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GINS4 might be a novel prognostic 
immune‑related biomarker of not only 
esophageal squamous cell carcinoma and other 
cancers
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Abstract 

Background:  Immunotherapy using immune checkpoint inhibitors (ICIs), such as antibody of programmed death-1 
(PD-1)/programmed death-ligand 1 (PD-L1) has showed as a promising treatment for esophageal squamous cell 
carcinoma (ESCC), but resistance is unavoidable. This study aimed to find more immune-related genes to promote the 
efficiency of immunotherapy.

Materials and methods:  Three datasets were downloaded from Gene Expression Omnibus (GEO) database. Gene 
differential analysis was performed to identify differentially expressed genes (DEGs), then ceRNA network was 
constructed based on differentially expressed lncRNAs and mRNAs. Next, Functional enrichment analysis and pro-
tein–protein interaction (PPI) network were built to reveal the potential function of mRNAs in ceRNA network. Survival 
analysis and immune cell infiltration level analysis were utilized to identify prognostic immune-related genes. Finally, 
pan-cancer analysis was performed to show the role of immune-related genes in other cancers.

Results:  The data of 215 samples in total were obtained from GEO database (98 normal tissues and 117 tumor 
tissues), and 1685 differentially expressed mRNAs (176 downregulated and 1509 upregulated) and 3 upregulated 
lncRNAs (MCM3AP-AS1, HCP5 and GUSBP11, all upregulated) were found. ceRNA network was constructed to reveal 
some special correlation. Function enrichment showed some potential functions of mRNAs in ceRNA network such as 
mitotic cell cycle process, negative regulation of DNA-binding transcription factor activity, ossification, VEGFA-VEGFR2 
signaling pathway, epithelial to mesenchymal transition, embryonic morphogenesis and so on. PPI network showed 
the physical interactions between each mRNA in ceRNA network. Through survival analysis and immune cell infiltra-
tion level analysis, GINS4 was confirmed as an immune-related prognostic gene in ESCC. GSEA showed some poten-
tial functions such as negative regulation of monocyte chemotaxis, antigen processing and presentation of endog-
enous peptide antigen via MHC class I via ER pathway, positive regulation of antigen processing and presentation, 
dendritic cell antigen processing and presentation and so on. Finally, pan-cancer analysis revealed that GINS4 might 
be a novel immune-related prognostic gene in ESCC and other cancers.
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Introduction
Esophageal cancer (EC) is one of the most common 
malignant tumors with a high incidence and mortal-
ity in the world [1]. It consists of two major histological 
types, esophageal squamous cell carcinoma (ESCC) and 
esophageal adenocarcinoma (EAC). ESCC is more com-
monly seen than EAC in the eastern countries [2]. Sur-
gery or surgery-based multimodality therapy is currently 
the most effective treatment for ESCC [3]. For locally 
advanced ESCC, neoadjuvant chemotherapy combined 
with radiotherapy or immunotherapy is now the main-
stay for improvement of survival [4–6].

Though great progress has been made in the biological 
functions of driver gene for esophageal cancer, there are 
still lack of effective targeted drugs for ESCC. In recent 
years, immune checkpoint inhibitors (ICIs), such as the 
antibody of programmed death-1 (PD-1)/programmed 
death-ligand 1 (PD-L1) has showed its promising effi-
ciency as neoadjuvant or adjuvant therapy, especially 
when combined with chemotherapy. Studies have shown 
that PD-1/PD-L1 inhibitors such as nivolumab, pembroli-
zumab can significantly improve the objective response 
ratio (ORR) with a good safety and prolong over sur-
vival (OS) in both first-line and second-line treatment for 
advanced ESCC [7–10]. In fact, according to some phase 
I-III trials, though ICIs have showed its effectiveness, 
only a subset of patients would benefit from them [11]. 
For example, the overall response rate (ORR) was 30% in 
in KEYNOTE-028 trial [9] and 9.9% in KEYNOTE-180 
trial [12]. What’s more, ATT​RAC​TION-3 trial, a multi-
center, randomized phase III trial, showed that the ORR 
was only 19% [13]. Therefore, it’s urgent to explore more 
immunotherapy approaches to benefit more patients.

