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Abstract 

Background:  Recently, non-coding RNAs are of growing interest, and more scientists attach importance to research 
on their functions. Long non-coding RNAs (lncRNAs) are defined as non-protein coding transcripts longer than 200 
nucleotides. We already knew that lncRNAs are related to cancers and will be dysregulated in them. But most of their 
functions are still left to further study. A mechanism of RNA regulation, known as competing endogenous RNAs (ceR‑
NAs), has been proposed to explain the complex relationships among mRNAs and lncRNAs by competing for binding 
with shared microRNAs (miRNAs).

Methods:  We proposed an analysis framework to construct the association networks among lncRNA, mRNA, and 
miRNAs based on their expression patterns and decipher their network modules.

Results:  We collected a large-scale gene expression dataset of 1,061 samples from breast invasive carcinoma (BRCA) 
patients, each consisted of the expression profiles of 4,359 lncRNAs, 16,517 mRNAs, and 534 miRNAs, and applied the 
proposed analysis approach to interrogate them. We have uncovered the underlying ceRNA modules and the key 
modulatory lncRNAs for different subtypes of breast cancer.

Conclusions:  We proposed a modulatory analysis to infer the ceRNA effects among mRNAs and lncRNAs and 
performed functional analysis to reveal the plausible mechanisms of lncRNA modulation in the four breast cancer 
subtypes. Our results might provide new directions for breast cancer therapeutics and the proposed method could 
be readily applied to other diseases.
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Background
Non-coding RNAs (ncRNAs) are functional RNA mol-
ecules transcribed from DNA but not translated into pro-
teins. Non-coding RNAs have been known to make up a 
majority of transcribed RNAs, in which many different 

types of regulatory RNAs have been, and continue to 
be, discovered. Long non-coding RNAs (lncRNAs) are 
a novel class of RNA molecules defined as transcripts 
longer than 200 nucleotides that, in many ways, are simi-
lar to protein-coding transcripts, except for lack of sig-
nificant protein-coding potential. On the whole, most 
parts of the human genome are composed of non-cod-
ing genes. Recent studies found that non-coding genes 
play a significant role in regulating gene expression. 
Distinct molecular mechanisms allow lncRNAs to acti-
vate or repress gene expression, thereby involved in the 
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regulation of cellular and tissue functions. Cancer is a 
disease with aberrant gene expression, as some studies 
showed that several cancer risk loci are transcribed into 
lncRNAs and these transcripts play critical roles in tumo-
rigenesis [1]. In addition, many lncRNAs are deregulated 
in cancer, and some of them can be important drivers of 
malignant transformation. Hence some lncRNAs can be 
tumor markers or potential drug-targets for cancer treat-
ment. Long non-coding RNAs have gained widespread 
attention nowadays as a new biological regulation, but 
sorting out what they do is challenging [2].

MicroRNAs (miRNAs) are widely known as a class 
of non-coding RNA (ncRNA), single-stranded RNAs 
of 18–25 nucleotides in length [3]. MicroRNAs bind to 
sequences with partial complementarity on target RNA 
transcripts, called microRNA response elements (MREs), 
usually resulting in the repression of target gene expres-
sion. MREs are sequences in the 3’ untranslated regions 
(UTRs) of target RNA transcripts and typically have a 
conserved stretch of 7 nucleotides that are able to base 
pair with the 5 regions of corresponding miRNAs. In 
2011, Pandolfi proposed the competitive endogenous 
hypothesis [4], according to which, every RNA tran-
scripts can regulate each other by sharing common 
MREs, which would work as miRNA sponge, thus facili-
tating translation of the target RNA transcripts, despite 
the presence of corresponding miRNA. Competing 
endogenous RNAs (ceRNAs) are new classification of 
RNAs, which competes with specific mRNA for provid-
ing biding sites to the corresponding miRNA. Recently, 
numerous studies have reported that there exists ceRNA 
mechanism between protein-coding messenger RNAs 
and non-coding RNA such as transcribed pseudogenes, 
lncRNAs and circular RNAs (circRNAs). They co-regu-
late each other by competing for binding to shared miR-
NAs [5]. Competing endogenous RNA interactions form 
a multilayered network that regulates gene expression in 
various biological pathways. Recent reports have dem-
onstrated that ceRNA networks regulate essentially all 
known biological processes, while their functions remain 
to be explored yet.

