392Ter - Severe to P Pakistan, Iran  Nal (2007),
profound Sloan-Heggen
(2015)
9 Motor c4198G>A p.Val1400Met Congenital Severe to PandL Turkey Manzoli (2016),
or prelingual  profound Cengiz (2010)
11 Motor c4216G>A p.Glu1406Lys - - LP Japan Miyagawa
(2013)
10 Motor c4240G>A p.Glu1414Lys - - P Palestinian, Brownstein
Arab (2011)
11 Motor Cc4252G>A p.Gly1418Arg Congenital ~ Moderate p China Zhang (2019)
10 Motor c4273C>T p.GIn1425Ter - - PandLP Turkey Miyagawa
(2015)
11 Motor c4310A>G p.Tyr1437Cys Postlingual ~ Mild moder- U Iran Sloan-Heggen
childhood ate (2015)
11 Motor c4313T>C p.Leu1438Pro Congenital Severe to P - Zhang (2019)
profound
Intron 11 Motor c4320+1G>A - - - Pand LP Korea Park (2014),
Woo (2013)
12 Motor €c4322G>T p.Gly1441Val Congenital ~ Mild and PandLP Japan; China  Miyagawa
Severe/R (2013),Gu
(2015), Moteki
(2016)
11 Motor c4351G>A p.Asp1451Asn - Severe to Pand LP India Nal (2007)
profound
11 Motor c4441T7>C p.Ser1481Pro Congenital Severe to PandLP Turkey Cengiz (2010),
or prelingual  profound Diaz-Horta