Studies have shown that tumor immune microenviron-
ment (TIME) including tumor‐infiltrating lymphocytes 
(TIL), tumor‐associated macrophages (TAM), and mye-
loid‐derived suppressor cells (MDSC) may contribute to 
the resistance to immunotherapy, but the mechanisms 
are still unknown [14–17]. Therefore, immune-related 
genes and immunotherapy-related biomarkers are 
urgently needed, which may help to elucidate the molec-
ular mechanisms of TIME on tumorigenesis, and also 
improve the efficiency of immunotherapy. In this study, 
we aimed to search for novel immune-related genes 
through integrated analysis on the data downloaded from 

Gene Expression Omnibus (GEO) database and The Can-
cer Genome Atlas (TCGA) database.

Materials and methods
Gene sets acquisition
The data of ESCC datasets GSE33426 (normal: 12, tumor: 
59), GSE38129 (normal: 30, tumor: 30) and GSE161533 
(normal: 56, tumor: 28) were downloaded from GEO 
database. Then the three datasets were merged into one 
new dataset, and package “sva” in software R (ver. 4.1.0) 
was utilized to remove the batch effect. Next, the merged 
dataset was divided the into mRNA group and lncRNA 
group according to the GENCODE project (http://​www.​
genco​degen​es.​org).

Gene differential analysis
In order to find out the differentially expressed genes 
(DEGs), the gene differential analysis was performed 
between tumor and normal tissues on mRNA group 
and lncRNA group by “limma” package. |LogFC|> 1 and 
adjusted p value < 0.05 were considered statistically sig-
nificant for the DEGs.

Construction of ceRNA network
In order to find out the competing endogenous regulat-
ing network mediated by lncRNAs and miRNAs, we con-
structed a ceRNA network by software Cytoscape (ver. 
3.8.2). First, we predicted the potential miRNAs which 
could correlate with differentially expressed lncRNAs 
by miRcode database (http://​www.​mirco​de.​org/) [18]. 
Next, the interactions between miRNAs and differentially 
expressed mRNAs were predicted by miRTarBase (http://​
miRTa​rBase.​cuhk.​edu.​cn/) [19], TargetScan (http://​www.​
targe​tscan.​org/) [20] and miRDB (http://​www.​mirdb.​org/​
miRDB/) [21]. The interactions between miRNAs and 
mRNAs should match all the three databases. Software 
Cytoscape (ver. 3.8.2) was used to visualize the network.

Functional enrichment analysis and protein–protein 
interaction network
In order to reveal the potential function of mRNA in 
ceRNA network, we uploaded the mRNAs in ceRNA 
network to the website Metascape (https://​metas​cape.​
org/​gp) [22]. In this website, we could perform func-
tion enrichment analysis including gene ontology (GO) 

Conclusion:  Our study suggested that GINS4 was correlated with prognosis and immune cell infiltration level of 
ESCC and other cancers. It may deserve further investigation as a potential immune-related prognostic biomarker of 
ESCC and other cancers.
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analysis, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis and protein–protein interac-
tion (PPI) enrichment analysis.

Survival analyses
Due to lack of clinicopathological features in GEO data-
sets, we downloaded ESCC gene expression profile and 
corresponding clinicopathological features from The 
Cancer Genome Atlas (TCGA) (https://​portal.​gdc.​
cancer.​gov/). Then survival analyses were carried out 
based on the lncRNAs and mRNAs in ceRNA network. 
Kaplan–Meier (KM) survival curves were constructed by 
“survival” and “survminer” packages. Log-rank p < 0.05 
indicated a significance difference.