In general, miRNAs are negative regulators of gene 
expression, decreasing the stability of target RNAs. Addi-
tionally, miRNA also regulates lncRNA. However, on the 
basis of ceRNA hypothesis, all types of RNA transcripts 
can actively communicate to each other to regulate their 
respective expression levels by using MREs [4]. In princi-
ple, overexpression of ceRNAs increases the concentra-
tion of specific MREs, therefore, leading to the increased 
expression of mRNA. Our knowledge of lncRNA can act 
as miRNA sponges, which then reduce the amount of 
miRNA available to target mRNAs. In addition, lncRNA 
may possess ceRNA activity in various cancers, and 

have been implicated in human development. Thus, we 
can use this regulation to investigate the functions of 
lncRNA. Recent studies have linked specific lncRNAs 
to development, cancer, pain, inflammation, and other 
important biological processes and phenomena. Further-
more, lncRNAs were found to be widely expressed and 
often dysregulated in cancers, while their functions and 
mechanism remain to be explored yet. Recently, a new 
class of RNAs was discovered, which co-regulate each 
other by competing for binding to shared microRNAs 
and described as competing endogenous RNAs (ceR-
NAs). CeRNAs are widely implicated in many biological 
processes and have been found to be important regula-
tor in many types of cancer [6]. Besides, ceRNA has been 
proposed to explain the complex relationships among 
lncRNAs and mRNAs to compete for miRNA binding. 
In this study, we collected a large-scale gene expression 
dataset for cancer, and proposed an analysis framework 
to integrate them. We expect to uncover the underlying 
ceRNA modules and the key modulatory lncRNAs in dif-
ferent cancer types.

Results
Construction of bipartite co‑expression network
We analyzed a large dataset of BRCA profiles for mRNA, 
lncRNA and miRNA expression. These expression data 
were obtained from Genomic Data Commons (GDC) 
data portal. The BRCA patient cohort can be subdivided 
into four breast cancer subtypes as reported previously 
[7, 8], so we divided the samples into four subtypes for 
our further analysis (Table  1). After data preprocessing, 
we computed the Fisher’s z transformation of Spearman 
rank correlation coefficients among lncRNAs, mRNAs 
and miRNAs for each cancer subtype, respectively. The 
z-score distribution curves are all unimodal, symmetric 
and centered at zero (Fig. 1, Additional file 1: Fig. S1-S3). 
We used the scale-free topology criterion to choose a 
cut-off z-score value for construction of gene co-expres-
sion networks [9]. Here, we selected interactions with 
the absolute value of z-score greater than or equal to the 
cut-off z-score value. The RNA-RNA pairs with sparse 
interactions were removed, and all the remaining inter-
actions were used to construct the bipartite networks of 
lncRNA-mRNA, mRNA-miRNA, and miRNA-lncRNA 

Table 1  Summary of analyzed BRCA cohort and data sets

Cancer subtype Samples mRNAs lncRNAs miRNAs

Basal-like 167 12,336 808 491

Her2 type 115 12,323 785 491

Luminal A 405 12,518 884 491

Luminal B 287 12,123 880 491
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(Additional file  1: Fig. S4a). As a result, we got three 
bipartite co-expression networks in four subtypes, 
respectively.

The interaction‑profile similarity between genes 
and identification of coherent association
Metrics known as association indices can be used to 
quantify interaction-profile similarity. In 2013, Walhout 
and co-workers described an overview of commonly used 
association indices [10], and compared the performance 
of different methods in various types of analyses for bio-
logical networks. In addition, network analysis can iden-
tify modules, composed of genes with similar interaction 
profiles, that can imply functional relationships between 
genes. The interaction-profile similarities between genes 
can be calculated using the association indices. However, 
different association indices provide different values of 
the interaction-profile similarity. Here, we focused on five 
commonly used measures to quantify interaction-profile 
similarity (See Methods). For a pair of lncRNAs, we can 
measure their association by calculating their node simi-
larity (association index) in the lncRNA-miRNA bipartite 
co-expression network; we can also measure the associa-
tion by their similarity in the lncRNA-mRNA bipartite 
network. To compare the lncRNA-lncRNA associations 
(similarities) calculated from the two different bipar-
tite networks, we displayed the distributions of all the 
lncRNA pairs as density histograms (Fig.  2; Additional 
file  1: Fig. S4b) with their coordinates set to their simi-
larities calculated by lncRNA-mRNA bipartite network 
and lncRNA-miRNA network, respectively. Our results 
showed that the lncRNA-lncRNA pairs with high simi-
larity in one bipartite network (lncRNA-mRNA) tended 

to have high similarity in another bipartite network 
(lncRNA-miRNA), and the pairs with low similarity in 
one bipartite network often had low similarity in another 
bipartite network contrariwise.