(2012)
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Exon Domain Nucleotide Change Amino Acid Age of Hearing ACMG Origin of Reference
Change Onset Level® Classification® Family
13 Motor c4519C>T p.Arg1507Ter Congenital ~ Severe to P Iran Sarmadi (2020)
profound
13 Motor c4528C>T p.GIn1510Ter - - Pand LP Pakistan Sloan-Heggen
(2015)
13 Motor c4642G>A p.Ala1548Thr Congenital ~ Severe to p China Chen (2016)
profound
13 Motor c4652C>A p.Ala1551Asp - - - Turkey Miyagawa
(2015)
Intron 14 Motor c4655+1G>A - - - PandLP Iran Sloan-Heggen
(2015)
15 Motor c4666G>A p.Ala1556Thr - mild U China Zhang (2019)
15 Motor C4669A>G p.Lys1557Glu - Severe to - Pakistan Nal (2007)
profound
15 Motor cA747T>C p.Ser1583Pro Congenital Profound - China Zhang (2019)
15 Motor c4777G>A p.Glu1593Lys - - U - Sloan-Heggen
(2015)
15 Motor c4780G>C p.Asp1594His Congenital Severe to P - Zhang (2019)
profound
15 Motor c4823C>A p.Ala1608Glu Congenital Profound - China Zhang (2019)
16 Motor c4828G>A p.Glu1610Lys - - u Japan Miyagawa
(2013)
17 Motor c4888C>G p.Arg1630Gly - - u Japan Miyagawa
(2013)
17 Motor c4898T>C p.lle1633Thr Congenital Severe/R U China, Paki-  Gu (2015),
stan Rehman (2016)
17 Motor €.4904_4907delGAG p.Gly1637del Postlingual Severe to P and LP Iran Fattahi (2012)
profound
17 Motor c4952C>T p.Ser1651Leu - - u - Sloan-Heggen
(2015)
16 Motor c4998G > A p.Cys1666Ter - - - Tunisia Belguith (2009)
18 Motor ¢.5087dup p.Pro1697Alafs*2  Congenital ~ Severe to p - Zhang (2019)
profound
18 Motor c5117_5118GC>TT p.Leu1706Val - Severe to - Pakistan Belguith (2009)
profound
19 Motor c5141A>T p.Leul714Met Congenital ~ Moderate U - Zhang (2019)
18 Motor c5189T>C p.Gly1730Pro - Severe to - Pakistan Nal (2007)
profound
19 Motor c.5203C>T p.Arg1735Trp - - U - Zhang (2019)
19 Motor c.5212-2A>G - - - U Turkey Atik (2015)
20 Motor c5287C>T p.Arg1763Trp - - B Netherlands ~ Neveling
(2013)
20 Motor c.5305A>G p.Thr1769Ala Congenital Severe to - Iran Fattahi (2012)
profound/R
20 Motor c5336T>C p.Leu1779Pro Congenital ~ Profound U Algerian Ammar-Khodja
(2015)
22 Motor c5417T>C p.Leu1806Pro - - P - Zhang (2019)
22 Motor c.5421delT p.Phe1807Leufs*6  Congenital  Severe to - Iran Fattahi (2012)
profound /R
21 Motor €5492G>T p.Gly1831Val - Severe topro- P Turkey Kalay (2007)
found
22 Motor c5504G>A p.Arg1835His Postlingual,  Mild to - Korea Chang (2018)
progressive  severe/R
22 Motor c5507T>C p.Leu1836Pro Congenital ~ Profound - China Zhang (2019)
Intron 22 Motor c5650-1G>A p.Ala1884Ter - - - Turkey Duman (2011)
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Exon Domain Nucleotide Change Amino Acid Age of Hearing ACMG Origin of Reference
Change Onset Level® Classification® Family
24 Motor c.5692C>T p.Arg1898Ter - - U China Zhang (2019)
23 Motor €.5808_5814delCCG p.Arg1937Th- Congenital ~ Severe to PandLP Turkey Cengiz (2010)
TGGC rfs*10 or prelingual  profound
23 1Q3 €5809C>T p.Arg1937Cys - - U Iran, Pakistan  Rehman
(2016), Sloan-
Heggen (2015)
23 1Q3 c.5810G>A p.Arg1937His Postlingual Mild and PandLP Iran Fattahi (2012),
or congeni-  severe to Sloan-Heggen
tal profound/R (2015)
23 1Q3 c5835T>G p.Tyr1945Ter Congenital ~ Profound P Korea Chang (2015)
25 1Q Motif c5925G>A p.Trp1975Ter Congenital ~ Severe to C Iran Fattahi (2012)
profound/R
Intron 26  1Q Motif c.59644+3G>A - - - U China Gao (2013)
27 1Q Motif c5977C>T p.Arg1993Trp - - U China Zhang (2019)
27 1Q Motif c5978G>A p.Arg1993GIn First decade/ Mild and @ Japan Miyagawa
Postlingual  severe/R (2015)
28 1Q Motif €6052G>A p.Gly2018Arg - Mild B - Zhang (2019)
27 - c6061C>T p.GIN2021Ter - Severe to - Pakistan Nal (2007)
profound
27 1Q Motif c6146C>A p.Pro2049His Congenital ~ Severe to p - Zhang (2019)
profound
Intron 27 1Q Motif cH6178-2A>G - Congenital Severe to P Pakistan Rehman (2016)
profound
28 MyTH4 c6217C>T p.Pro2073Ser Congenital  Profound u Iran Shearer (2009)
29 MyTH4 €.6306_6307insG p.Ala2104Cysfs*18 — - - China Yang (2013)
29 MyTH4 CO6331A>T p.ASN2111Tyr Congenital ~ Profound p Iran Wang (1998)
29 MyTH4 C.6337A>T p.lle2113Phe Congenital  Profound p Indonesia Wang (1998)
29 MyTH4 c.6340G>A p.Val2114Met - - P China Yang (2013)
30 MyTH4 c6371G>A p.Arg2124GIn Congenital ~ Mild and L Iran Shearer (2009)
severe to
profound/R
30 MyTH4 c.6437G>A p.Arg2146GIn Postlingual ~ Mild and PandLP Korea; Iran Sloan-Heggen
severe (2015), Woo
(20,130
30 MyTH4 c6436C>T p.Arg2146Trp - Mild U - Zhang (2019)
30 MyTH4 c.6487delG p. Prelingual Mild to PandLP Japan Miyagawa
Ala2153Profs*100 profound/R (2015)
30 MyTH4 c.6589C>T p.GIn2197Ter - - P Pakistan Rehman (2016)
30 MyTH4 c6614C>T p.Thr2205lle Congenital ~ Moderate u North Liburd (2001)
America
31 MyTH4 C.6634G>A p.Glu2212Leu Moderate u - Zhang (2019)
32 - c6703T>C p.Ser2235Pro Second Moderate/R U Japan Miyagawa
decade/ (2015)
postlingual
31 - c6731G>A p.Gly2244Glu Prelingual Severe to PandLP Pakistan, Nal (2007),
profound Japan Miyagawa
(2015)
Intron 32 - Cc6764+2T>A - - - PandLP Netherlands  Sloan-Heggen
(2015), Neve-
ling (2013)
33 - c6787G>A p.Gly2263Ser - - U - Sloan-Heggen
(2015)
31 - c.6796G>A p.Val2266Met - Severe to U Pakistan, Nal (2007)
profound Turkey
33 - Cc.6845A>G p.Tyr2282Cys - - U - Zhang (2019)
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Table 5 (continued)