Immune cell infiltration level
To explore whether the prognostic mRNAs were corre-
lated with TIME, we uploaded tumor expression profile 
of GEO dataset to Tumor IMmune Estimation Resource 
(TIMER) database (https://​cistr​ome.​shiny​apps.​io/​timer/) 
to calculate six immune cell infiltration level (B cell, T 
cell CD4+, T cell CD8+, Neutrophil, Macrophage and 
Myeloid dendritic cell) [23]. Spearman analyses were per-
formed to reveal the correlation between the expression 
level of prognostic mRNAs and six immune cell infiltra-
tion level. A significance difference was indicated when 
p < 0.05 and the mRNAs were confirmed as immune-
related mRNAs. Furthermore, we also performed Esti-
mation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) 
analysis based on tumor expression profile of GEO data-
set by using “estimate” package to calculate immune 
score, then Spearman analyses were performed between 
immune score and immune-related genes to validate 
the correlation between immune score and immune-
related mRNAs. A significance difference was indicated 
when p < 0.05. Correlations between expression level of 
immune-related mRNAs and biomarkers of immune cells 
were also revealed. The biomarkers were obtained from 
previous study [24] and CellMarker database (http://​
biocc.​hrbmu.​edu.​cn/​CellM​arker/​index.​jsp) [25].

Gene set enrichment analysis
To reveal the potential function of immune-related genes 
in ESCC tumor, we carried out Gene set enrichment 
analysis (GSEA) based on each immune-related mRNA 
by software GSEA (ver. 4.1.0). The tumor expression 
profile was divided into high expression groups and low 
expression group based on the median expression level 
of the aimed mRNA each time when a GSEA was per-
formed. GSEA was conducted based on the high and low 

express groups. A significant functional enrichment was 
indicated if p < 0.05.

Pan‑cancer analysis
In order to search out the role of the immune-related 
prognostic genes found in the ESCC in other cancers, a 
pan-cancer analysis was conducted, including gene dif-
ferential analysis, survival analysis and immune cell infil-
tration analysis. Gene differential analysis and immune 
cell infiltration analysis were performed via TIMER data-
base, and survival analysis was carried out by GEPIA 
database (http://​gepia.​cancer-​pku.​cn/​index.​html).

Results
Gene expression profile data
The work flow of this study was shown in Fig. 1. The data 
of 215 samples in total were obtained from GEO data-
base (98 normal tissues and 117 tumor tissues). After 
normalization, gene differential analysis was conducted. 
According to |LogFC|> 1 and adjusted p value < 0.05, in 
mRNA group, 1685 mRNAs were differentially expressed 
(176 were downregulated and 1509 were upregulated); 
in lncRNA group, only 3 lncRNAs (MCM3AP-AS1, 
HCP5 and GUSBP11) were differentially expressed and 
all upregulated (Fig. 2A–D). The results of gene differen-
tial analysis were showed by volcano plots and the gene 
expression was showed by heatmaps.

ceRNA network
After prediction, 3 lncRNAs, 34 miRNAs and 169 
mRNAs were included in the ceRNA network (Fig. 3A). 
In the ceRNA network, lncRNAs could regulate down-
stream mRNAs by regulating correlated miRNAs [26]. 
Three special networks were showed in the Fig.  3B. In 
these three networks, miRNAs only correlated with one 
lncRNA, and mRNAs only correlated with one miRNA. 

Fig. 1  Flowchart of our study
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Fig. 2  Volcano plots and heatmap plots of differential expressed mRNAs (A, C) and lncRNAs (B, D)
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Fig. 3  ceRNA network constructed based on differential expressed lncRNAs and mRNAs. A The whole ceRNA network. B Three special ceRNA 
networks
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These networks were unique, and showed special func-
tions in ESCC.

Functional enrichment analysis and PPI network
Functional enrich analysis showed that mRNAs in ceRNA 
network were mainly enriched in mitotic cell cycle pro-
cess, negative regulation of DNA-binding transcription 
factor activity, ossification, VEGFA-VEGFR2 signaling 
pathway, epithelial to mesenchymal transition, embry-
onic morphogenesis and so on (Fig. 4A). Some functions 
such as VEGFA-VEGFR2 signaling pathway, epithelial to 
mesenchymal transition, epithelial cell differentiation, 
regulation of cell development, regulation of cell adhe-
sion may contribute to the tumorigenesis and metas-
tasis of ESCC. Furthermore, enriched functions with 
a similarity > 0.3 were connected by edges (Fig.  4B–C). 
PPI network showed the physical interactions between 
each mRNA in ceRNA network. The Molecular Complex 
Detection (MCODE) algorithm has been applied to iden-
tify densely connected network components (Fig.  5A–
B). Pathway and process enrichment analysis has been 
applied to each MCODE component independently, 
and the three best-scoring terms by p-value have been 
retained as the functional description of the correspond-
ing components (Table 1).