Network modules are groups of nodes with high inter-
action-profile similarity and the nodes in the same mod-
ule tend to have related biological functions. Because of 
this, we can identify network modules using association 
indices. Since the functions and molecular mechanisms 
of most lncRNAs still remain unknown, we used mRNA 
as a proxy to determine the criteria for construction of 
coherent association network and evaluate the functional 
association of mRNA pairs with similar interaction pro-
files. The mRNA-mRNA similarity was assessed by their 
association indexes in the mRNA-lncRNA bipartite co-
expression network and also by mRNA-miRNA bipar-
tite network. Presumably the mRNA pairs having high 
similarity in both association networks share similar 
biological functions and are likely involved in the same 
biological pathways. We defined four areas in the coor-
dinate system for interaction-profile similarity (Fig.  3a) 
and evaluated their performance by protein–protein 
interaction analysis and GO functional similarity. Later 
we would apply the same selection criteria to construct 
association network of lncRNAs.

In protein–protein interaction analysis, we calculated 
the percentages for each set of mRNAs with PPIs. It indi-
cates that these mRNAs have related biological functions 
if they have high percentage of interaction in PPIs. As 
a result of analysis, we observed the percentage of area 
D is higher than other areas in four subtypes (Fig.  3b). 
However, we can identify functionally related mRNAs 
by calculating GO functional similarity. We compared 
the functional similarity to establish functional relation-
ship between each pair of mRNAs that belong to four 
areas (Fig. 3c). As a result, we found pairs of mRNAs that 
belong to the area D corresponds to highly similar func-
tions than other areas in four subtypes. Overall, area D 
performs the best, and area A performs the worst. Thus, 
we focused on gene pairs having related biological func-
tions, which we called ‘coherent association’. The pairwise 
association indices values in area D are for coherent asso-
ciation. We applied this selection criteria to construct the 
association network of lncRNAs.

Association networks of lncRNAs
In the above analysis, we used five methods to calculate 
interaction-profile similarity between genes and evalu-
ate their performance on inferring functional associa-
tion. Thereby, we combined five association indices and 
chose to focus on high-confidence interactions that con-
firmed by three association indices. We performed PPIs 
analysis and the GO functional similarity to compare the 

Fig. 1  Distribution of Fisher’s Z transformation. Distribution of Fisher 
transformation for Spearman correlation coefficients between all 
mRNA/lncRNA pairs, mRNA/miRNA pairs and lncRNA/miRNA pairs in 
BRCA Basal-like
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performance of associated mRNA pairs selected from 
different thresholds (Fig. 4). We chose to focus on high-
confidence interactions that were confirmed by three 
association indices and pairwise association indices in 
the top 0.05 percent. The results of coherent association 
network in four subtypes showed modular structures 
(Fig.  5a; Additional file  1: Fig. S5-S7). Interestingly, we 
found that only 15 lncRNAs appeared in all the coherent 
association networks (Fig. 5b).

Comparison of functional modules between subtypes
To understand the biological role of lncRNAs, we per-
formed Gene Ontology (GO) enrichment analysis using 

mRNAs co-expressed with the lncRNAs in each mod-
ule. We focus on the top six modules of lncRNA coher-
ent association network in the BRCA Basal-like. As a 
result, the module 1, 3, 4 and 5 are enriched in macro-
molecule metabolic process, cellular macromolecule 
metabolic process, whereas the module 6 is enriched in 
regulation of immune system process, positive regulation 
of immune system process and immune system process. 
The result showed no significant (FDR-q-value < 0.05) 
biological process GO term was identified for the mod-
ule 2 (Fig.  6a and Table  2). We further performed gene 
ontology categories enrichment analysis across subtypes. 
In BRCA Her2 type, the module 1 and 2 are enriched in 