Exon Domain Nucleotide Change Amino Acid Age of Hearing ACMG Origin of Reference
Change Onset Level® Classification® Family
33 - c6893G>A p.Arg2298GIn - - LP - Sloan-Heggen
(2015)
Intron 33 - c.69564+9C>G - - - U - Yang (2013)
34 - c.7047del p.Tyr2350Thrfs*67 Congenital ~ Profound P - Zhang (2019)
35 - €.7124_7127delACAG p.Asp2375Valfs*29  Prelingual Severe PandLP Germany Vona (2014)
progressive
Intron 36 - €73954+3G>C - - Severe to U Tunisia Belguith
profound (2009), Riahi
(2014)
35 - c.7207G>T p.Asp2403Tyr Congenital Profound p Palestinian Shahin (2010)
Territories
36 - c.7226del p.Pro2409GInfs*8 - - P Puerto Rico  Sloan-Heggen
(2015),
Bademci
(2016)
39 - c.7550C>G p.Thr2517Ser Congenital ~ Mild moder- U Iran Sloan-Heggen
ate asym- (2015)
metric
39 - c.7636C>T p.GIn2546Ter Congenital Profound U - Zhang (2019)
40 - c7679G>A p.Arg2560GIn - - U - Sloan-Heggen
(2015)
40 - €.7708_7709insCA p.GIN2571Hisfs*35 Congenital ~ Profound - China Zhang (2019)
39 SnAPC2 like c.7801A>T p.Lys2601Ter Congenital ~ Profound p India Wang (1998)
41 - c7822G>A p.Asp2608Asn Congenital ~ Profound u China Zhang (2019)
42 - c.7894G>T p.Val2632Leu - - u - Bademci
(2016)
41 SnAPC2 like ¢.7982C>A p.Ser2661Ter - - - Turkey Duman (2011)
43 - c.7990C> A p.Pro2664Thr - - LB - Zhang (2019)
43 - €.8033_8056del p.Asn2678Ter Congenital Severe - China Zhang (2019)
43 c.8050T>C p.Tyr2684His Congenital ~ Severe u - Zhang (2019)
44 FERM c.8077del p. Congenital Mild to - China Zhang (2019)
Leu2693Cysfs*45 profound
44 FERM c.8090T>C p.Val2697Ala Congenital Severe P - Zhang (2019)
46 FERM c8148G>T p.GIn2716His Congenital Profound p Pakistan Liburd (2001)
43 FERM c.8158G>C p.Asp2720His - Moderateto P and LP Pakistan Nal (2007), Naz
profound (2017)
43 - c8183G>A p.Arg2728His Congenital - PandLP Jewish, China Yang (2013),
Brownstein
(2011)
43 - c.8198A>C p.Glu2733Ala Congenital ~ Profound - Japan Miyagawa
(2015)
45 - c8222T>C p.Phe2741Ser - - P - Zhang (2019)
Intron 45 - 8224 +3A>G splice site - - LP Pakistani Richard (2019)
46 - €.8309_8311del p.Glu2770del - - PandLP Turkey, Iran  Sloan-Heggen
(2015),
Bademci
(2016)
43 - c8324G>A p.Arg2775His - - - China Yang (2013)
46 - €.8340G>A p. Thr2780Thr Congenital ~ Profound P Israel Danial-Farran
(2018)
47 - c8375T>C p.Val2792Ala - - p China Gao (2013)
47 FERM €.8445_8448delCCTG p.Val2815Valfs*10  Congenital ~ Severe to p Iran Sarmadi (2020)
profound
47 FERM c.8450G>A p.Arg2817His Congenital ~ Mild to U China Gu (2015)