KM survival curves from TCGA database
The data of 80 patients’ tumor samples with clinicopatho-
logical features were obtained from TCGA database, 
of those 56 were still alive and 24 dead with a median 
survival time of 395.5  days. Survival analyses was per-
formed and KM curves was built on the 3 lncRNAs and 
169 mRNAs in ceRNA network. The results showed that 
all 3 lncRNAs were not prognostic while 9 upregulated 
mRNAs (POLR3D, GINS4, LMNB2, SLC7A6, PHTF2, 
RBL1, RNF2, IRAK1 and ZWINT) were prognostic 
(Fig. 6A–I).

Correlation between immune cell infiltration level 
and prognostic mRNAs
Six immune cell infiltration level were acquired from 
TIMER database. Correlation analyses between six 
immune cell infiltration level and prognostic mRNAs 
were conducted. Results showed that all 9 mRNAs were 
correlated with somewhat infiltration level of the 6 
immune cells (Fig.  7A–I). To validate these results, we 
also uploaded tumor expression profile of TCGA data-
set to TIMER database, and the same analyses were per-
formed. Results showed that only GINS4, PHTF2 and 
SLC7A6 were correlated with immune cell infiltration. 
GINS4 was correlated with the infiltration of B cell and 
myeloid dendritic cell; PHTF2 was correlated with the 
infiltration of macrophage; SLC7A6 was correlated with 

the infiltration of B cell, macrophage and myeloid den-
dritic cell (Fig. 8A–C). Both datasets showed that GINS4 
was correlated with B cell infiltration, and GEO dataset 
showed GINS4 was also correlated with the infiltration 
of neutrophil and T cell CD4+; TCGA dataset showed 
GINS4 was also correlated with the infiltration of mye-
loid dendritic cell. In GEO dataset, PHTF2 was corre-
lated with the infiltration of all immune cells except B 
cell; however, in TCGA dataset, PHTF2 was only cor-
related with macrophage. In GEO dataset, SLC7A6 was 
correlated with the infiltration of all immune cells, but 
in TCGA dataset, it only correlated with infiltration of 3 
immune cells. In conclusion, the above results indicated 
that GINS4, SLC7A6 and PHTF2 might be immune-
related genes. ESTIMATE analysis was conducted for 
validating the results, and correlation analyses between 
immune-related genes and immune score were per-
formed. The results showed that only GINS4 was cor-
related with immune score (r = − 0.3, p = 0.001), while 
SLC7A6 (r = 0.170, p = 0.069) and PHTF2 (r = − 0.020, 
p = 0.831) were excluded. Therefore, GINS4 was con-
firmed as an immune-related gene.

Correlation of GINS4 expression with biomarkers 
of immune cells
To further explore the role of GINS4 in tumor immune, 
we determined the expression correlation of GINS4 with 
biomarkers of B cell, CD4 + T cell, neutrophil, dendritic 
cell and myeloid dendritic cell based on GEO datasets. As 
list in Table 2, GINS4 was significantly correlated with B 
cell’s biomarker (CD19 and CD79A), one biomarker of 
dendritic cell (HLA-DQB1) and 5 biomarkers of myeloid 
dendritic cell (CD40, CD80, CD83, CD207 and CD209). 
These findings partially supported that GINS4 is posi-
tively correlated with immune cell infiltration.

Potential function of GINS4
The expression profiles of the tumors were divided into 
high expression and low expression group based on the 
median expression level of GINS4, and GSEA was car-
ried out based on the two groups. The results showed 
that high expression group was mainly enriched in G 
Protein coupled glutamate receptor signaling pathway 
and fibroblast growth factor production; Low expres-
sion group was mainly enriched in negative regulation of 
monocyte chemotaxis, antigen processing and presenta-
tion of endogenous peptide antigen via MHC class I via 
ER pathway, positive regulation of antigen processing and 
presentation, dendritic cell antigen processing and pres-
entation, and positive regulation of dendritic cell antigen 
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Fig. 4  Results of function enrichment analysis. A Potential function of mRNAs in ceRNA network. B–C Network of enriched terms: B colored by 
cluster ID, where nodes that share the same cluster ID are typically close to each other; C colored by p-value, where terms containing more genes 
tend to have a more significant p value
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processing and presentation (Fig. 9). These results dem-
onstrated the role of GINS4 in ESCC tumor immune.