Fig. 2  Visualized density histogram of lncRNA (Basal-like). Density histogram indicated five types of association indices to measure shared mRNA 
and miRNA nodes between two lncRNA nodes in bipartite networks. The top histogram is for association indices computed using the Pearson 
correlation coefficient (PCC). The bottom five histograms are for association indices computed using the Jaccard index, the Simpson index, the 
geometric index, the cosine index, and PCC, respectively (from left to right)
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Fig. 3  Identification of coherent association. a Definition of four areas A–D in the interaction profile similarity map for association indices between 
two mRNAs measured by shared lncRNAs versus the indices measured by shared mRNAs. This map of mRNAs is defined similar to the density 
histograms of lncRNAs in Fig. 2. b Percentages of gene pairs with protein–protein interactions (PPI) among the associated mRNAs selected in the 
area A, B, C, or D. Each plot shows the analysis results of each breast cancer subtype obtained using five different association indices, respectively. 
c GO functional similarity between associated mRNA pairs selected in each area using five different association indices for the four breast cancer 
subtypes

Fig. 4  Evaluating functional performance for identifying thresholds in BRCA subtypes. We integrated five association indices and compared the 
characteristics of coherently associated gene pairs selected with different thresholds. a Percentages of gene pairs with PPI for different selection 
thresholds of association indices. b GO functional similarity of the coherently associated gene pairs selected by different thresholds of association 
indices
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Fig. 5  Coherent association network. a Coherent association network in BRCA Basal-like. Network for 87 lncRNAs by high interaction-profile 
similarity, where nodes represent lncRNAs. Nodes are colored by modules and gray nodes represent lncRNAs unassigned to a module. The red 
border indicates lncRNAs found in four subtypes. b Venn diagram showing the number of shared and unique lncRNAs from coherent association 
network under different subtypes

Fig. 6  Functional association among modules. a Hierarchically-clustered heatmap of gene ontology categories enrichment analysis across 
Basal-like modules. b Hierarchically-clustered heatmap of gene ontology categories enrichment analysis across fourteen modules. Only categories 
with an adjusted FDR-q-value of less than 0.05 in at least one module are shown
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Table 2  Top 10 significantly enriched Gene Ontology terms