severe/R
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Exon Domain Nucleotide Change Amino Acid Age of Hearing ACMG Origin of Reference
Change Onset Level® Classification® Family
47 FERM c.8457C>G p.Tyr2819Ter - - p - Zhang (2019)
48 FERM c.8467G>A p.Asp2823Asn Congenital Moderateto P andLP Iran Fattahi (2012),
profound/R Sloan-Heggen
(2015)
49 SH3 c8707C>T p.Arg2903Ter Congenital ~ Profound U - Zhang (2019)
50 SH3 c8725G>A p.Gly2909Ser Congenital ~ Profound P - Zhang (2019)
48 SH3 c8767C>T p.Arg2923Ter - - PandLP China Woo (2013)
50 SH3 c.8771G>A p.Arg2924His - Mild and LB - Zhang (2019)
severe
50 SH3 c.8791del p.Trp2931G- Congenital ~ Profound China Zhang (2019)
lyfs*103
51 SH3 c8812G>A p.Gly2938Arg Congenital ~ Mild moder- U Iran Sloan-Heggen
ate asym- (2015)
metric
49 SH3 €.8821_8822insTG p.Val2940fs*3034  Congenital Severe to - Pakistan Nal (2007)
profound
49 SH3 €.8899dup p.Arg2967Prof- Congenital ~ Profound - Germany Budde (2020)
sler33
49 SH3 €8899C>T p.Arg2967Ter Congenital ~ Profound - Germany Budde (2020)
Intron49 - €8968-1G>C - - Profound p Turkey Kalay (2007)
52 - c9083+6T>A - Congenital  Profound p Israel Danial-Farran
(2018)
Intron53 - C92294+1G>A - - Severe to - Tunisia Belguith (2009)
profound
54 MyTH4 9221 T>C p.Met3074Thr - - u - Zhang (2019)
56 MyTH4 c.9316dupC p.H3106Pfs*2 Congenital Severe to P China Xia (2015)
profound
57 MyTH4 c.9400C>T p.Arg3134Ter - - p - Zhang (2019)
57 MyTH4 €.9408G>C p.Trp3136Cys - - u - Zhang (2019)
57 MyTH4 c9413T>A p.Leu3138GIn Congenital  Moderateto P and LP Japan Miyagawa
or prelingual  Profound/ R (2015)
59 MyTH4 c.9478C>T p.Leu3160Phe Congenital  Severe to u Pakistan; Nal (2007),
profound/ R Japan Miyagawa
(2013), Miya-
gawa (2015)
57 MyTH4 c9517G>A p.Gly3173Arg First decade/ Mild to - Japan Miyagawa
postlingual  severe/R (2015)
58 MyTH4 €9534C>G p.Cys3178Trp Congenital ~ Severe to p - Zhang (2019)
profound
58 MyTH4 c9571C>T p.Arg3191Cys Congenital ~ Severe to p China Zhou (2019)
profound
58 MyTH4 c9572G>A p.Arg3191His Congenital ~ Severe to p - Zhang (2019)
profound
57 MyTH4 €9584C>G p.Pro3195Arg prelingual Moderateto - Iran Mehregan
severe (2019)
Intron 58 MyTH4 c9611_9612+48del TGG  p. Congenital - P Iran Akbariazar
TGAGCAT Leu3204Cysfs*17 (2019)
59 MyTH4 €c.9620G>A p.Arg3207His - - u - Bademci
(2016)
60 FERM c9781A>T p.Asn3261Tyr - - u - Miyagawa
(2013)
60 FERM c.9790C>T p.GIn3264Ter Postlingual,  Mild to - Korea Chang (2018)
progressive  severe/R
61 FERM C.9908A>G p.Lys3303Arg - - U - Sloan-Heggen