Pan‑cancer analysis of GINS4
Gene differential analysis was performed in 33 types 
of cancer by TIMER database. The results showed that 
GINS4 was differentially expressed in bladder urothe-
lial carcinoma (BLCA), breast invasive carcinoma 
(BRCA), cholangiocarcinoma (CHOL), colon adenocar-
cinoma (COAD), esophageal carcinoma (ESCA), head 
and neck squamous cell carcinoma (HNSC, including 
HNSC-HPV positive and negative), kidney renal clear 

cell carcinoma (KIRC), kidney renal papillary cell car-
cinoma (KIRP), liver hepatocellular carcinoma (LIHC), 
lung adenocarcinoma (LUAD), Lung squamous cell 
carcinoma (LUSC), rectum adenocarcinoma (READ), 
skin cutaneous melanoma (SKCM), stomach adenocar-
cinoma (STAD) and uterine corpus endometrial carci-
noma (UCEC) (Fig. 10). KM curves for 33 cancers were 
obtained from GEPIA database. The results showed 
that GINS4 had prognostic value in adrenocortical 
carcinoma (ACC, p = 0.0022), KIRC (p = 0.026), acute 
myeloid leukemia (LAML, p = 0.032), brain lower grade 
glioma (LGG, p = 2.5e−06), LIHC (p = 0.045), LUAD 
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Fig. 5  A Protein–protein interaction (PPI) network. B The Molecular Complex Detection (MCODE) components. Pathway and process enrichment 
analysis has been applied to each MCODE component independently, and the three best-scoring terms by p-value have been retained as the 
functional description of the corresponding components

Table 1  The three best-scoring terms by p-value retained as the functional description of the corresponding components in PPI 
network

MCODE GO Description Log10(P)

MCODE_1 R-HSA-8957275 Post-translational protein phosphorylation − 12.1

MCODE_1 R-HSA-381426 Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor 
Binding Proteins (IGFBPs)

− 11.8

MCODE_2 GO:0032956 regulation of actin cytoskeleton organization − 5.1

MCODE_2 GO:0032970 regulation of actin filament-based process − 5

MCODE_2 GO:0007264 small GTPase mediated signal transduction − 4.7

MCODE_3 GO:0007623 circadian rhythm − 6.4

MCODE_3 GO:0048511 rhythmic process − 5.9

MCODE_4 R-HSA-168638 NOD1/2 Signaling Pathway − 8.7

MCODE_4 R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signaling pathways − 8.1

MCODE_4 GO:0032088 negative regulation of NF-kappaB transcription factor activity − 7.5

MCODE_5 hsa04350 TGF-beta signaling pathway − 7.6

MCODE_5 ko04350 TGF-beta signaling pathway − 7.6

MCODE_5 GO:0010717 regulation of epithelial to mesenchymal transition − 7.4
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Fig. 6  Kaplan–Meier (KM) curves of the mRNAs in ceRNA network were built based on The Cancer Genome Atlas (TCGA) database and 9 mRNAs 
had prognostic value (A–I)
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Fig. 7  Correlation between the 9 mRNAs and immune cell infiltration level based on GEO dataset. All the 9 mRNAs were correlated with the 
infiltration level of some immune cells. (A-I: POLR3D, GINS4, LMNB2, SLC7A6, PHTF2, RBL1, RNF2, IRAK1 and ZWINT)
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(p = 0.04), mesothelioma (MESO, p = 0.00024), pancre-
atic adenocarcinoma (PAAD, p = 0.019), pheochromo-
cytoma and paraganglioma (PCPG, p = 0.023), READ 
(p = 0.0019) and thymoma (THYM, p = 0.039) (Fig. 11). 
Immune cell infiltration analysis was based on the top 
10 cancer in global morbidity via TIMER database. 
GINS4 was correlated with immune cell infiltration in 
all cancers, especially in BLCA, BRCA, COAD, LIHC, 
LUAD, prostate adenocarcinoma (PRAD), STAD, thy-
roid carcinoma (THCA) (Fig. 12). In conclusion, GINS4 
might be a novel immune-related prognostic gene in 
ESCC and other cancers.