Term Name P value FDR Q value

Module 1

GO:0043170 Macromolecule metabolic process 1.17E−13 6.83E−10

GO:0044260 Cellular macromolecule metabolic process 5.79E−13 1.69E−09

GO:0033108 Mitochondrial respiratory chain complex assembly 1.23E−11 2.39E−08

GO:0034622 Cellular protein-containing complex assembly 8.75E−11 1.27E−07

GO:0010257 NADH dehydrogenase complex assembly 1.44E−10 1.68E−07

GO:0032981 Mitochondrial respiratory chain complex I assembly 1.44E−10 1.68E−07

GO:0006807 Nitrogen compound metabolic process 4.17E−10 3.47E−07

GO:0044237 Cellular metabolic process 5.69E−10 4.14E−07

GO:0090304 Nucleic acid metabolic process 7.70E−10 4.98E−07

GO:0044238 Primary metabolic process 1.11E−09 6.48E−07

Module 3

GO:0043170 Macromolecule metabolic process 2.02E−18 1.07E−14

GO:0044260 Cellular macromolecule metabolic process 2.74E−18 7.26E−15

GO:0006807 Nitrogen compound metabolic process 1.57E−15 2.76E−12

GO:0044237 Cellular metabolic process 2.18E−15 2.89E−12

GO:0044238 Primary metabolic process 3.12E−14 3.30E−11

GO:0044267 Cellular protein metabolic process 4.53E−14 4.00E−11

GO:0071704 Organic substance metabolic process 5.56E−13 4.21E−10

GO:0008152 Metabolic process 1.16E−12 7.69E−10

GO:0006996 Organelle organization 2.28E−12 1.34E−09

GO:0043412 Macromolecule modification 3.38E−11 1.79E−08

Module 4

GO:0043170 Macromolecule metabolic process 4.77E−20 2.38E−16

GO:0044260 Cellular macromolecule metabolic process 6.52E−19 1.62E−15

GO:0044237 Cellular metabolic process 9.22E−17 1.53E−13

GO:0006996 Organelle organization 1.84E−16 2.29E−13

GO:0006807 Nitrogen compound metabolic process 3.85E−16 3.84E−13

GO:0071704 Organic substance metabolic process 3.87E−15 3.22E−12

GO:0044238 Primary metabolic process 5.08E−15 3.62E−12

GO:0044267 Cellular protein metabolic process 1.02E−14 6.34E−12

GO:0008152 Metabolic process 1.03E−14 5.70E−12

GO:0034641 Cellular nitrogen compound metabolic process 1.66E−11 8.26E−09

Module 5

GO:0043170 Macromolecule metabolic process 2.69E−28 2.01E−24

GO:0044260 Cellular macromolecule metabolic process 2.73E−25 1.02E−21

GO:0006807 Nitrogen compound metabolic process 2.51E−22 6.25E−19

GO:0044237 Cellular metabolic process 1.21E−20 2.27E−17

GO:0044267 Cellular protein metabolic process 5.58E−19 8.33E−16

GO:0071840 Cellular component organization or biogenesis 1.29E−17 1.61E−14

GO:0044238 Primary metabolic process 1.54E−17 1.64E−14

GO:0008152 Metabolic process 4.73E−17 4.41E−14

GO:0006996 Organelle organization 1.39E−16 1.15E−13

GO:0071704 Organic substance metabolic process 2.39E−16 1.78E−13

Module 6

GO:0002682 Regulation of immune system process 1.70E−34 1.05E−30

GO:0002684 Positive regulation of immune system process 1.48E−28 4.56E−25

GO:0002376 Immune system process 7.55E−27 1.55E−23

GO:0034097 Response to cytokine 4.11E−16 6.34E−13
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regulation of immune system process and immune sys-
tem process. The module 3 is enriched in regulation of 
cell migration and regulation of cell motility, whereas the 
module 4 is enriched in macromolecule metabolic pro-
cess and cellular macromolecule metabolic process. The 
biological process GO term enriched for BRCA Lumi-
nal-A included macromolecule metabolic process, cel-
lular macromolecule metabolic process, and organelle 
organization. In BRCA Her2 type, the module 1 and 3 
are enriched in macromolecule metabolic process and 
cellular component organization, whereas the module 
2 is enriched in mitotic nuclear division, cell cycle and 
nuclear division. We further compared biological process 
GO term across fourteen modules that belong to the four 
subtypes (Fig.  6b). Dendrogram showing results of an 
agglomerative hierarchical cluster analysis. We see that 
at a high height, there seems to be two distinct groups 
which first emerge. And the right-hand group has three 
groups in itself. Therefore, the fourteen modules can be 
divided into four clusters. We noticed that all four clus-
ters contained at least two subtypes.

Discussion
We proposed a novel network analysis method which is 
suitable to explore the lncRNA modulation. Our strat-
egy incorporates gene expression profiles, patient cohort 
clustering, computational interaction-profile similari-
ties and gene function prediction to identify the lncRNA 
network modules and reveal the plausible modulatory 
mechanisms of lncRNA, mRNA and miRNA co-regula-
tory networks in human breast invasive carcinoma. Long 
non-coding RNAs are of growing interests and more sci-
entists attach importance to research on their functions. 
But most of their functions are still left to further study. 
The competing endogenous RNAs among mRNAs and 
lncRNAs by competing for binding with shared miRNAs 
may help find out the involved biological functions of 
lncRNAs. Furthermore, we consider that many cancers 
have multiple subtypes with different causes and clinical 
outcomes. As large amount of cancer genomics and tran-
scriptomics data are emerging, applying our proposed 
method to available data will allow us to find key lncRNA 

modules and reveal their functions in different cancer 
subtype.

Conclusions
In conclusion, we have developed a novel method to 
identify lncRNA network modules in each subtype of 
breast invasive carcinoma and found candidate key mod-
ulatory lncRNAs in the gene regulatory network. Our 
approach can be readily applied to other cancers or dis-
eases. We might further provide new insights into their 
underlying mechanisms and suggest new therapeutic tar-
gets or approaches. That will benefit the future biomedi-
cal research and make contribution to the understanding 
of cancer diseases.