(2015)




Fu et al. BMC Medical Genomics (2022) 15:71 Page 29 of 32
Table 5 (continued)
Exon Domain Nucleotide Change Amino Acid Age of Hearing ACMG Origin of Reference
Change Onset Level® Classification® Family
65 FERM €.9958_9961delGACT p.Asp3320Thrfs*2  First decade  Severe to p Brazil Lezirovitz
profound (2008)
65 FERM €.9995_10002dupGCC p. Congenital ~ Severe to Pand LP Turkey Cengiz (2010)
GGCCC Ser3335Alafs*121  or prelingual  profound
63 FERM c10181C>T p.Ala3394Val Congenital ~ Severe to U - Zhang (2019)
profound
63 FERM c.10202G>A p.Arg3401His Postlingual ~ Mild moder- P Iran Sloan-Heggen
childhood ate (2015)
64 FERM €.10245_10247delCTC p.Ser3417del Postlingual, ~ Severe/R P Korea Chang (2018),
progressive Miyagawa
(2015)
64 FERM €.10249_10251delTCC p.Phe3417del Congenital ~ Profound P Japan Miyagawa
(2015)
64 FERM €.10258_10260del p.Phe3420del Congenital Profound p China Zhang (2019)
64 FERM ¢10263C>G p.lle3421Met 10-19y/ Moderateto U Japan/Korea  Chang (2018),
Postlingual,  severe/R Miyagawa
progressive (2015)
65 FERM c.10394G>A p.Arg3465GIn - - U - Sloan-Heggen
(2015)
66 FERM c.10474C>T p.GIN3492Ter - Severe to p Pakistan Nal (2007)
profound
66 FERM ¢.10572dup p.Ser3525fs*79 - - p - Zhang (2019)
66 FERM c.10573delA p.Ser3525fs*29 Prelingual Severe to p Brazil Lezirovitz
profound (2008)

? R residual hearing of low frequencies, S steeply sloping to severe hearing loss

b P pathogenic, LP likely pathogenic, LB likely benign, B benign, U unknown significance

¢ Conflicting interpretations of pathogenicity

[72]. The variability of phenotypes makes clinical diagno-
sis and variant interpretation in genetic hearing loss diag-
nosis and maintenance [17]. And in our study, we found
that the MYOI5A variants-related hearing phenotype of
SNHL in China was similar to the previous reports.
Nevertheless, some reports showed that MYOI15A
pathogenic variants cause moderate-to-severe HL,
although they previously had been presented to cause
profound HL [7, 31]. We found three cases in our cohort
with MYOIS5A variants in the N-terminal, motor and
MyTH domains that were diagnosed with a subtle HL.
The hypothesis indicated that the predicted amino acid
substitutions of the intrinsically disordered N-terminal
domain were structurally less menacing, leading to a sub-
tler HL. Based on these results, we believe that MYOI15A
variants may be the cause leading to the postlingual
onset of partial deafness, the molecular mechanism of
which requires further investigation. The occurrence of
this non-severe hearing phenotype may be related to the
following factors: the weak pathogenicity of MYOI5A
alleles, the existence of modified genes to reduce the
degree of HL, and the influence of environmental fac-
tors. In addition, the progress of technologies for genetic
diagnosis recently has further enriched the phenotypic