Discussion
In recent years, immunotherapy for esophageal can-
cer is developing rapidly, and has showed very promis-
ing results in the neoadjuvant and or adjuvant therapy 
for ESCC. Therefore, in order to predict the efficiency 
and prognosis of the esophageal cancer patients receiv-
ing immunotherapy, a lot of studies has been conducted 
on searching for immune-related genes. In this study, we 
systematically collected data from GEO database, and 
performed gene differential analysis. ceRNA network was 
constructed based on DEGs, and function enrichment 
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Fig. 8  Correlation between the 9 mRNAs and immune cell infiltration level based on TCGA dataset. Results showed only GINS4, SCL7A6 and PHTF2 
were correlated with the infiltration level of some immune cells. A GINS4; B SCL7A6; C PHTF2

Table 2  Correlation between GINS4 and biomarker of immune 
cells

The bold means p < 0.05

Immune cell Biomarker R P

B cell CD19 0.2 0.029
CD79A 0.2 0.034

Neutrophil CEACAM8 0.16 0.081

ITGAM 0.18 0.056

CCR7 0.12 0.192

CD4+ T cell CD4 0.13 0.177

Dendritic cell HLA-DPB1 0.086 0.356

HLA-DQB1 0.28 0.003
HLA-DRA 0.14 0.14

HLA-DPA1 0.055 0.558

CD1C 0.15 0.098

NRP1 − 0.073 0.436

ITGAX 0.14 0.13

Myeloid dendritic cell CD4 0.13 0.177

CD40 0.36  < 0.001
CD80 0.38  < 0.001
CD83 0.37  < 0.001
CD86 0.064 0.49

CD207 0.36  < 0.001
CD209 0.24 0.009
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Fig. 9  Gene set enrichment analysis (GSEA) showed some potential function of GINS4. These functions might correlate with the tumorigenesis and 
immunity of esophageal squamous cell carcinoma (ESCC)

*** *** *** *** *** *** · *** *** *** *** *** *** *** *** · ******
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Fig. 10  The expression level of GINS4 in different cancers and adjacent normal tissues analyzed by Tumor IMmune Estimation Resource (TIMER) 
database. *p < 0.05; **p < 0.01; ***p < 0.001

Fig. 11  Kaplan–Meier curves of GINS4 in different cancers from GEPIA database. Results showed that GINS4 had prognostic value in adrenocortical 
carcinoma (ACC, p = 0.0022), kidney renal clear cell carcinoma (KIRC, p = 0.026), acute myeloid leukemia (LAML, p = 0.032), brain lower grade glioma 
(LGG, p = 2.5e−06), liver hepatocellular carcinoma (LIHC, p = 0.045), lung adenocarcinoma (LUAD, p = 0.04), mesothelioma (MESO, p = 0.00024), 
pancreatic adenocarcinoma (PAAD, p = 0.019), pheochromocytoma and paraganglioma (PCPG, p = 0.023), READ (p = 0.0019) and thymoma (THYM, 
p = 0.039)

(See figure on next page.)
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Fig. 11  (See legend on previous page.)
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and PPI network were performed based on DEGs in 
ceRNA network. Then, survival analysis and immune 
cell infiltration level analysis were carried out to search 
for immune-related prognostic genes. The results showed 
that GINS4 was immune-related prognostic gene and 
GSEA revealed its potential function. We also performed 
a pan-cancer analysis to investigate the role of GINS4 in 
other cancers.

ceRNA networks link the function of protein-coding 
mRNAs with that of non-coding RNAs such as micro-
RNA, long non-coding RNA, pseudogenic RNA and circu-
lar RNA. lncRNAs could competitively bind to the shared 
miRNAs, and their expression is then positively correlated. 
The upregulation of one lncRNA results in more seques-
trated copies of shared miRNAs [26]. In our study, ceRNA 
network was constructed by DEGs, indicating that the 
regulation network plays a role in ESCC, especially the 3 
unique networks in Fig. 2B.