Methods
Data preprocessing
The HTSeq-FPKM expression data and the isoform 
expression data of human breast invasive carcinoma 
(BRCA) were obtained from Genomic Data Commons 
(GDC) data portal (Data Release 10, downloaded on 
December 25, 2017; https://​portal.​gdc.​cancer.​gov/). We 
obtained gene annotation and mature miRNA infor-
mation from Ensembl BioMart (Ensemble Genes 90, 
GRCh38.p10, downloaded on November 7, 2017; https://​
asia.​ensem​bl.​org/​index.​html) and the miRBase Sequence 
Database (Release 21, downloaded on June 27, 2017; 
http://​www.​mirba​se.​org/), respectively. For the two 
expression data sets, we kept only biological features 
with at least 80% of non-zero values over all samples and 
performed the upper quartile normalization. To allow 
log transformation, we identified the minimum non-
zero element in each expression data set before adding 
it element-wise to the original expression data set. The 
RNA-Seq expression data were then log2 transformed. 
We further removed samples that are outliers (beyond 
two standard deviations away from the mean value) from 
the data set. For HTSeq-FPKM expression data set, we 
separated protein coding genes and lncRNAs (including 
lincRNAs and antisense RNAs) based on human gene 
annotation from Ensembl. In total, we analyzed 1,061 
patients with 4,359 lncRNAs, 1,061 patients with 16,517 

Table 2  (continued)

Term Name P value FDR Q value

GO:0050776 Regulation of immune response 4.29E−16 5.29E−13

GO:0002694 Regulation of leukocyte activation 5.63E−16 5.79E−13

GO:0051249 Regulation of lymphocyte activation 2.09E−15 1.84E−12

GO:0050865 Regulation of cell activation 1.21E−14 9.34E−12

GO:0051707 Response to other organism 3.28E−14 2.25E−11

GO:0043207 Response to external biotic stimulus 3.28E−14 2.25E−11

https://portal.gdc.cancer.gov/
https://asia.ensembl.org/index.html
https://asia.ensembl.org/index.html
http://www.mirbase.org/
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mRNAs and 1,034 patients with 534 miRNAs for BRCA 
data sets.

Identification of BRCA subtypes
For BRCA cohort subtypes, we identified each sample 
based on Ashouri et al. [8]. The BRCA cohort they iden-
tified were subdivided into the four established PAM507 
subtypes. Here, our BRCA cohort included 167 samples 
classified as Basal-like, 115 samples classified as Her2 
type, 405 samples classified as Luminal A, and 287 sam-
ples classified as Luminal B. To filter mRNAs and lncR-
NAs with low expression across most samples in each 
subtype, we removed mRNAs and lncRNAs that were 
median FPKM values <  = 0.7 for downstream analyses 
(Table 1).

Gene co‑expression analysis
We selected the highly-correlated lncRNA/mRNA pairs, 
lncRNA/miRNA pairs and mRNA/miRNA pairs in four 
subtypes. We computed z-score which is the Fisher trans-
formation of Spearman’s rank correlation coefficients 
among lncRNAs, mRNAs and miRNAs for the cancer 
subtypes, respectively. The Spearman correlation coeffi-
cient is a statistical measure of the strength of a mono-
tonic relationship between paired data. In a sample it is 
denoted by rs and is by design constrained as

And it is defined as the Pearson correlation coefficient 
between the ranked variables. Furthermore, unlike Pear-
son correlation coefficient, there is no requirement of 
normality and hence it is a nonparametric statistic. Now

where n is a sample of size, the n raw scores Xi,Yi are con-
verted to ranks xi, yi , and di = xi − yi is the difference 
between ranks.

Then we computed z-score using the Fisher transfor-
mation of ( rs):

where rs is the sample Spearman rank correlation coeffi-
cient. And then

where z is a z-score for rs which approximately follows a 
standard normal distribution, and n is the sample size.

(1)−1 ≤ rs ≤ 1

(2)rs = 1−
6
∑

di
2

n
(

n2 − 1
)

(3)F(rs) =
1

2
ln
1+ rs

1− rs

(4)z =
√

n− 3

1.06
F(rs)

Construction of bipartite co‑expression networks
A bipartite network describes the interactions between 
two different types of nodes (X-type and Y-type), 
with edges connecting only nodes of different types. 
We selected the highly-correlated lncRNA/mRNA, 
lncRNA/miRNA and mRNA/miRNA pairs to con-
struct three bipartite co-expression networks (Addi-
tional file 1: Figure S4a) in four subtypes. To choose a 
cut-off z-score value we used the Scale-free Topology 
Criterion [9], which applies the linear regression model 
fitting index ( R2 ) to quantify how well a network satis-
fies a scale-free topology. If parameter values lead to an 
R2 value close to 1 may lead to networks with very few 
connections. Here we only consider those z-score val-
ues that lead to a bipartite network satisfying scale-free 
topology at least approximately: R2 > 0.8 and the slope 
of the regression line between log10(p(k)) and log10(k) 
should be greater than -2 but less than -0.5.