spectrum of MYOIS5A. In the past, linkage analysis was
often used in the study of inbreeding hereditary ear fami-
lies. Those cases with severe hearing phenotypes caused
by homozygous variants were always given priority to be
included in the relevant genetic research. However, with
the use of the WES technology and Molecular Genet-
ics techniques, sporadic and medium-sized families
around the world started to be increasingly diagnosed,
and more cases with compound heterozygous variants
with different phenotypes were identified, which allowed
the MYOI5A variants to show more diverse phenotypic
characteristics.

We have detected a synonymous variant in MYOI5A
which was considered as a pathogenic variant. Generally,
synonymous variants are considered to be non-patho-
genic and are not expected to change the function of pro-
teins. In recent years, this paradigm has been challenged
with the evidence that the changes in the codon usage
affected the efficiency and speed of translation, which in
turn modified the folding and function of proteins [73].
Furthermore, the possible pathogenic mechanism of the
abnormal splice site caused by a single nucleotide substi-
tution at the codon wobble site and its implication in the
phenotypes of HL was often ignored. Its pathogenicity
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was suggested by both NCBI ClinVar and DVD databases.
NCBI ClinVar database, ¢.8340G > A (p.Thr2780Thr) pre-
dicted loss of exon 45 (116 bp), leading to a stop codon
2803 of 3531, and was the only synonymous variant
considered as pathogenic. The other synonymous vari-
ants were classified as benign, likely benign, uncertainly
significant, and to some extent conflicting interpreta-
tions of pathogenicity (National Center for Biotechnol-
ogy Information. ClinVar; [VCV000236038.1], https://
www.ncbi.nlm.nih.gov/clinvar/variation/VCV0002360
38.1 (accessed Sept. 20, 2021).) Danial-Farran N et al.
[32] reported that ¢.8340G > A (p.Thr2780Thr), in the last
nucleotide of exon 46 eliminated the full exon inclusion
isoform, indicating that this variant impaired splicing of
exon 46. Therefore, ¢.8340G > A (p.Thr2780Thr) was also
classified as PTV.

There was a limited understanding about the impact
of MYOI5A PTV across multiple phenotypes. In this
study, the cases with biallelic non-truncating MYOI15A
variants commonly related with profound HL, and the
cases with one or two truncating variants tended to show
more prone to HL. Therefore, it suggested a correlation
between genotype and phenotype in MYOI5A-related
NSHL.

Consistent with previous genetic studies, MYOI15A
variants are considered to play an important role in the
pathogenesis of HL in China. There were several limita-
tions of this study. First, the approach yet could not detect
variants in the promoter or enhancer region and copy
number variants. In addition, the follow-up time varies,
some cases lack long-term follow-up results and objective
evaluation, particularly the cochlear implant cases.

Conclusion

In summary, we found that a total of 3.58% of the Chi-
nese population with NSHL were related to MYO15A
variants. MYO15A variants associated with NSHL were
proven by NGS and validated by Sanger sequencing.
Here, we report 78 novel and 24 reported MYOI15A
variants, which further enriched the MYOI15A vari-
ant spectrum regarding the NSHL. Auditory features
of the affected individuals were consistent with that
previously reported for the recessive variants in the
MYOI5A gene. The hearing loss in most affected indi-
viduals was severe to profound, but in a few cases
showed mild to moderate deafness. We suggest that the
detected large variations in the phenotype of MYO15A-
related NSHL might be correlated with the epigenet-
ics and other factors that require further investigation.
Noteworthy, screening for MYOI5A variants in NSHL
patients is of high necessity for efficient genetic diagno-
sis, patients’ counseling and clinical intervention.
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