PPI enrichment analysis revealed the physical inter-
actions among DEGs in ceRNA network, and MCODE 
showed the potential protein complex and their func-
tions. Some functions such as negative regulation of 
NF-kappaB transcription factor activity [27], TGF-beta 
signaling pathway [28] may contribute to tumorigenesis 
of ESCC.

Our study found that GINS4 might be a novel biomarker 
correlated with the prognosis not only in ESCC but also in 
many other cancers. Go, Ichi, Nii, and San (means five, one, 
two, and three, respectively, in Japanese) complex subunit 
4 (GINS4) is a member of GINS family, which are essen-
tial for the initiation of DNA replication in yeast and Xeno-
pus egg extracts [29]. Yang et al. reported that GINS4 was 
highly expressed in non-small cell lung cancer (NSCLC) 
and was associated with the prognosis of NSCLC, espe-
cially LUAD. They also found that overexpression of GINS4 
promotes cancer cell growth, migration and invasion [30]. 
Zhu et al. found that GINS4 was highly expressed in gastric 
cancer and correlated closely with gastric cancer clinico-
pathological features such as OS and disease-free survival 
(DFS) [31]. Similar results were also found in colorectal 
cancer [32], pancreatic cancer [33] and hepatocellular car-
cinoma [34] and breast cancer [35].

In ceRNA network, GINS4 was regulated via HCP5/miR-
17-5p axis. Histocompatibility leukocyte antigen complex 
P5 (HCP5) is a lncRNA located between the MICA (MHC 
class I polypeptide-related sequence A) and MICB (MHC 
class I polypeptide-related sequence B) genes in the MHC I 
region of chromosome 6p21.33, and it is mainly expressed 
in immune system. HCP5 was associated with tumorigen-
esis of many cancers such as pancreatic cancer, colorectal 
cancer, lung cancer and so on [36]. Thus, HCP5 may func-
tion by regulating GINS4.

miR-17-5p is also regulated by other lncRNAs or tar-
get other mRNAs and then, promotes tumorigenesis, for 
example, MIR17HG promotes colorectal cancer progres-
sion via miR-17-5p [37], miR-17-5p promotes angiogenesis 
in nasopharyngeal carcinoma via targeting BAMBI [38]. 
Up to now, there are no studies about HCP5 / miR-17-5p/
GINS4 axis.

Furthermore, our study also found that GINS4 was cor-
related with immune cell infiltration not only in ESCC but 
also in many other cancers. In ESCC, GINS4 was signifi-
cantly associated with the infiltration level of B cell. It was 
also correlated with CD4+ T cell and myeloid dendritic 
cell according to GEO and TCGA dataset. GSEA showed 
GINS4 might have an important role in immune system. 
Therefore, GINS4 was confirmed as an immune-related 
prognostic gene in ESCC. However, no related researches 
have reported it until present.

The limitation of this study is that the GINS4 was con-
firmed as an immune-related prognostic gene in ESCC 
based on the analysis of the data downloaded from GEO 
and TCGA database. Further molecular biology experi-
ments are required to investigate its function and regula-
tion mechanism.

Conclusion
Our study found that GINS4 might be a novel immune-
related prognostic gene in ESCC. It is highly expressed in 
ESCC, and may be regulated via HCP5 / miR-17-5p axis. 
It may also play an important role in other cancers. There-
fore, it could be a new target gene, which provides a new 
therapeutic target in many malignant tumors. Further 
studies are required to investigate its function.

(See figure on next page.)
Fig. 12  Immune cell infiltration analysis was based on the top 10 cancer in global morbidity via TIMER database. GINS4 was correlated with 
immune cell infiltration in all cancers, especially in bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), colon adenocarcinoma 
(COAD), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), prostate adenocarcinoma (PRAD), stomach adenocarcinoma (STAD), 
thyroid carcinoma (THCA)
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