Association indices and networks
We calculated the interaction-profile similarities 
between genes. Using networks to measure similar-
ity between genes and especially focus on bipartite 
networks that connect X-type nodes to Y-type nodes. 
In bipartite networks, association indices can be used 
to measure shared Y-type nodes between two X-type 
nodes, or vice versa. Here, we calculated the associa-
tion indices between mRNA-mRNA pairs in mRNA-
lncRNA and mRNA-miRNA bipartite network, and the 
same for lncRNA-lncRNA pairs and miRNA-miRNA 
pairs.

We focused on the following five measures to quan-
tify interaction-profile similarity [10], including the Jac-
card index, the Simpson index, the geometric index, the 
cosine index, and the Pearson correlation coefficient. 
For example, we used five association indices to meas-
ure interaction-profile similarity between X-type nodes 
A and B.

The Jaccard index is the proportion of shared nodes 
between A and B relative to the total number of nodes 
connected to A or B:

where N (A) is defined as the number of nodes with 
which A interacts (similarly for N (B)).

The Simpson index is the proportion of shared nodes 
relative to the degree of the least-connected node:

(5)
|N (A) ∩ N (B)|
|N (A) ∪ N (B)|

(6)
|N (A) ∩ N (B)|

min(|N (A)|, |N (B)|)
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The geometric index corresponds to the product of 
the proportion of shared nodes between A and B:

The cosine index is the geometric mean of the propor-
tions of shared nodes between A and B:

The Pearson correlation coefficient is the correlation 
between the interaction profiles of A and B:

where ny is the total number of Y-type nodes in the 
network.

We expected to uncover the underlying complex regu-
latory relationships among lncRNAs, mRNAs and miR-
NAs. The association network is a network in which 
two nodes of the same type are connected by an edge 
with their similarity. It enables the comparison of pairs 
of nodes across networks using the integration of differ-
ent types of networks, whether pairs of nodes with simi-
lar interaction profiles in one bipartite network are also 
similar in another bipartite network. An illustration of 
the analysis workflow is shown in Additional file 1: Figure 
S4b.

Protein–protein interaction analysis
We listed pairwise genes in four areas and calculated the 
percentage of pair in PPIs database, respectively. The 
PPIs information were obtained from ConsensusPathDB-
human (downloaded on July 31, 2017; http://​cpdb.​
molgen.​mpg.​de/). In total, ConsensusPathDB-human 
contains 272,998 protein interactions. All binary PPIs 
have an aggregated confidence score that was computed 
as a consensus score across the six methods for judging 
interaction confidence [11]. We only used 92,728 high-
quality PPI interactions whose consensus score > 0.95.

Functional similarity analysis
The Gene Ontology (GO) is a standard vocabulary of 
functional terms and gene product attributes across all 
species. The GO is divided into three orthogonal ontolo-
gies, biological process, molecular function, and cellular 
component. Gene products are functionally similar if 
they have similar molecular functions and biological pro-
cesses. GO annotations can be used as a measure of func-
tional similarity between gene products. We used funSim 

(7)
|N (A) ∩ N (B)|2

|N (A)| · |N (B)|

(8)
|N (A) ∩ N (B)|

√
|N (A)| · |N (B)|

(9)

|N (A) ∩ N (B)| · ny − |N (A)| · |N (B)|
√

|N (A)| · |N (B)| ·
(

ny − |N (A)|
)

·
(

ny − |N (B)|
)

to assess the functional relationship between two genes 
[12]. Lengauer and co-workers provide a new measure of 
similarity between GO terms. This new measure is based 
on Lin’s [13] and Resnik’s [14, 15] definitions, called 
simRel . We also measured and compared functional simi-
larity between genes in four areas, respectively.
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